Skip to main content
Log in

Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

In a quantitative SPECT study with multiple radionuclides, it is very important to eliminate the counts of scattered photons from planar images. In this paper, the triple energy window (TEW) method, which has developed to eliminate the counts of scatter photons in measured counts, was applied to a multiradionuclide SPECT study and its effect was examined in a simulation study. In the simulation, we used Tc-99m and Tl-201, and we assumed their photopeak energies to be 141 and 73 keV, respectively. For two different activity distributions in a cylinder phantom, simulation tests with Tl-201 and Tc-99m gave good agreement between the activity distributions reconstructed from primary photons and those from corrected data. The contrast of a cold spot area in images with and without correction improved around 70% to more than 96%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. Estimation of scatter component in SPECT planar image using a Monte Carlo method.Jpn J Nucl Med 27: 467–475, 1990.

    CAS  Google Scholar 

  2. Floyd CE, Jaszczak RJ, Harris CC, Coleman RE. Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo simulation.Phys Med Biol 29: 1217–1230, 1984.

    Article  PubMed  CAS  Google Scholar 

  3. Floyd CE, Jaszczak RJ, Coleman RE. Inverse Monte Carlo: A Unified Reconstruction Algorithm for SPECT.IEEE Trans Nucl Sci 32: 779–785, 1985.

    Article  Google Scholar 

  4. Axelsson B, Msaki B, Israelsson A. Subtraction of Comptonscattered photons in single-photon emission computerized tomography.J Nucl Med 25: 490–494, 1984.

    PubMed  CAS  Google Scholar 

  5. Jaszczak RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons.J Nucl Med 25: 893–900, 1984.

    PubMed  CAS  Google Scholar 

  6. Koral KF, Swailem FM, Buchbinder S, Clinthone NH, Rogers WL, Tsui BMW. SPECT dual-energy-window Compton Correction: Scatter Multiplier Required for Quantification.J Nucl Med 31: 90–98, 1990.

    PubMed  CAS  Google Scholar 

  7. Hamill JJ, DeVito RP. Scatter reduction with energy-weighted acquisition.IEEE Trans Nucl Sci 36: 1334–1339, 1989.

    Article  CAS  Google Scholar 

  8. Koral KF, Wang X, Rogers WL, Clinthorne NH, Wang X. SPECT Compton-scattering correction by analysis of energy spectra.J Nucl Med 29: 195–202, 1988.

    PubMed  CAS  Google Scholar 

  9. Gagnon D, Todd-Pokropek AE, Arsenault A, Dupras G. Introduction to holospectral imaging in nuclear medicine for scatter subtraction.IEEE Trans Med Imag 8: 245–250, 1989.

    Article  CAS  Google Scholar 

  10. Floyd CE, Jaszczak RJ, Coleman RE. Scatter detection in SPECT imaging: dependence on source depth, energy, and energy window.Phys Med Biol 33: 1075–1081, 1988.

    Article  PubMed  Google Scholar 

  11. Koral KF, Clinthorne NH, Rogers WL. Improving emission-computed-tomography quantification by Comptonscatter rejection through offset window.Nucl Inst and Methods in Phys Res A242: 610–614, 1986.

    Article  Google Scholar 

  12. King MA, Hademenos GJ, Glick SJ. A dual photopeak window method for scatter correction.J Nucl Med 33: 605–612, 1992.

    PubMed  CAS  Google Scholar 

  13. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A Practical method for position-dependent Compton-scatter correction in single photon emission CT.IEEE Trans Med Imag 10: 408–412, 1991.

    Article  CAS  Google Scholar 

  14. Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter correction using triple-energy window method for single- and dual-isotope SPECT.J Nucl Med 34: 2216–2221, 1993

    PubMed  CAS  Google Scholar 

  15. Raeside DE. Monte Carlo principles and applications.Phys Med Biol 21: 181–197, 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Ogawa K, Takagi Y, Kubo A, Hashimoto S, Sanmiya T, Okano Y, et al. An attenuation correction method of single photon emission computed tomography using gamma ray transmission CT.KAKU IGAKU (Jpn JNucl Med) 22: 477–490, 1985.

    CAS  Google Scholar 

  17. Chang LT. A method for attenuation correction in radionuclide computed tomography.IEEE Trans Nucl Sci 25: 638–642, 1978.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, K. Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT. Ann Nucl Med 8, 277–281 (1994). https://doi.org/10.1007/BF03165031

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165031

Key words

Navigation