Skip to main content
Log in

Inhibitory activity of flavonoids fromPrunus davidiana and other flavonoids on total ROS and hydroxyl radical generation

  • Research Articles
  • Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Since reactive oxygen species (ROS) and hydroxyl radicals (OH) play an important role in the pathogenesis of many human degenerative diseases, much attention has focused on the development of safe and effective antioxidants. Preliminary experiments have revealed that the methanol (MeOH) extract of the stem ofPrunus davidiana exerts inhibitory/scavenging activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, total ROS and peroxynitrites (ONOO-). In the present study, the antioxidant activities of this MeOH extract and the organic solvent-soluble fractions, dichloromethane (CH2CI2), ethyl acetate (EtOAc), and n-butanol (n-BuOH), and the water layer ofP. davidiana stem were evaluated for the potential to inhibit OH and total ROS generation in kidney homogenates using 2′,7′-dichlorodihydrofluorescein diacetate (DCHF-DA), and for the potential to scavenge authentic ONOO-. We also evaluated the inhibitory activity of seven flavonoids isolated fromP. davidiana stem, kaempferol, kaempferol 7-O-β-D-glucoside, (+)-catechin, dihydrokaempferol, hesperetin 5-O-β-D-glucoside, naringenin and its 7-O-β-D-glucoside, on the total ROS, OH and ONOO- systems. For the further elucidation of the structure-inhibitory activity relationship of flavonoids on total ROS and OH generation, we measured the antioxidant activity of sixteen flavonoids available, including three active flavonoids isolated fromP. davidiana, on the total ROS and OH systems. We found that the inhibitory activity on total ROS generation increases in strength with more numerous hydroxyl groups on their structures. Also, the presence of anortho-hydroxyl group, whether on the A-ring or B-ring, and a 3-hydroxyl group on the C-ring increased the inhibitory activity on both total ROS and OH generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, B. N., Shigenaga, M. K., and Hage, T. M., Oxidants, antioxidants and the degenerative diseases of aging.Proc. Natl. Acad. Sci. USA, 90, 7915–7922 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Aruoma, O. I., Assessment of potential prooxidant and antioxidant actions,J. Am. Oil Chem. Soc., 73, 1617–1625 (1996).

    Article  CAS  Google Scholar 

  • Balavoine G. G. and Genleti, Y. V., Peroxynitrite scavenging by different antioxidants, Part I: convenient assay.Nitric Oxide, 3, 40–54 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshell, P. A., and Freeman, B. A., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.Proc. Natl. Acad. Sci., USA, 87, 1620–1624 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Branen, A. L., Toxicology and biochemistry of butylated hydroxy-anisole and butylated hydroxytoluene.J. Am. Oil Chem.Soc., 52, 59–63 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Burda, S. and Oleszek, W., Antioxidant and antiradical activities of flavonoids.J. Agric. Food Chem., 49, 2774–2779 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. S., Chung, H. Y, Kang, S. S., Jung, M. J., Kim, J. W., No, J. K. and Jung, H. A., The structure-activity relationship of flavonoids as scavengers of peroxynitrite.Phytochem. Res., 16, 232–235 (2002).

    CAS  Google Scholar 

  • Choi, J. S., Suh, S. S., Young, H. S., and Park, H. J., Hypolipemic and hypoglycemic activities ofPrunus davidiana in high fat-fed rats.Arch. Pharm. Res., 14, 44–47 (1991a).

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. S., Yokozawa, T., and Oura, H., Improvement of hyperglycemia and hyperlipemia in streptozotocin-diabetic rats by a methanolic extract ofPrunus davidiana stems and its main component, prunin.Plant Med., 57, 208–211 (1991b).

    Article  CAS  Google Scholar 

  • Choi, J. S., Yokozawa, T., and Oura H., Antihyperlipidemic effect of flavonoids fromPrunus davidiana.J. Nat. Prod., 54, 218–224 (1991c).

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. S., Young, H. S., Lee, T. W., Woo, W. S., and Lee, E. B., Chemistry and anti-inflammatory activity ofPrunus davidiana stems.Yakhak Hoeji, 36, 115–119 (1992).

    CAS  Google Scholar 

  • Choi, J. S., Lee, H. J., Park, H. J., and Kim, H. G., Screening of plants and marine algae and its active principles fromPrunus davidiana.Kor. J. Pharmacogn., 24, 299–303 (1993).

    CAS  Google Scholar 

  • Choi, J. S., Park, K. Y., Moon, S. H., Rhee, S. H., and Young, H. S., Antimutagenic effect of plant of flavonoids in theSalmonella assay system.Arch. Pharm. Res., 17, 71–75 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Choi, J. S., Park, S. H., and Choi, J. H., Nitrite scavenging effect by flavonoids and its structure-effect relationship.Arch. Pharm. Res., 12, 26–33 (1989).

    Article  CAS  Google Scholar 

  • Choi, J. S., Woo, W. S., Young, H. S., and Park, H. S., Phytochemical study onPrunus davidiana.Arch. Pharm. Res., 13, 374–378 (1990).

    Article  CAS  Google Scholar 

  • Cos, P., Ying, L, Calomme, M., Hu, J. P., Cimanga, K., Poel, B. V., Pieters, L., Vlietinck, A. J., and Berghe, D., Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers.J. Nat. Prod., 61, 71–76 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Dreher, D. and Junod, F., Role of oxygen free radicals in cancer development.Eur. J. Cancer, 32A(1), 30–38 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, H. R. and Lunec, J., The C1q binding activity of IgG is modifiedin vitro by reactive oxygen species: implications for rheumatoid arthritis.FEBS Lett., 388, 161–164 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Harbome, F. B. and Williams, C. A., Advances in flavonoid research since 1992.Phytochem., 55, 481–504 (2000).

    Article  Google Scholar 

  • Jung, H. A., Kim, A. R., Chung, H. Y., and Choi, J. S.,In vitro antioxidant activity of some selectedPrunus species in Korea.Arch. Pharm. Res., 25, 865–872 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kooy, N. W., Royall, J. A., Ischiropoulos, H., and Beckman, J. S., Peroxynitrite-mediated oxidation of dihydrorhodamine 123.Free Radic. Biol. Med., 16, 149–156 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Krishnamachari, V., Levine, L., and Paré, P. W., Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging.J. Agric. Food Chem., 50, 4357–4363 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Label, C. P. and Bondy, S. C, Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes.Neurochem. Int., 17, 435–441 (1990).

    Article  Google Scholar 

  • Lee, W. R., Shen, S. C., Lin, H. Y., Hou, W. C., Yang, L. L., and Chen, Y C., Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca2+-dependent endonuclease.Biochem. Pharmacol., 63, 225–236 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Morel, I., Lescoat, G., Cognel, P., Sergent, O., Pasdelop, N., Brissot, P., Cillard, P., and Cillard, J., Antioxidant and iron-chelating activities of the flavonoids, catechin, quercetin and diosmetin, on iron-loaded rat hepatocyte cultures.Biochem. Pharmacol., 45, 13–19 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Nagao, A., Seki, M., and Kobayashi, H., Inhibition of xanthine oxidase by flavonoids.Biosci. Biotechnol. Biochem., 63, 1787–1790 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Park, H. S., Young, H. S., Park, K. Y., Rhee, S. H., Chung, H. Y., and Choi, J. S., Flavonoids from the whole plants ofOrostachysjaponicus.Arch. Pharm. Res., 14, 167–171 (1991).

    Article  Google Scholar 

  • Pincemail, J. J., Free radicals and antioxidants in human diseases. In Favier, A. E., Cadet, J., Kalyanaraman, B., Fontecave, M., and Pierre, J.-L.,Analysis of Free radicals in Biological Systems. Birkhauser Verlag, Berlin, pp. 83–98, (1995).

    Google Scholar 

  • Rice-Evans, C. A., Miller, N., and Paganga, G., Antioxidant properties of phenolic compounds.Trends in Plant Science, 2, 152–159 (1997).

    Article  Google Scholar 

  • Rice-Evans, C. A., Miller, N., and Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids.Free Radic. Biol. Med., 20, 933–956 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Sagar, S., Kallo, I. J., Kaul, N., Ganguly, N. K., and Sharma, B. K., Oxygen free radicals in essential hypertension.Mol. Cell Biochem., 111, 103–108 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Salah, N., Miller, N. J., Paganga, G., Tijburg, L, Bolwell, G. P., and Rice-Evans, C. A., Polyphenolic flavonols as scavengers of aqueous phase radicals and as chain-breaking antioxidants.Arch. Biochem. Biophys., 322, 339–346 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Sawa, T., Akaike, T., and Maeda, H., Tyrosine nitration by per-oxynitrite formed nitric oxide and superoxide generated by xanthine oxidase.J. Biol. Chem., 275(42), 32467–32474 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Singh, A., Chemical and biochemical aspects of activated oxygen: singlet oxygen, superoxide anion, and related species, In Miquel, J., Quintanilha, A. T, and Weber, H. (Eds).CRC Handbook of free radicals and antioxidants in Biomedicine. CRC Press, Inc., Boca Raton, Florida, Vol. 1, pp. 17–28, (1989).

    Google Scholar 

  • Sohal, R. S., Role of oxidative stress and protein oxidation in the aging process.Free Radic. Biol. Med., 33(1), 37–44 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Squadrito, G. L. and Pryor, W. A., Oxidative chemistry of nitric oxide: the role of superoxide, peroxynitrite, and carbon dioxide.Free Radic. Biol. Med., 25, 392–403 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Ueda, J., Saito, N., Shimazu, Y., and Ozawa, T., A comparison of scavenging abilities of antioxidants against hydroxyl radicals.Arch. Biochem. Biophys., 333, 377–384 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Van Acker, S. A. B. E., Van Balen, G. P., Van den Berg, D. J., Bast, A., and Van der Vijgh, W. J. F., Influence of iron chelation on the antioxidant activity of flavonoids.Biochem. Pharmacol., 56, 935–943 (1998).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sue Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, H.A., Jung, M.J., Kim, J.Y. et al. Inhibitory activity of flavonoids fromPrunus davidiana and other flavonoids on total ROS and hydroxyl radical generation. Arch Pharm Res 26, 809–815 (2003). https://doi.org/10.1007/BF02980025

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980025

Key words

Navigation