Skip to main content
Log in

Performance evaluation of a large axial field-of-view PET scanner: SET-2400W

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The SET-2400W is a newly designed whole-body PET scanner with a large axial field of view (20 cm). Its physical performance was investigated and evaluated. The scanner consists of four rings of 112 BGO detector units (22.8 mm in-plane × 50 mm axial × 30 mm depth). Each detector unit has a 6 (in-plane) × 8 (axial) matrix of BGO crystals coupled to two dual photomultiplier tubes. They are arranged in 32 rings giving 63 two-dimensional image planes. Sensitivity for a 20-cm cylindrical phantom was 6.1 kcps/kBq/m/ (224 kcps/μCi/ml) in the 2D clinical mode, and to 48.6 kcps/kBq/ ml (1.8 Mcps/μCi/ml) in the 3D mode after scatter correction. In-plane spatial resolution was 3.9 mm FWHM at the center of the field-of-view, and 4.4 mm FWHM tangentially, and 5.4 mm FWHM radially at 100 mm from the center. Average axial resolution was 4.5 mm FWHM at the center and 5.8 mm FWHM at a radial position 100 mm from the center. Average scatter fraction was 8% for the 2D mode and 40% for the 3D mode. The maximum count rate was 230 kcps in the 2D mode and 350 kcps in the 3D mode. Clinical images demonstrate the utility of an enlarged axial field-of-view scanner in brain study and whole-body PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss W-D. Performance evaluation of the positron scanner ECAT EXACT.J Comput Assist Tomogr 16: 804–813, 1992.

    Article  PubMed  CAS  Google Scholar 

  2. Wienhard K, Dahlbom M, Eriksson L, Michel C, Bruckbauer T, Pietrzyk U, et al. The ECAT EXACT HR: Performance of a new high resolution positron scanner.J Comput Assist Tomogr 18: 110–118, 1994.

    Article  PubMed  CAS  Google Scholar 

  3. DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole-body PET scanner.J Nucl Med 35: 1398–1406, 1994.

    PubMed  CAS  Google Scholar 

  4. Iida H, Miura S, Kanno I, Ogawa T, Uemura K. A new PET camera for noninvasive quantitation of physiological functional parametric images. Headtome-V-Dual.In Quantification of Brain Function Using PET. Myers R et al. (eds.), California, Academic Press, pp. 57–61, 1996.

    Chapter  Google Scholar 

  5. Karp JS, Daube-Witherspoon ME, Hoffman EJ, Lewellen TK, Links JM, Wong W-H, et al. Performance standards in positron emission tomography.J Nucl Med 32: 2342–2350, 1991.

    PubMed  CAS  Google Scholar 

  6. Colsher JG. Fully three-dimensional positron emission tomography.Phys Med Biol 25: 103–115, 1980

    Article  PubMed  CAS  Google Scholar 

  7. Defrise M, Townsend DW, Geissbuhler A. Implementation of three-dimensional image reconstruction for multi-ring tomographs.Phys Med Biol 35: 1361–1372, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Cherry SR, Dahlbom M, Hoffman EJ. 3D PET using a conventional multislice tomograph without septa.J Comp Assist Tomogr 15: 655–668, 1991.

    Article  CAS  Google Scholar 

  9. Townsend DW, Geissbuhler A, Defrise M, Hoffman EJ, Spinks TR, Bailey DL, et al. Fully three-dimensional reconstruction for a PET camera with retractable septa.IEEE Trans Med Imag MI-10: 505–512, 1991.

    Article  Google Scholar 

  10. Yamamoto S, Iida H, Miura S, Kanno I. Development of a 2-dimensional gamma ray position sensitive detector for PET.Radioisotopes 45: 229–235, 1996. (in Japanese)

    Google Scholar 

  11. Yamamoto S, Amano M, Miura S, Iida H, Kanno I. Deadtime correction method using random coincidence for PET.J Nucl Med 27: 1925–1928, 1986.

    PubMed  CAS  Google Scholar 

  12. Iida H, Miura S, Kanno I, Murakami M, Takahashi K, Uemura K, et al. Design and evaluation of HEADTOME IV: a whole body positron emission tomograph.IEEE Trans Nucl Sci NS-36: 1006–1010, 1989.

    Article  Google Scholar 

  13. Sashin D, Mintun MA. Development of scatter correction techniques for quantitative 3D imaging in a whole body PET scanner with the septa retracted.IEEE Conf Nucl Sci and Med Imag; 1332–1334, 1994.

  14. Karp JS, Muehllehner G, Qu H, Yan XH. Singles transmission in volume-imaging PET with a137Cs source.Phys Med Biol 40: 929–944, 1995.

    Article  PubMed  CAS  Google Scholar 

  15. Meikle SR, Dahlbom M, Cherry SR. Attenuation correction using count-limited transmission data in positron emission tomography.J Nucl Med 34: 143–150, 1993.

    PubMed  CAS  Google Scholar 

  16. Grootoonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T. Correction for scatter in 3D brain PET using a dual energy window method.Phys Med Biol 41: 2757–2774, 1996.

    Article  PubMed  CAS  Google Scholar 

  17. Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET.Phys Med Biol 39: 412–424, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Fujiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, T., Watanuki, S., Yamamoto, S. et al. Performance evaluation of a large axial field-of-view PET scanner: SET-2400W. Ann Nucl Med 11, 307–313 (1997). https://doi.org/10.1007/BF03165298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165298

Key words

Navigation