Skip to main content
Log in

Flavonol glycosides from the aerial parts ofAceriphyllum rossii and their antioxidant activities

  • Research Articles
  • Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The methanol extract obtained from the aerial parts ofAceriphyllum rossii (Saxifragaceae) was fractionated into ethyl acetate (EtOAc),n-BuOH and H2O layers through solvent fractionation. Repeated silica gel column chromatography of EtOAc andn-BuOH layers afforded six flavonol glycosides. They were identified as kaempferol 3-O-β-D-glucopyranoside (astragalin,1), quercetin 3-O-β-D-glucopyranoside (isoquercitrin,2), kaempferol 3-O-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside (3), quercetin 3-O-α-L-rhamnopyranosyl (1→6)-β-D-glucopyrano-side (rutin,4), kaempferol 3-O-[α-L-rhamnopyranosyl (1→4)-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside] (5) and quercetin 3-O-[α-L-rhamnopyranosyl (1→4)-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside] (6) on the basis of several spectral data. The antioxidant activity of the six compounds was investigated using two free radicals such as the ABTS free radical and superoxide anion radical. Compound1 exhibited the highest antioxidant activity in the ABTS2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging method. 100 mg/L of compound1 was equivalent to 72.1±1.4 mg/L of vitamin C, and those of compounds3 and5 were equivalent to 62.7±0.5 mg/L and 54.3±1.3 mg/L of vitamin C, respectively. And in the superoxide anion radical scavenging method, compound5 exhibited the highest activity with an IC50 value of 17.6 ± 0.3 μM. In addition, some physical and spectral data of the flavonoids were confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arora, A., Nair, M. G., and Strasburg, G. M., Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system.Free Radic. Biol. Med., 24, 1355–1363 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Beck, M. A. and Häberlein, H., Flavonol glycoside fromEschscholtzia califormica.Phytochemistry, 50, 329–332 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Cao, G., Sofic, E., and Prior, R. L., Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships.Free Radic. Biol. Med., 22, 749–760 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Carini, R., Poli, G., Diazini, M. U., Maddix, S. P., Slater, T. F., and Cheesman K. H., Comparative evaluation of the antioxidant activity of α-tocopherol, α-tocopherol polyethylene glycol 1000 succinate and a-tocopherol succinate in isolated hepatocytes and liver microsomal suspensions.Biochem. Pharmacol., 39, 1597–1601 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Choi, W. H., Park, W. Y., Hwang, B. Y., Oh, G.-J., Kang, S. J., Lee, K. S., and Ro, J. S., Phenolic compounds from the stem bark ofCornus walteri Wagner.Kor. J. Pharmacog., 29(3), 217–224 (1998).

    CAS  Google Scholar 

  • Cholbi, M. R., Paya, M., and Alcaraz, M. J., Inhibitory effects of phenolic compounds on CCI4-induced microsomal lipid peroxidation.Experientia, 47, 195–199 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Donovan, J. L., Meyer, A. S., and Waterhouse, A. L., Phenolic composition and antioxidant activity of prunes and prune juice (Prunus domestica).J. Agric. Food Chem., 1247–1252 (1998).

  • Duthie, S. J., Collins, G. G., and Dobson, V. L., Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidized pyrimidines) in human lymphocytes.Mutation Research, 393, 223–231 (1997).

    PubMed  CAS  Google Scholar 

  • Gey, K. F., Prospects for the prevention of free radical disease, regarding cancer and cardiovascular disease.British Med. Bull., 49, 679–699 (1993).

    CAS  Google Scholar 

  • Han, J. T., Kim, H. Y., Park, Y. D., Lee, Y. H., Lee, K. R., Kwon, B. M., and Baek, N. I., Aceriphyllic acid A, a new ACAT inhibitory triterpenoid, fromAceriphyllum rossii.Planta Medica, 68, 558–561 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Ho, H. M., Chen, R. Y., Leung, L. K., Cen, F. L., Huang, Y. and Chen, Z.-Y., Difference in flavonoid and isoflavone profile between soybean and soy leaf.Biomed. Pharmacother., 56, 289–295 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Jung, H. A., Kim, A. R., Chung, H. Y., and Choi, T. S.,In vitro antioxidant activity of some selected prunus species in Korea.Arch. Pharm. Res., 25, 825–827 (2002).

    Google Scholar 

  • Kim, D. O., Lee, K. W., Lee, H. J., and Lee, C. Y., Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals.J. Agric. Food Chem., 50, 3713–3717 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. H. and Kim, M. N., Constituents ofCathamiflos.Yakhak Hoeji, 36, 556–562 (1992).

    CAS  Google Scholar 

  • Kim, S. Y., Gao, J. J., Lee, W. C., Ruy, K. S., Lee, K. R., and Kim, Y. C., Antioxidative flavonoids from the leaves ofMorus alba.Arch. Pharm, Res., 22, 81–85 (1999).

    Article  CAS  Google Scholar 

  • Kweon, M. H., Hwang, H. J., and Sung, H. C., Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis).J. Agric. Food Chem., 49, 4546–4655 (2001).

    Article  CAS  Google Scholar 

  • Liu, Y., Wu, Y., Ji, K. C., Hou, A., Yoshida, T., and Okuda, T., Astragalin 2″,6″-di-O-gallate fromLoropetalum chinense.Phytochemistry, 46(3), 389–391 (1997).

    Article  CAS  Google Scholar 

  • Nuutila, A. M., Puupponen-Pimia, R., Aarni, M., and Oksman-Caldentey, K. M., Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity.Food Chemistry, 80, 1–9 (2003).

    Article  Google Scholar 

  • Ohshima, H., Yoshie, Y., Auriol, S., and Gilibert, I., Antioxidant and pro-oxidant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion.Free Radic. Biol. Med., 25, 1057–1065 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C., Antioxidnat activity applying an improved ABTs radical cation decolorization assay.Free Radic. Biol. Med., 26, 1231–1237 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., and Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids.Free Radic. Biol. Med., 20, 933–956 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., and Paganga, G., Antioxidant properties of phenolic compounds.Trends in Plant Science, 2, 152–159 (1997).

    Article  Google Scholar 

  • Seto, T., Yasuda, I., and Akiyama, K., Purgative activity and principals of the fruits ofRosa multiflora andR. wichuraiana.Chem. Pharm. Bull., 40, 2080–2082 (1992).

    PubMed  CAS  Google Scholar 

  • Shin-Kim, J. S., Kim, H. J., and Park, H. K., Studies on the chemical constituents ofLysimachia clethroides.Yakhak Hoeji, 37, 325–330 (1993).

    Google Scholar 

  • Webby, R. F. and Markham, K. R., Flavonol 3-O-triglycosides fromActinidia species.Phytochemistry, 29, 289–292 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-In Baek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, JT., Bang, MH., Chun, OK. et al. Flavonol glycosides from the aerial parts ofAceriphyllum rossii and their antioxidant activities. Arch Pharm Res 27, 390–395 (2004). https://doi.org/10.1007/BF02980079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02980079

Key words

Navigation