Skip to main content
Log in

Some metabolic effects of ammonia on astrocytes and neurons in primary cultures

  • Published:
Neurochemical Pathology

Abstract

Some metabolic effects on primary cultures of neurons or astrocytes were studied following acute or chronic exposure to pathophysiological concentrations (usually 3 mM) of ammonia. Three parameters were investigated: (1)14CO2 production from14C-labeled substrates [glucose, pyruvate, branched-chain amino acids (leucine, valine, isoleucine), and glutamate]; (2) interconversion between glutamate and glutamine; and (3) incorporation of label from labeled branched-chain amino acids into proteins. Neither acute nor chronic exposure to ammonia had any effect on14CO2 production from [U-14C]glucose in astrocytes and neurons, whereas under certain conditions14CO2 production from [1-14C]pyruvate in astrocytes was inhibited by ammonia. Production of14CO2 from [1-14C]branched-chain amino acids was inhibited by acute, but stimulated by chronic, exposure to ammonia (3 mM) in astrocytes, with less effect in neurons. Production of14CO2 from [1-14C]glutamate in both astrocytes and neurons was inhibited by acute exposure to ammonia. In astrocytes, glutamate levels tended to decrease and glutamine levels tended to increase following acute exposure to ammonia; in neurons, both glutamine and glutamate levels decreased. Protein content (per culture dish) increased in astrocytes but not in neurons, after chronic exposure to ammonia, possibly as a result of enhanced protein synthesis and/or by inhibition of protein degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, C., Milner P. A., Sheu, K.-F. R., Blass J. P., and Pickel V. M. (1987) Regional distribution of astrocytes with intense immunoreactivity for glutamate dehydrogenase in rat brain: implication for neuronal-glial interactions in glutamate transmission.J. Neurosci, (in press).

  • Benjamin A. M. and Quastel J. H. (1974). Fate ofl-glutamate in brain.J. Neurochem. 23, 457–464.

    Article  PubMed  CAS  Google Scholar 

  • Berl S. (1971) Cerebral amino acid metabolism in hepatic coma.Exp. Biol. Med. 4, 71–84.

    PubMed  CAS  Google Scholar 

  • Berl S. and Frigyesi T. L. (1969) Comparison of cerebral and regional metabolism of [14C]leucine following third ventricle and intravenous administration in the cat.J. Neurochem. 16, 405–415.

    Article  PubMed  CAS  Google Scholar 

  • Berl S., Takagaki G., Clarke D. D., and Waelsch H. (1962) Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver.J. Biol. Chem. 237, 2562–2569.

    PubMed  CAS  Google Scholar 

  • Bradford H. F. and Ward H. K. (1976) On glutaminase activity in mammalian synaptosomes.Brain Res. 110, 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Brand K. (1981) Metabolism of 2-oxoacid analogues of leucine, valine and phenylalanine by heart, muscle, brain and kidney of the rat.Biochim. Biophys. Acta 677, 126–132.

    PubMed  CAS  Google Scholar 

  • Buse, M. G., Jursinic S., and Reid S. S. (1975) Regulation of branched-chain amino acid oxidation in isolated muscles, nerves and aortas of rats.Biochem. J. 148, 363–374.

    PubMed  CAS  Google Scholar 

  • Chaplin E. R., Goldberg A. L., and Diamond I. (1976) Leucine oxidation in brain slices and nerve endings.J. Neurochem. 26, 701–707.

    Article  PubMed  CAS  Google Scholar 

  • Cooper A. J. L. and Meister A. (1985) Transamination reactions in metabolism, inTransaminases (Metzler D. E. and Christen P., eds.), pp. 533–563, John Wiley, New York, NY.

    Google Scholar 

  • Cooper A. J. L. and Plum F. (1987) Biochemistry and Physiology of brain ammonia.Physiol. Rev. 67, 440–519.

    PubMed  CAS  Google Scholar 

  • Cooper A. J. L., McDonald J. M., Gelbard A. S., Gledhill R. F., and Duffy T. E. (1979) The metabolic fate of13N-labeled ammonia in rat brain.J. Biol. Chem. 254, 4982–4992.

    PubMed  CAS  Google Scholar 

  • Cooper A. J. L., Mora S. N., Cruz N. F., and Gelbard A. S. (1985) Cerebral ammonia metabolism in hyperammonemic rats.J. Neurochem. 44, 1716–1723.

    Article  PubMed  CAS  Google Scholar 

  • Cremer, J. E., Heath D. F., Patel A. J., Balázs R. and Cavanagh J. B. (1975) An experimental model of CNS changes associated with chronic liver disease: Portocaval anastomosis in the rat, inMetabolic Compartmentation and Neurotransmission (Berl S., Clarke D. D., and Schneider D., eds.), pp. 461–478, Plenum, New York, NY.

    Google Scholar 

  • Cremer J. E., Teal H. M., Heath D. F., and Cavanagh J. B. (1977) The influence of portocaval anastomosis on the metabolism of labeled octanoate, butyrate and leucine in rat brain.J. Neurochem. 28, 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Dennis S. C., Lai J. C. K., and Clark J. B. (1977) Comparative studies on glutamate metabolism in synaptic and non-synaptic rat brain mitochondria.Biochem. J. 164, 727–736.

    PubMed  CAS  Google Scholar 

  • Duffy T. E. and Plum F. (1982) Hepatic Encephalopathy, inThe Liver: Biology and Pathobiology (Arias I., Popper H., Schachter D., and Shafritz D. A., eds.), pp. 693–715. Raven, New York, NY.

    Google Scholar 

  • Edmond J., Anestad N., Robbins R. A., and Bergstrom J. D. (1985) Ketone body metabolism in the neonate: Development and the effect of diet.Fed. Proc. 44, 2359–2364.

    PubMed  CAS  Google Scholar 

  • Fedoroff S. (1977) Primary cultures, cell lines, and cell strains: Terminology and characteristics, inCell, Tissue, and Organ Cultures in Neurobiology (Fedoroff S. and Hertz L., eds.), pp. 265–286. Academic, New York, NY.

    Google Scholar 

  • Fischer, J. E. (1982) Amino acids in hepatic coma.Dig. Dis. Sci. 27, 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Fischer J. E., Rosen H. M., Ebeid A. M., James J. H., Keane J. M., and Soeters P. B. (1976) The effect of normalization of plasma amino acids on hepatic encephalopathy in man.Surgery 80, 77–91.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick S. M., Cooper A. J. L., and Duffy T. E. (1983) Use of β-methylene-D,L-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism.J. Neurochem. 41, 1370–1383.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick S. M., Cooper A. J. L., and Hertz L. (1987) Effects of ammonia and β-methylene-D,L-aspartate on the oxidation of glucose and pyruvate by neurons and astrocytes in primary cultures.J. Neurochem. (in press).

  • Gregorios J. B., Mozes L. W., Norenberg L.-O. B., and Norenberg M. D. (1985) Effect of cyclic AMP on ammonia-treated astrocyte cultures.Neurology 35, Suppl. 1, 250.

    Google Scholar 

  • Hallermayer K., Harmening C., and Hamprecht B. (1981) Cellular localization and regulation of glutamine synthetase in primary cultures of brain cells from newborn mice.J. Neurochem. 37, 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Hamberger A., Hedquist B., and Nyström B. (1979) Ammonium ion inhibition of evoked release of endogenous glutamate from hippocampal slices.J. Neurochem. 33, 1295–1302.

    Article  PubMed  CAS  Google Scholar 

  • Harper, J. F. (1984) Peritz' F-Test: Basic program of a robust multiple comparison test for statistical analysis of all differences among group means.Comput. Biol. Med. 14, 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins R. A. and Mans A. M. (1983) Intermediary metabolism of carbohydrates and other fuels, inHandbook of Neurochemistry, 2nd Ed. (Lajtha A., ed.), vol. 3, pp. 259–294. Plenum, New York, NY.

    Google Scholar 

  • Hertz L. (1986) Potassium transport in astrocytes and neurons in primary cultures.Ann. NY Acad. Sci. 481, (Cserr H. F., ed.) pp. 318–333.

    Article  PubMed  CAS  Google Scholar 

  • Hertz L. and Schousboe A. (1986) Role of astrocytes in compartmentation of amino acid and energy metabolism, inAstrocytes (Fedoroff S. and Vernadakis A., eds.), Academic, New York, NY Vol. 2 pp. 179–208.

    Google Scholar 

  • Hertz L., Juurlink B. H. J., Szuchet S., and Walz W. (1985a) Cell cultures inHandbook of Neurochemistry, 2nd Ed. (Lajtha A., ed.), vol. 8, pp. 603–661. Plenum, New York, NY.

    Google Scholar 

  • Hertz L., Juurlink B. H. J., Szuchet S., and Walz W. (1985b) Cell and Tissue Cultures, inNeuromethods (Boulton A. and Baker G. B., eds.) vol. 1, pp. 117–167, Humana, Clifton, NJ.

    Google Scholar 

  • Hertz L., Yu A. C. H., Potter R. L., Fisher T. E., and Schousboe A. (1983) Metabolic fluxes from glutamate and towards glutamate in neurons and astrocytes in primary cultures, inGlutamine, Glutamate and GABA in the Central Nervous System, (Hertz L., Kvamme E., McGeer E. G., and Schousboe A., eds.), pp. 327–342 Alan R. Liss, New York, NY.

    Google Scholar 

  • Hindfelt B. (1972) The effect of sustained hyperammonemia upon metabolic state of the brain.Scand. J. Clin. Lab. Invest. 30, 245–255.

    Article  PubMed  CAS  Google Scholar 

  • Hindfelt B. (1975) On mechanisms in hyperammonemic come—with particular reference to hepatic encephalopathy.Proc. NY Acad. Sci. 252, 116–123.

    Article  CAS  Google Scholar 

  • Hindfelt B., Plum F., and Duffy T. E. (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts.J. Clin. Invest. 59, 386–396.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa A., Ishiyama H., Enomoto T., Ozaki A., Fukao K., Okamura T., Iwasaki Y., and Yamamoto H. (1985) Hepatic coma and amino acids in the nerve endings of the central nervous system.Life Sci. 37, 2129–2134.

    Article  PubMed  CAS  Google Scholar 

  • Jessy J., and Murthy Ch. R. K. (1985) Elevation of transamination of branched-chain amino acids in brain in acute ammonia toxicity.Neurochem. Int. 7, 1027–1031.

    Article  CAS  PubMed  Google Scholar 

  • Juurlink B. H. J. and Hertz L. (1985) Plasticity of astrocytes in primary cultures: An experimental tool and a reason for methodological caution.Dev. Neurosci. 7, 263–277.

    Article  PubMed  CAS  Google Scholar 

  • Juurlink B. H. J., Schousboe A., Jögensen O. S., and Hertz L. (1981) Induction by hydrocortisone of glutamine synthetase in mouse primary astrocyte cultures.J. Neurochem. 36, 136–142.

    Article  PubMed  CAS  Google Scholar 

  • Kvamme E., Svenneby G., Hertz L., and Schousboe A. (1982) Properties of phosphate-activated glutaminase in astrocytes cultured from mouse brain.Neurochem. Res. 7, 761–770.

    Article  PubMed  CAS  Google Scholar 

  • Lai J. C. K. and Cooper A. J. L. (1986) α-Ketoglutarate dehydrogenase: properties and inhibition by ammonia.Trans. Am. Soc. Neurochem. 17, 311.

    Google Scholar 

  • Larsson O. M., Drejer J., Kvamme E., Svenneby G., Hertz L., and Schousboe A. (1985) Ontogenetic development of glutamate and GABA metabolizing enzymes in cultured cerebral cortex interneurons and in cerebral cortex in vivo.Int. J. Dev. Neurosci. 3, 177–185.

    Article  CAS  Google Scholar 

  • Lopes-Cardozo M., Larsson O. M., and Schousboe A. (1986) Acetoacetate and glucose as lipid precursors and energy substrates in primary cultures of astrocytes and neurons from mouse cerebral cortex.J. Neurochem. 46, 773–778.

    Article  PubMed  CAS  Google Scholar 

  • Matheson D. F. and Van den Berg C. J. (1975) Ammonia and brain glutamine: Inhibition of glutamine degradation by ammonia.Biochem. Soc. Trans. 3, 525–528.

    PubMed  CAS  Google Scholar 

  • McCandless D. W. and Schenker S. (1981) Effect of acute ammonia intoxication on energy stores in the cerebral reticular activating system.Exp. Brain Res. 44, 325–330.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy A. D. and Tipton K. F. (1983) Glutamate dehydrogenase, inGlutamine, Glutamate and GABA in the Central Nervous System. (Hertz L., Kvamme E., McGeer E. G., and Schousboe A., eds.), pp. 19–32, Alan R. Liss, New York, NY.

    Google Scholar 

  • McKhann G. M. and Tower D. B. (1961) Ammonia toxicity and cerebral oxidative metabolism.Am. J. Physiol. 200, 420–424.

    PubMed  CAS  Google Scholar 

  • Murthy Ch. R. K. and Hertz L. (1987a) Acute effects of ammonia on branched-chain amino acid oxidation and incorporation into proteins in astrocytes and in neurons in primary cultures.J. Neurochem., in press.

  • Murthy Ch. R. K. and Hertz L. (1987b) Comparison between acute and chronic effects of ammonia on branched chain amino acid oxidation and incorporation into protein in primary cultures of astrocytes and of neurons.J. Neurosci. Res. in press.

  • Murthy Ch. R. K. and Hertz L. (1987c) Pyruvate decarboxylation in astrocytes and in neurons in primary cultures in the presence and absence of ammonia.Neurochem. Res. in press.

  • Murthy Ch. R. K., Hertz E., and Hertz L. (1986) Ammonia effects on oxidation of branched-chain amino acids by astrocytes.Trans. Am. Soc. Neurochem. 17, 125.

    Google Scholar 

  • Norenberg M. D. (1981) The astrocyte in liver disease, inAdvances in Cellular Neurobiology (Fedoroff S. and Hertz L., eds.), pp. 304–352. Academic, New York, NY.

    Google Scholar 

  • Norenberg M. D., Mozes L. W., Norenberg L-O.B., and Gregorios J. B. (1986). Effects of ammonia on primary astrocyte cultures, inDynamic Properties of Glial Cells, II: Cellular and Molecular Aspects (Grisar T., Franck G., Hertz L., Norton W. T., Sensenbrenner M., and Woodbury D. M., eds.), Pergamon Oxford, pp. 353–362.

    Google Scholar 

  • Odessey R. and Goldberg A. L. (1972) Oxidation of leucine by rat skeletal muscle.Am. J. Physiol. 223, 1376–1383.

    PubMed  CAS  Google Scholar 

  • Patel A. J. and Balázs R. (1970) Manifestation of metabolic compartmentation during the maturation of the rat brain.J. Neurochem. 17, 955–971

    Article  PubMed  CAS  Google Scholar 

  • Patel M. S. and Owen O. E. (1978) The metabolism of leucine by developing rat brain: Effect of leucine and 2-oxo-4-methylvalerate on lipid synthesis from glucose and ketone bodies.J. Neurochem. 30, 775–782.

    Article  PubMed  CAS  Google Scholar 

  • Ratnakumari L., Subbalakshmi G. Y. C. V., and Murthy Ch. R. K. (1985) Cerebral citric acid cycle enzymes in methionine sulfoximine toxicity.J. Neurosci. Res. 14, 449–459.

    Article  PubMed  CAS  Google Scholar 

  • Ratnakumari L., Subbalakshmi G. Y. C. V., and Murthy Ch. R. K. (1986) Acute effects of ammonia on the enzymes of citric acid cycle in rat brain.Neurochem. Int. 8, 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Roberts S. and Morelos B. S. (1965) Regulation of cerebral metabolism of amino acids—IV. Influence of amino acid levels on leucine uptake, utilization and incorporation into proteins in vivo.J. Neurochem. 12, 373–387.

    Article  PubMed  CAS  Google Scholar 

  • Sadasivudu B. and Murthy Ch. R. K. (1978) Effects of ammonia on monoamine oxidase and enzymes of GABA metabolism in mouse brain.Arch. Internat. Physiol. Bioch. 86, 67–82.

    Article  CAS  Google Scholar 

  • Sadasivudu B., Indira Rao T., and Murthy C. R. (1977) Acute metabolic effects of ammonia in mouse brain.Neurochem. Res. 2, 639–655.

    Article  CAS  Google Scholar 

  • Schepartz B. (1963) Oxidation ofl-amino acids and incorporation into proteins in homogenates of brain at two stages of development.J. Neurochem. 10, 825–829.

    Article  PubMed  CAS  Google Scholar 

  • Schousboe A. and Hertz L. (1987) Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. II. Developmental aspects of differentiated cells, inModel Systems of Development and Aging of the Nervous system (Vernadakis A., ed.), Kluwer, Hingham, MA (In press).

    Google Scholar 

  • Seglen P. O. and Reith A. (1976) Ammonia inhibition of protein degradation in isolated rat hepatocytes. Quantitative ultrastructural alterations in the lysosomal system.Exp. Cell Res. 100, 276–280.

    Article  PubMed  CAS  Google Scholar 

  • Shiota T. (1984) Accelerated leucine decarboxylation in the rat brain in relation to increased blood ammonia level during acute hepatic failure.Acta Med. Okayama 38, 219–225.

    PubMed  CAS  Google Scholar 

  • Subbalakshmi G. Y. C. V. and Murthy Ch. R. K. (1983) Acute metabolic effects of ammonia on the enzymes of glutamate metabolism in isolated astroglial cells.Neurochem. Int. 5, 593–597.

    Article  CAS  PubMed  Google Scholar 

  • Subrahmanyam K., Prasad M. S. K., Rangavalli G., Muralidhar K., and Sadasivudu B. (1985) Functional relationship of ammonia to DNA, RNA and protein in brain.Neuroscience 15, 887–890.

    Article  PubMed  CAS  Google Scholar 

  • Swaiman K. F. and Milstein J. M. (1965) Oxidation of leucine, isoleucine and related keto acids in developing rabbit brain.J. Neurochem. 12, 981–986.

    Article  PubMed  CAS  Google Scholar 

  • Tyce G. M., Ogg J., and Owen C. A., Jr. (1981) Metabolism of acetate to amino acids in brains of rats after complete hepatectomy.J. Neurochem. 36, 640–650.

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg C. J. and Matheson D. F. (1975) The formation of glutamine in mouse brain: Effect of aminooxyacetic acid and ammonia.Biochem. Soc. Trans. 3, 528–530.

    PubMed  Google Scholar 

  • Waniewski R. A. and Martin D. L. (1986) Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocytic cultures.J. Neurochem. 47, 304–313.

    Article  PubMed  CAS  Google Scholar 

  • Wasterlain C. G., Lockwood A. H. and Conn M. (1978) Chronic inhibition of brain protein synthesis after portacaval shunting. A possible pathogenic mechanism in chronic hepatic encephalopathy in the rat.Neurology 28, 233–238.

    PubMed  CAS  Google Scholar 

  • Watanabe A., Shiota T., Takei N., Fujiwara M., and Nagashima H. (1986) Ammonia detoxification by accelerated oxidation of branched chain amino acids in brains of acute hepatic failure rats.Biochem. Med. Met. Biol. 35, 367–375.

    Article  CAS  Google Scholar 

  • Yu A. C. and Hertz L. (1983) Metabolic source of energy in astrocytes, inGlutamine, Glutamate and GABA in the Central Nervous System (Hertz L., Kvamme E., McGeer E. G., and Schousboe A., eds.), pp. 431–438, Alan R. Liss, New York, NY.

    Google Scholar 

  • Yu A. C., Schousboe A., and Hertz L. (1982) Metabolic fate of14C-labeled glutamate in astrocytes in primary cultures.J. Neurochem. 39, 954–960.

    Article  PubMed  CAS  Google Scholar 

  • Yu C. H., Schousboe A., and Hertz L. (1984a) Influence of pathological concentrations of ammonia on metabolic fate of14C-labeled glutamate in astrocytes in primary cultures.J. Neurochem. 42, 594–597.

    Article  PubMed  CAS  Google Scholar 

  • Yu A. C. H., Hertz E., and Hertz L. (1984b) Alterations in uptake and release rates for GABA, glutamate and glutamine during biochemical maturation of highly purified cultures of cerebral cortical neurons, a GABAergic preparation.J. Neurochem. 42, 951–960.

    Article  PubMed  CAS  Google Scholar 

  • Yudkoff M., Nissim I., Kim S., Pleasure D., Hummeler K., and Segal S. (1983a) [15N]leucine as a source of [15N]glutamate in organotypic cerebellar explants.Biochem. Biophys. Res. Commun. 115, 174–179.

    Article  PubMed  CAS  Google Scholar 

  • Yudkoff M., Nissim I., Pleasure D., Kim S., Hummeler K., and Segal S. (1983b) Ammonia and amino acid interaction in cultured brain cells: Studies with15NH3, inGlutamine, Glutamate and GABA in the Central Nervous System (Hertz L., Kvamme E., McGeer E. G., and Schousboe A., eds.), pp. 389–398, Alan R. Liss, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertz, L., Murthy, C.R.K., Lai, J.C.K. et al. Some metabolic effects of ammonia on astrocytes and neurons in primary cultures. Neurochemical Pathology 6, 97–129 (1987). https://doi.org/10.1007/BF02833602

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02833602

Index Entries

Navigation