Skip to main content
Log in

Peptide amidation: Production of peptide hormonesin vivo andin vitro

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Over half of all biologically active peptides and peptide hormones are α-amidated at their C-terminus, which is essential for their full biological activities. Amidation is accomplished through the sequential reaction of the two enzymes encoded by the single bifunctional, peptidylglycine α-amidating monooxygenase (PAM or an α-amidating enzyme). PAM catalyzes the formation of a peptide amide from peptide precursors that include a C-terminal glycine, and requires copper, molecular oxygen, and ascorbate. PAM is the only enzyme that produces peptide amidesin vivo. However, various strategies utilizing PAM, carboxypeptidase-Y enzymes, and chemical synthesis have been developed for producing peptide amidesin vitro. The growing need and importance of peptide amide drugs has highlighted the necessity for an efficientin vitro amidating system for industrial application. In recent years, recombinant systems for enzymatic amidation have received growing attention for the production of peptide hormones, like calcitonin and oxytocin. This review presents the current situation regarding amidation, with a special emphasis on the industrial production of peptide hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hook, V. Y., A. V. Azaryan, S. R. Hwang, and N. Tezapsidis (1994) Proteases and the emerging role of protease inhibitors in prohormone processing.FASEB J. 8: 1269–1278.

    CAS  Google Scholar 

  2. Bennett, H. P. J., A. F. Bradbury, and W. B. Hutter (1993) Processing of pro-peptides: Glycosylation, phosphorylation, sulfation, acetylation and amidation. pp. 251–288. In: Y. P. Loh, (ed.).Mechanisms of Intracellular Trafficking and Processing of Prohormones. CRC Press, Boca Raton. FL, USA.

    Google Scholar 

  3. Eipper, B. A. and R. E. Mains (1988) Peptide alpha-amidation.Annu. Rev. Physiol. 50: 333–44.

    Article  CAS  Google Scholar 

  4. Eipper, B. A., D. A. Stoffers, and R. E. Mains (1992) The biosynthesis of neuropeptides: peptide alpha-amidation.Annu. Rev. Neurosci. 15: 57–85.

    Article  CAS  Google Scholar 

  5. Bradbury, A. F., M. D. Finnie, and D. G. Smyth (1982) Mechanism of C-terminal amide formation by pituitary enzymes.Nature 298: 686–688.

    Article  CAS  Google Scholar 

  6. Eipper, B. A., S. N. Perkins, E. J. Husten, R. C. Johnson, H. T. Keutmann, and R. E. Mains (1991) Peptidyl-alpha-hydroxyglycine alpha-amidating lyase: Purification, characterization, and expression.J. Biol. Chem. 266: 7827–7833.

    CAS  Google Scholar 

  7. Perkins, S. N., E. J. Husten, and B. A. Eipper (1990) The 108-kDA peptidylglycine alpha-amidating monooxygenase precursor contains two separable enzymatic activities involved in peptide amidation.Biochem. Biophys. Res. Commun. 171: 926–932.

    Article  CAS  Google Scholar 

  8. Takahashi, K., H. Okamoto, H. Seino, and M. Noguchi (1990) Peptidylglycine alpha-amidating reaction: evidence for a two-step mechanism involving a stable intermediate at neutral pH.Biochem. Biophys. Res. Commun. 169: 524–530.

    Article  CAS  Google Scholar 

  9. Husten, E. J. and E. A. Eipper (1991) The membrane-bound bifunctional peptidylglycine alpha-amidating monooxygenase protein. Exploration of its domain structure through limited proteolysis.J. Biol. Chem. 266: 17004–17010.

    CAS  Google Scholar 

  10. Eipper, B. A., C. B. Green, T. A. Campbell, D. A. Stoffers, H. T. Keutmann, R. E. Mains, and L. Ouafik (1992) Alternative splicing and endoproteolytic processing generate tissue-specific forms of pituitary peptidylglycine alpha-amidating monooxygenase (PAM).J. Biol. Chem. 267: 4008–4015.

    CAS  Google Scholar 

  11. Prigge, S. T., R. E. Mains, B. A. Eipper, and L. M. Amzel (2000) New insights into copper monooxygenases and peptide amidation: structure mechanism and function.Cell Mol. Life Sci. 57: 1236–1259.

    Article  CAS  Google Scholar 

  12. Eipper, B. A., S. L. Milgram, E. J. Husten, H. Y. Yun, and R. E. Mains (1993) Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains.Protein Sci. 2: 489–497.

    Article  CAS  Google Scholar 

  13. Oldham, C. D., C. Li, P. R. Girard, R. M. Nerem, and S. W. May (1992) Peptide amidating enzymes are present in cultured endothelial cells.Biochem. Biophys. Res. Commun. 184: 323–329.

    Article  CAS  Google Scholar 

  14. Saldise, L., A. Martinez, L. M. Montuenga, A. Treston, D. R. Springall, J. M. Polak, and J. J. Vazquez (1996) Distribution of peptidyl-glycine alpha-amidating mono-oxygenase (PAM) enzymes in normal human lung and in lung epithelial tumors.J. Histochem. Cytochem. 44: 3–12.

    CAS  Google Scholar 

  15. Ogonowski, A. A., S. W. May, A. B. Moore, L. T. Barrett, C. L. O'Bryan, and S. H. Pollock (1997) Antiinflammatory and analgesic activity of an inhibitor of neuropeptide amidation.J. Pharmacol. Exp. Ther. 280: 846–853.

    CAS  Google Scholar 

  16. Klein, R. S. and L. D. Fricker (1992) Heterogeneous expression of carboxypeptidase E and proenkephalin mRNAs by cultured astrocytes.Brain Res. 569: 300–310.

    Article  CAS  Google Scholar 

  17. Jaworsky, D. E., B. A. Eipper, and G. V. Ronnett (1999) Expression of PAM and amidated neuropeptides in developing and adult rat olfactory epithelium.Soc. Neurosci. 29th Ann. Mtg. Abst. 428. 10.

    Google Scholar 

  18. Kolhekar, A. S., M. S. Roberts, N. Jiang, R. C. Johnson, R. E. Mains, B. A. Eipper, and P. H. Taghert (1997) Neuropeptide amidation in Drosophila: separate genes encode the two enzymes catalyzing amidation.J. Neurosci. 17: 1363–1376.

    CAS  Google Scholar 

  19. Scopsi, L., R. Lee, M. Gullo, P. Collini, E. J. Husten, and B. A. Eipper (1998) Peptidylglycine alpha-amidating mono-oxygenase in neuroendocrine tumors.Appl. Immunohistochem. 6: 120–132.

    Article  CAS  Google Scholar 

  20. Ouafik, L. H., D. A. Stoffers, T. A. Campbell, R. C. Johnson, B. T. Bloomquist, R. E. Mains, and B. A. Eipper (1992) The multifunctional peptidylglycine alpha-amidating monooxygenase gene: exon/intron organization of catalytic, processing, and routing domains.Mol. Endocrinol. 6: 1571–1584.

    Article  CAS  Google Scholar 

  21. Stoffers, D. A., L. Ouafik, and B. A. Eipper (1991) Characterization of novel mRNAs encoding enzymes involved in peptide alpha-amidation.J. Biol. Chem. 266: 1701–1707.

    CAS  Google Scholar 

  22. Husten, E. J. and B. A. Eipper (1994) Purification and characterization of PAM-1, an integral membrane protein involved in peptide processing.Arch. Biochem. Biophys. 312: 487–492.

    Article  CAS  Google Scholar 

  23. Prigge, S. T., A. B. Kolhekar, B. A. Eipper, R. E. Mains, and L. M. Amzel (1997) Amidation of bioactive peptides: the structure of peptidylglycine alpha-hydroxylating monooxygenase.Science. 278: 1300–1305.

    Article  CAS  Google Scholar 

  24. Freeman, J. C. I. J. Villafranca, and D. J. Merkler (1993) Redox cycling of enzyme-bound copper during peptide amidation.J. Am. Chem. Soc. 115: 4923–4924.

    Article  CAS  Google Scholar 

  25. Prigge, S. T., A. S. Kolhekar, B. A. Eipper, R. E. Mains, and L. M. Amzel (1999) Substrate-mediated electron transfer in peptidylglycine alpha-hydroxylating monooxygenase.Nat. Struct. Biol. 6: 976–683.

    Article  CAS  Google Scholar 

  26. Moore, H. P. and R. B. Kelly (1985) Secretory protein targeting in a pituitary cell line: differential transport of foreign secretory proteins to distinct secretory pathways.J. Cell Biol. 101: 1773–1781.

    Article  CAS  Google Scholar 

  27. Dickerson, I. M. and R. E. Mains (1990) Cell-type specific posttranslational processing of peptides by different pituitary cell lines.Endocrinology 127: 133–140.

    CAS  Google Scholar 

  28. Merli, S., S. De Falco, A. Verdoliva, M. Tortora, M. Villain, P. Silvi, G. Cassani, and G. Fassina (1996) An expression system for the single-step production of recombinant human amidated calcitonin.Protein Expr. Purif. 7: 347–354.

    Article  CAS  Google Scholar 

  29. Takahashi, K. I., Y. C. Liu, N. Hayashi, F. Goto, M. Kato, H. Kawashima, and T. Takeuchi (1997) Production of bioactive salmon calcitonin from the nonendocrine cell lines COS-7 and CHO.Peptides. 18: 439–444.

    Article  CAS  Google Scholar 

  30. Hayashi, N., T. Kayo, K. Sugano, and T. Takeuchi (1994) Production of bioactive gastrin from the non-endocrine cell lines CHO and COS-7.FEBS Lett. 337: 27–32.

    Article  CAS  Google Scholar 

  31. Mizuno, K., K. Ohsuye, Y. Wada, K. Fuchimura, S. Tanaka, and H. Matsuo (1987) Cloning and sequence of cDNA encoding a peptide C-terminal alpha-amidating enzyme fromXenopus laevis.Biochem. Biophys. Res. Commun. 148: 546–552.

    Article  CAS  Google Scholar 

  32. Ohsuye, K., K. Kitano, Y. Wada, K. Fuchimura, S. Tanaka, K. Mizuno, H. and H. Matsuo (1988) Cloning of cDNA encoding a new peptide C-terminal alpha-amidating enzyme having a putative membrane-spanning domain fromXenopus laevis skin.Biochem. Biophys. Res. Commun. 150: 1275–1281.

    Article  CAS  Google Scholar 

  33. Miller, D. A., K. U. Sayad, R. Kulathila, G. A. Beaudry, D. J. Merkler, and A. H. Bertelsen (1992) Characterization of a bifunctional peptidylglycine alpha-amidating enzyme expressed in Chinese hamster ovary cells.Arch. Biochem. Biophys. 298: 380–388.

    Article  CAS  Google Scholar 

  34. Ray, M. V., D. P. Van, A. H. Bertelsen, D. E. Jackson-Matthews, A. M. Sturmer, D. J. Merkler, A. P. Consalvo, S. D. Young, J. P. Gilligan, and P. P. Shields (1993) Production of recombinant salmon calcitonin by in vitro amidation of anEscherichia coli produced precursor peptide.Biotechnology (NY), 11: 64–70.

    Article  CAS  Google Scholar 

  35. Henriksen, D. B., M. Rolland, M. H. Jakobsen, O. Buchard, and K. Breddam (1992) C-terminal amidation of calcitonin by carboxypeptidase Y catalyzed transpeptidation with a photocleavable nucleophile.Pept. Res. 5: 321–324.

    CAS  Google Scholar 

  36. Henriksen, D. B., K. Breddam, and O. Buchardt (1993) Peptide amidation by enzymatic transacylation and photolysis.Int. J. Pept. Protein Res. 41: 169–180.

    CAS  Google Scholar 

  37. Breddam, K., F. Widmer, and M. Meldal (1991) Amidation of growth hormone releasing factor (1–29) by serine carboxypeptidase catalysed transpeptidation.Int. J. Pept. Protein Res. 37: 153–160.

    CAS  Google Scholar 

  38. Bongers, J., R. E. Offord, A. M. Felix, T. Lambros, W. Liu, M. Ahmad, R. M. Campbell, and E. P. Heimer (1991) Comparison of enzymatic semisyntheses of peptide amides: human growth hormone releasing factor and analogs.Biomed. Biochim. Acta. 50: S157-S162.

    CAS  Google Scholar 

  39. Bongers, J., W. Liu, T. Lambros, K. Broddam, R. M. Cambpell, A. M. Felix, and E. P. Heimer (1994) Peptide synthesis catalyzed by the Glu/Asp-specific endopeptidase. Influence of the ester leaving group of the acyl donor on yield and catalytic efficiency.Int. J. Pept. Protein Res. 44: 123–129.

    CAS  Google Scholar 

  40. Hong, D., M. Zhuang, M. Li, C. Chen, and J. Mao (2000) Production of recombinant salmon calcitonin by amidation of precursor peptide using enzymatic transacylation and photolysisin vitro.Biochem. Biophys. Res. Commun. 267: 362–367.

    Article  CAS  Google Scholar 

  41. Vladislav, D. V. and K. A. Marxovich (1996) Solution phase synthesis of immunoregulating peptides.PCT Int. Appl. WO 9,626,955.

  42. Fernando, A. and G. Barany (1987) An acid-labile anchoring linkage for solid-phase synthesis of C-terminal peptide amides under mild conditions.Int. J. Peptide Protein Res. 30: 206–216.

    Google Scholar 

  43. Orlowski, R. C., R. Walter, and D. Winkler (1976) Study of benzhydrylamine-type polymers. Synthesis and use of ρ-methoxybenzhydrylamine resin in the solid-phase preparation of peptides.J. Org. Chem. 41: 3701–3705.

    Article  CAS  Google Scholar 

  44. Rink, H. (1987) Solid-phase synthesis ofprotected peptide fragments using a trialkoxy-diphenyl-methyl ester resin.Tetrahedron Lett. 28: 3787–3790.

    Article  CAS  Google Scholar 

  45. Mizuno, M., H. Katsuji, I. Reiko, M. Ikuyo, K. Toru, A. Saburo, Y. Kenji, and J. Toshiyuki (1999) Synthesis of a glycopeptide containing oligosaccharides: Chemoenzymatic synthesis of eel calcitonin analogues having naturalN-linked oligosaccharides.J. Am. Chem. Soc. 121: 284–290.

    Article  CAS  Google Scholar 

  46. Velentza, A., S. Spiliou, C. P. Poulos, and G. J. Goldsworthy (2000) Synthesis and biological activity of adipokinetic hormone analogues with modifications in the 4–8 region.Peptides 21: 631–637.

    Article  CAS  Google Scholar 

  47. Scott, W. L., D. Francisca, L. Karen, S. P. Richard, and J. O. Martin (2001) Solid-phase synthesis of amino amides and peptide amides with unnatural side chains.Terrhedron Lett. 42: 2073–2076.

    Article  CAS  Google Scholar 

  48. Han, Y., S. L. Bontems, P. Hegyes, M. C. Munson, C. A. Minor, S. A. Kates, F. Albericio, and G. Barany (1996) Preparation and application of xanthenylamide(XAL) handles for solid-phase synthesis of C-terminal peptide amides under particularly mild conditions.J. Org. Chem. 61: 6326–6339.

    Article  CAS  Google Scholar 

  49. Bui, C. T., A. M. Bray, T. Nguyen, F. Ercole, and N. J. Maeji (2000) Solid phase synthesis of C-terminal peptide amides: development of a new aminoethyl-polystyrene linker on the Multipin solid support.J. Pept. Sci. 6: 243–250.

    Article  CAS  Google Scholar 

  50. Kolhekar, A. S., R. E. Mains, and B. A. Eipper (1997) Peptidylglycine alpha-amidating monooxygenase: an acorbate-requiring enzyme.Methods Enzymol. 279: 35–43.

    Article  CAS  Google Scholar 

  51. Datamonitor (1998)Competing Successfully in Biotechnology: Future Opportunities in Therapeutic Proteins. Datamonitor Americas, NY, USA.

    Google Scholar 

  52. Wolfe, H. J. (1982) Calcitonin: Perspectives in current concepts.J. Endo. Inv. 5: 423–432.

    CAS  Google Scholar 

  53. Rittinghaus, E. F., R. D. Hesch, H. M. Harms, U. Busch, M. Prokop, and G. Delling (1990) The concept and treatment of osteoporosis.Exp. Gerontol. 25: 357–365.

    Article  CAS  Google Scholar 

  54. Overgaard, K., D. Agnusdei, M. A. Hansen, E. Maioli, C. Christiansen, and C. Gennari (1991) Dose-response bioactivity and bioavailability of salmon calcitonin in premenopausal and postmenopausal women.J. Clin. Endocrinol. Metab. 72: 344–349.

    Article  CAS  Google Scholar 

  55. Ohsuye, K., K. Kitano, S. Tanaka, H. Matsuo, and K. Mizuno (1998) Recombinant C-terminal alpha-amidating enzyme.US Patent 5,821,083.

  56. Tamaoki, H. (1987) Preparation of peptides with C-terminal proline amide.US Patent 4,709,014.

  57. Bertelsen, A. H., N. M. Mehta, G. A. Beaudry, J. P. Gilligan, and B. N. Jones (1998) Expression systems for amidating enzyme.US Patant 5,789,234.

  58. Ogonowski, A. A., S. W. May, A. B. Moore, I. T. Barrett, C. L. O'Bryant, and S. H. Pollock (1997) Antiinflammatory and analgesic activity of an inhibitor of neuropeptide amidation.J. Pharmacol. Exp. Ther. 280: 846–853.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baik L. Seong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KH., Seong, B.L. Peptide amidation: Production of peptide hormonesin vivo andin vitro . Biotechnol. Bioprocess Eng. 6, 244–251 (2001). https://doi.org/10.1007/BF02931985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931985

Keywords

Navigation