Skip to main content
Log in

Osteoarthritis and osteoporosis: Clinical and research evidence of inverse relationship

  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

The etiology of osteoporosis (OP) and osteoarthritis (OA) is multifactorial: both constitutional and environmental factors, ranging from genetic susceptibility, endocrine and metabolic status, to mechanical and traumatic injury, are thought to be involved. When interpreting research data, one must bear in mind that pathophysiologic factors, especially in disorders associated with aging, must be regarded as either primary or secondary. Therefore, findings in end-stage pathology are not necessarily the evidence or explanation of the primary cause or event in the diseased tissue. Both aspects of research are important for potentially curative or preventive measures. These considerations, in the case of our topic — the inverse relationship of OP and OA — are of particular importance. Although the inverse relationship between two frequent diseases associated with aging, OA and OP, has been observed and studied for more than 30 years, the topic remains controversial for some and stimulating for many. The anthropometric differences of patients suffering from OA compared with OP are well established. OA cases have stronger body build and are more obese. There is overwhelming evidence that OA cases have increased BMD or BMC at all sites. This increased BMD is related to high peak bone mass, as shown in mother-daughter and twin studies. With aging, the bone loss in OA is lower, except when measured near an affected joint (hand, hip, knee). The lower degree of bone loss with aging is explained by lower bone turnover as measured by bone resorption-formation parameters. OA cases not only have higher apparent and real bone density, but also wider geometrical measures of the skeleton, diameters of long bones and trabeculae, both contributing positively to better strength and fewer fragility fractures. Not only is bone quantity in OA different but also bone quality, compared with controls and OP cases, with increased content of growth factors such as IGF and TGFβ, factors required for bone repair. Furthermore, in vitro studies of osteoblasts recruited from OA bone have different differentiation patterns and phenotypes. These general bone characteristics of OA bone may explain the inverse relationship OA-OP and why OA cases have fewer fragility fractures. The role of bone, in particular subchondral bone, in the pathophysiology, initiation and progression of OA is not fully elucidated and is still controversial. In 1970, it was hypothesized that an increased number of microfractures lead to an increase in subchondral bone stiffness, which impairs its ability to act as a shock absorber, so that cartilage suffers more. Although subchondral bone is slightly hypomineralized because of local increased turnover, the increase in trabecular number and volume compensates for this, resulting in a stiffer structure. There is also some experimental evidence that osteoblasts themselves release factors such as metalloproteinases directly or indirectly from the matrix, which predispose cartilage to deterioration. Instead, the osteoblast regenerative capacity of bone in OP is compromised compared with OA, as suggested by early cell adhesion differences. The proposition that drugs which suppress bone turnover in OP, such as bisphosphonates, may be beneficial for OA is speculative. Although bone turnover in the subchondral region of established OA is increased, the general bone turnover is reduced. Further reduction of bone turnover, however, may lead to overmineralized (aged) osteons and loss of bone quality, resulting in increased fragility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Prevalence and impact of arthritis among women — United States, 1989–1991. JAMA 1995: 273: 1820–1.

  2. Consensus Development Conference. Prophylaxis and treatment of osteoporosis. Am J Med 1991; 90: 107–10.

    Google Scholar 

  3. Urist MR. Observations bearing on the problem of osteoporosis. In Bodahl K, Ed. Bone as a tissue. New York: McGraw-Hill, 1960: 18–23.

    Google Scholar 

  4. Smith RW, Rizek J. Epidemiologic studies of osteoporosis in women of Puerto Rico and Southeastern Michigan with special reference to age, race, national origin and to other related or associated findings. Clin Orthop 1966; 45: 31–48.

    PubMed  Google Scholar 

  5. Foss MVL, Byers PD. Bone density, osteoarthrosis of the hip and fracture of the upper end of the femur. Ann Rheum Dis 1972; 31: 259–64.

    Article  PubMed  CAS  Google Scholar 

  6. Dequeker J, Burssens A, Creytens G, Bouillon R. Ageing of bone: its relation to osteoporosis and osteoarthrosis in post-menopausal women. Front Horm Res 1975; 3: 116–30.

    PubMed  CAS  Google Scholar 

  7. Dequeker J, Boonen S, Aerssens J, Westhovens R. Inverse relationship osteoarthritis-osteoporosis: what is the evidence? What are the consequences? Br J Rheumatol 1996; 35: 813–20.

    Article  PubMed  CAS  Google Scholar 

  8. Schneider DL, Barrett-Connor E, Morton DJ, Weisman M. Bone mineral density and clinical hand osteoarthritis in elderly men and women. The Rancho Bernardo Study. J Rheumatol 2002; 29: 1467–72.

    Google Scholar 

  9. Verstraeten A, Van Ermen H, Haghebaert G, Nijs J, Geusens P, Dequeker J. Osteoarthrosis retards the development of osteoporosis. Clin Orthop 1991; 264: 169–77.

    PubMed  Google Scholar 

  10. Dequeker J, Johnell O, and the MEDOS Study Group. Osteoarthritis protects against femoral neck fracture: the MEDOS study experience. Bone 1993; 14: S51–6.

    Article  PubMed  Google Scholar 

  11. Dequeker J. The relationship between osteoporosis and osteoarthritis. Clin Rheum Dis 1985; 11: 271–96.

    PubMed  CAS  Google Scholar 

  12. Dequeker J, Mokassa L, Aerssens J. Bone density and OA. J Rheumatol 1995; 221 (Suppl): 98–100.

    Google Scholar 

  13. Dequeker J, Mokassa L, Aerssens J, Boonen S. Bone density and local growth factors in generalized osteoarthritis. Microsc Res Tech 1997; 37: 358–71.

    Article  PubMed  CAS  Google Scholar 

  14. Dequeker J, Luyten FP. Bone mass and osteoarthritis. Clin Exp Rheumatol 2000; 18(Suppl 21): S21–6.

    Google Scholar 

  15. Burr DB. The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol 1998; 10: 256–62.

    Article  PubMed  CAS  Google Scholar 

  16. Sambrook Ph, Naganathan V. What is the relationship between osteoarthritis and osteoporosis? Baillière’s Clin Rheum 1997; 11: 695–710.

    Article  CAS  Google Scholar 

  17. Sowers MF. Epidemiology of risk factors for osteoarthritis: systemic factors. Curr Opin Rheumatol 2001; 13: 447–51.

    Article  PubMed  CAS  Google Scholar 

  18. Dequeker J, Goris P, Uytterhoeven R. Osteoporosis and osteoarthritis (osteoarthrosis): anthropometric distinctions. JAMA 1983; 249: 1448–51.

    Article  PubMed  CAS  Google Scholar 

  19. de Sèze S, Renier JC, Rakic P. Arthrose vertébrale et ostéoporose. Fréquences comparées de l’arthrose disco-vertébrale chez deux groupes de sujets d’âge comparable: ostéoporotiques et non ostéoporotiques. Rev Rheum 1962; 29: 237.

    Google Scholar 

  20. Roh YS, Dequeker J, Mulier JC. Bone mass in osteoarthrosis, measured in vivo by photon absorption. J Bone Joint Surg 1974; 56A: 587–91.

    Google Scholar 

  21. Christiansen C, Christiansen MS, Transbøl L. Bone mass in postmenopausal women after withdrawal of oestrogen/gestagen replacement therapy. Lancet 1981; i: 459.

    Article  Google Scholar 

  22. Cooper C, Cook PL, Osmond C, Fisher L, Cawley MID. Osteoarthritis of the hip and osteoporosis of the proximal femur. Ann Rheum Dis 1991; 50: 540–2.

    Article  PubMed  CAS  Google Scholar 

  23. Pogrund H, Rutemberg M, Makin M, Robin G, Menczel J, Steinberg R. Osteoarthritis of the hip joint and osteoporosis: A radiological study in a random population sample in Jerusalem. Clin Orthop 1982; 164: 130–5.

    PubMed  Google Scholar 

  24. Aström J, Beertema J. Reduced risk of hip fracture in the mothers of patients with osteoarthritis of the hip. J Bone Joint Surg 1992; 74B: 270–1.

    Google Scholar 

  25. Healy JH, Vigorita VJ, Lane JM. The coexistence and characteristics of osteoarthritis and osteoporosis. J Bone Joint Surg 1985; 67A: 586–92.

    Google Scholar 

  26. Iwamoto J, Takeda T, Ichimura S. Forearm bone mineral density in postmenopausal women with osteoarthritis of the knee. J Orthop Sci 2002; 7: 19–25.

    Article  PubMed  Google Scholar 

  27. Manninen P, Rihimaki H, Heliovaara M, Makela P. Overweight, gender and knee osteoarthritis. Int J Obes Relat Metab Disord 1996; 20: 595–7.

    PubMed  CAS  Google Scholar 

  28. Sowers MD, Zobel D, Weissfeld L, Hawthorne VM, Carman W. Progression of osteoarthritis of the hand and metacarpal bone loss: a twenty-year follow-up of incident cases. Arthritis Rheum 1991; 34: 141–7.

    Article  Google Scholar 

  29. Lachance L, Sowers MF, Jamadar D, Hochberg M. The natural history of emergent osteoarthritis of the knee in women. Osteoarthritis Cartilage 2002; 10: 849–54.

    Article  PubMed  CAS  Google Scholar 

  30. Madsen OR, Schaadt O, Bliddal H, Egsmose C, Sylvest J. Bone mineral distribution of the proximal tibia in gonarthrosis assessed in vivo by photon absorption. Osteoarthritis Cartilage 1994; 2: 141–7.

    Article  PubMed  CAS  Google Scholar 

  31. Kleerekoper M, Nelson DA. Vertebral fracture or vertebral deformity. Calcif Tissue Int 1992; 56: 5–6.

    Article  Google Scholar 

  32. Abdel-Hamid Osman A, Bassiouni H, Koutri R, Nijs J, Geusens P, Dequeker J. Aging of the thoracic spine: distinction between wedging in osteoarthritis and fracture in osteoporosis — A cross-sectional and longitudinal study. Bone 1994; 15: 437–42.

    Article  PubMed  CAS  Google Scholar 

  33. Reeve J, Silman A. Epidemiology of osteoporotic fractures in Europe: towards biologic mechanisms. Osteoporosis Int 1997; 7(Suppl 3): S78–83.

    Article  Google Scholar 

  34. Dai L. The relationship between vertebral body deformity and disc degeneration in lumbar spine of the senile. Eur Spine J 1998; 7: 40–4.

    Article  PubMed  CAS  Google Scholar 

  35. Roh YS, Dequeker J, Mulier JC. Cortical bone remodeling and bone mass in primary osteoarthritis of the hip. Invest Radiol 1973; 8: 251–4.

    Article  Google Scholar 

  36. Kröger H, Tuppurainen M, Honkanen R, Alhava E, Saarikoski S. Bone mineral density and risk factors for osteoporosis — A population-based study of 1600 perimenopausal women. Calcif Tissue Int 1994; 55: 1–7.

    Article  PubMed  Google Scholar 

  37. Arokoski JPA, Arokoski MH, Jurvelin JS, Helminen HJ, Niemitukia LH, Kröger H. Increased bone mineral content and bone size in the femoral neck of men with hip osteoarthritis. Ann Rheum Dis 2002; 61: 145–50.

    Article  PubMed  CAS  Google Scholar 

  38. Hochberg MC, Lethbridge-Cejku M, Scott WW Jr, Reichle R, Plato CC, Tobin JD. Upper extremity bone mass and osteoarthritis of the knees: Data from the Baltimore Longitudinal Study of Aging. J Bone Miner Res 1995; 10: 432–8.

    Article  PubMed  CAS  Google Scholar 

  39. Gevers G, Dequeker J, Geusens P, Nyssen-Behets C, Dhem A. Physical and histomorphological characteristics of iliac crest bone, according to osteoarthritis at the hand joints. Bone 1989; 10: 173–8.

    Article  PubMed  CAS  Google Scholar 

  40. Fazzalari NL, Darracoti J, Vernon-Roberts R. Histomorphometric changes in the trabecular structure of a selected stress region in the femur in patients with osteoarthritis and fracture of the femoral neck. Bone 1985; 6: 125–33.

    Article  PubMed  CAS  Google Scholar 

  41. Seeman E, Duan Y, Fong C, Edmonds J. Fracture site-specific deficity of bone size and volumetric density in men with spine or hip fractures. J Bone Miner Res 2001; 16: 120–7.

    Article  PubMed  CAS  Google Scholar 

  42. Faulkner K, Cummings S, Black D, Palermo L, Glüer C, Genant H. Simple measurement of femoral geometry predicts hip fracture. J Bone Miner Res 1993; 10: 1211–7.

    Google Scholar 

  43. Boonen S, Koutri R, Dequeker J, et al. Measurement of femoral geometry in type I and type II osteoporosis: differences in axis length consistent with heterogeneity in the pathogenesis of osteoporotic fractures. J Bone Miner Res 1995; 10: 1908–12.

    Article  PubMed  CAS  Google Scholar 

  44. Dequeker J, Gautama K, Roh YS. Femoral trabecular pattern in asymptomatic spinal osteoporosis and femoral neck fracture. Clin Radiol 1974; 25: 243–6.

    Article  PubMed  CAS  Google Scholar 

  45. Currey JD. The mechanical adaptations of bones. Princeton: Princeton University Press, 1984.

    Google Scholar 

  46. Cheng XG, Lowet G, Boonen S, et al. Assessment of the strength of the proximal femur in vitro: relationship with femoral bone mineral density and femoral geometry. Bone 1997; 20: 213–8.

    Article  PubMed  CAS  Google Scholar 

  47. Obermayer BM, Walter D, Kotschan S, Freigassner M, Windhager R, Leb G. Congenital hip displasia and bone mineral density of the hip — a new risk factor for osteoporotic fracture. J Bone Miner Res 2000; 15: 1678–82.

    Article  Google Scholar 

  48. Geusens P, Dequeker J, Verstraeten A. Age-related blood changes in hip osteoarthritis patients: a possible indicator of bone quality. Ann Rheum Dis 1983; 42: 112–3.

    Article  PubMed  CAS  Google Scholar 

  49. Dequeker J, Burssens A, Bouillon R. Dynamics of growth hormone secretion in patients with osteoporosis and in patients with osteoarthrosis. Hormone Res 1982; 16: 353–6.

    Article  PubMed  CAS  Google Scholar 

  50. Geusens P, Vanderschueren D, Verstraeten A, Dequeker J, Devos P, Bouillon R. Short-term course of 1.25(OH)2D3 stimulates osteoblasts but not osteoclasts in osteoporosis and osteoarthritis. Calcif Tissue Int 1991; 49: 168–73.

    Article  PubMed  CAS  Google Scholar 

  51. Bluestone R, Bywaters EGL, Hartog M, Holt PJL, Hyde S. Acro-megalic arthropathy. Ann Rheum Dis 1972; 30: 243–58.

    Article  Google Scholar 

  52. Littlejohn GO, Hall S, Brand CA, Davidson A. New bone formation in acromegaly: pathogenetic implications for diffuse idiopathic skeletal hyperostosis. Clin Exp Rheumatol 1986; 4: 99–104.

    PubMed  CAS  Google Scholar 

  53. Schouten JSAG, Van den Ouweland FA, Valkenburg HA, Lamberts SW. Insulin-like growth factor-1: a prognostic factor of knee osteoarthritis. Br J Rheumatol 1993; 32: 274–80.

    Article  PubMed  CAS  Google Scholar 

  54. Denko CW, Boja B, Moskowitz RX. Growth promoting peptides in osteoarthritis: insulin, insulin-like growth factor-1, growth hormone. J Rheumatol 1990; 17: 1217–21.

    PubMed  CAS  Google Scholar 

  55. McAlindon TE, Teale D, Dieppe PA. Insulin-like growth factor 1: Effect of age accounts for apparent correlation with sclerosis and osteophytosis in osteoarthritis of the knee. Br J Rheumatol 1992; 31: 213.

    Article  Google Scholar 

  56. Hochberg MC, Lethbridge-Cejku M, Scott WW, Reichle R, Plato CC, Tobin JD. Serum levels of insulin-like growth factor 1 in subjects with osteoarthritis of the knee. Arthritis Rheum 1994; 37: 1177–80.

    Article  PubMed  CAS  Google Scholar 

  57. Dequeker J, Lenaerts J, Bouillon R. Alteration growth hormone/IGF axis in osteoarthritis. Clin Rheumatol 1994; 13: 163.

    Google Scholar 

  58. Gevers G, Dequeker J, Geusens P, Devos P, De Roo M. Comparison of osteocalcin levels and of bone mineral content at the radius and the spine in primary osteoporosis and primary osteoarthrosis. J Orthop Rheumatol 1988; 1: 21–7.

    Google Scholar 

  59. Alhava EM, Kettunen K, Karjalainen P. Bone mineral in patients with osteoarthritis of the hip. Acta Orthop Scand 1975; 46: 709–15.

    Article  PubMed  CAS  Google Scholar 

  60. Hancock DA, Asiedu-Offel S, Atkinson PJ, Reed GW, Wright V. Femoral bone mass in patients with rheumatoid arthritis and osteoarthrosis. Rheumatol Rehabil 1978; 17: 65–71.

    Article  PubMed  CAS  Google Scholar 

  61. Carlsson A, Nilsson BE, Westlin NE. Bone mass in primary coxarthrosis. Acta Orthop Scand 1979; 50: 187–9.

    Article  PubMed  CAS  Google Scholar 

  62. Solomon L, Schnitzler CM, Browett JP. Osteoarthritis of the hip: the patient behind the disease. Ann Rheum Dis 1982; 41: 118–25.

    Article  PubMed  CAS  Google Scholar 

  63. Reid DM, Kennedy NSJ, Smith MA, Tothill P, Nuki G. Bone mass in nodal primary generalised osteoarthritis. Ann Rheum Dis 1984; 43: 240–2.

    Article  PubMed  CAS  Google Scholar 

  64. Nilas L, Gotfredsen A, Riis BJ, Christiansen C. The diagnostic validity of local and total bone mineral measurements in post-menopausal osteoporosis and osteoarthritis. Clin Endocrinol 1986; 25: 711–20.

    Article  CAS  Google Scholar 

  65. Price T, Hesp R. Mitchell R. Bone density in generalized osteoarthritis. J Rheumatol 1987; 14: 560–2.

    CAS  Google Scholar 

  66. Hochberg MC, Lethbridge-Cejku M, Plato CC, Wigley FM, Tobin JD. Factors associated with osteoarthritis of the hand in males: data from the Baltimore Longitudinal Study of Aging. Am J Epidemiol 1991; 134: 1121–7.

    PubMed  CAS  Google Scholar 

  67. Reid IR, Evans MC, Ames R, Wattie DJ. The influence of osteophytes and aortic calcification on spinal mineral density in post-menopausal women. J Clin Endocrinol Metab 1991; 72: 1372–4.

    Article  PubMed  CAS  Google Scholar 

  68. Raymaekers G, Aerssens J, Van den Eynde R, et al. Alterations of the mineralization profile and osteocalcin concentrations in osteoarthritic cortical iliac crest bone. Calcif Tissue Int 1992; 51: 269–75.

    Article  PubMed  CAS  Google Scholar 

  69. Schnitzler CM, Mesquita JM, Wane L. Bone histomorphometry of the iliac crest, and spinal fracture prevalence in atrophic and hypertrophic osteoarthritis of the hip. Osteoporosis Int 1992; 2: 186–94.

    Article  CAS  Google Scholar 

  70. Masud T, Langley S, Wiltshire P, Doyle DV, Spector TD. Effect of spinal osteophytosis on bone mineral density measurements in vertebral osteoporosis. BMJ 1993; 307: 172–3.

    Article  PubMed  CAS  Google Scholar 

  71. Belmonte-Serrano MA, Bloch DA, Lane NE, Michel BE, Fries JF. The relationship between spinal and peripheral osteoarthritis and bone density measurements. J Rheumatol 1993; 20: 1005–13.

    PubMed  CAS  Google Scholar 

  72. Hannan MT, Anderson JJ, Zhang Y, Levy D. Felson DT. Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham Study. Arthritis Rheum 1993; 12: 1671–80.

    Google Scholar 

  73. Hochberg MC, Lethbridge-Cejku M, Scott WW, Plato CC, Tobin JD. Appendicular bone mass and osteoarthritis of the hands in women: data from the Baltimore Longitudinal Study of Aging. J Rheumatol 1994; 21: 1532–6.

    PubMed  CAS  Google Scholar 

  74. Hart DJ, Mootoosamy I, Doyle DV, Spector TD. The relationship between osteoarthritis and osteoporosis in the general population: The Chingford Study. Ann Rheum Dis 1994; 53: 158–62.

    Article  PubMed  CAS  Google Scholar 

  75. Marcelli C, Favier F, Kotzki PO, Ferrazzi V, Picot M-C, Simon L. The relationship between osteoarthritis of the hands, bone mineral density, and osteoporotic fractures in elderly women. Osteoporos Int 1995; 5: 382–8.

    Article  PubMed  CAS  Google Scholar 

  76. Nevitt MC, Lane NE, Scott JC, et al. Radiographic osteoarthritis of the hip and bone mineral density. The Study of Osteoporotic Fractures Research Group. Arthritis Rheum 1995; 38: 907–16.

    Article  CAS  Google Scholar 

  77. Jones G, Nguyen T, Sambrook PN, Lord SR, Kelly PJ, Eisman JA. Osteoarthritis, bone density, postural stability, and osteoporotic fractures: a population based study. J Rheumatol 1995; 22: 921–5.

    PubMed  CAS  Google Scholar 

  78. Jones G, Nguyen T, Sambrook PN, Kelly PJ, Eisman JA. A longitudinal study of the effect of spinal degenerative disease on bone density in the elderly. J Rheumatol 1995; 22: 932–6.

    PubMed  CAS  Google Scholar 

  79. Yu W, Glüer CC, Fuerst T, et al. Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int 1995; 57: 169–74.

    Article  PubMed  CAS  Google Scholar 

  80. Peel NFA, Barrington NA, Blumsohn A, Colwell A, Hannon R, Eastell R. Bone mineral density and bone turnover in spinal osteoarthrosis. Ann Rheum Dis 1995; 54: 867–71.

    Article  PubMed  CAS  Google Scholar 

  81. Boyde A, Jones SA, Aerssens J, Dequeker J. Mineral density quanütation of the human cortical iliac crest by backscattered electron image analysis: variations with age. sex and degree of osteoarthritis. Bone 1995; 16: 619–27.

    CAS  Google Scholar 

  82. von der Recke P, Hansen MA, Overgaard K, Christiansen C. The impact of degenerative conditions in the spine on bone mineral density and fracture risk prediction. Osteoporos Int 1996; 6: 43–9.

    Article  PubMed  Google Scholar 

  83. Burger H, Van Daele PLA, Odding E, et al. Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam Study. Arthritis Rheum 1996; 39: 81–6.

    Article  CAS  Google Scholar 

  84. Orwoll ES, Bauer DC, Vogt TM, Fox KM. Axial bone mass in older women. Ann Intern Med 1996; 124: 187–96.

    Article  PubMed  CAS  Google Scholar 

  85. Lane NE, Nevitt MC. Osteoarthritis and bone mass. J Rheumatol 1994; 21: 1393–6.

    PubMed  CAS  Google Scholar 

  86. Sandini L, Arokoski JP, Jurvelin JS, Kröger HP. Normal hip bone mineral density but increased bone mineral content in women with primary osteoarthritis. (2003, in press).

  87. Antoniades L, MacGregor AJ, Matson M, Spector TD. A cotwin control study of the relationship between hip osteoarthritis and bone mineral density. Arthritis Rheum 2000; 43: 1450–5.

    Article  PubMed  CAS  Google Scholar 

  88. Steward A, Black A, Robins SP, Reid DM. Bone density and bone turnover in patients with osteoarthritis and osteoporosis. J Rheumatol 1999; 26: 622–6.

    Google Scholar 

  89. Goker B, Sumner DR, Hurwitz DE, Block JA. Bone mineral density varies as a function of the rate of joint space narrowing in the hip. J Rheumatol 2000; 27: 735–8.

    PubMed  CAS  Google Scholar 

  90. El Miedany YM, Mehanna AN, Baddini MA. Altered bone mineral metabolism in patients with osteoarthritis. Joint Bone Spine 2000; 67: 521–7.

    Article  PubMed  CAS  Google Scholar 

  91. Orwoll ES, Bevan L, Phipps KR. Determinants of bone mineral density in older men. Osteoporos Int 2000; 11: 815–21.

    Article  PubMed  CAS  Google Scholar 

  92. Yokozeki H, Igarashi M, Karube S, Shiraki M, Kurokawa T. The relation between osteoporosis of the spine and osteoarthritis of the knee. A study using dual energy X-ray absorptiometry and radiographs. Int Orthop 1995; 19: 282–4.

    CAS  Google Scholar 

  93. Naiton K, Kushida K, Takahashi M, Ohishi T, Inone T. Bone density and bone turnover in patients with knee osteoarthritis compared with generalized osteoarthritis. Calcif Tissue Int 2000; 66: 325–9.

    Article  Google Scholar 

  94. Sowers M, Lachance L, Jamadar D, et al. The associations of bone mineral density and bone turnover markers with osteoarthritis of the hand and knee in pre- and perimenopausal women. Arthritis Rheum 1999; 42: 483–9.

    Article  PubMed  CAS  Google Scholar 

  95. Naganathan V, Zochling J, March L, Sambrook PN. Peak bone mass is increased in the hip in daughters of women with osteoarthritis. Bone 2002; 30: 287–92.

    Article  PubMed  CAS  Google Scholar 

  96. Steward A, Black AJ. Bone mineral density in osteoarthritis. Curr Opin Rheumatol 2000; 12: 464–7.

    Article  Google Scholar 

  97. Bruno R, Sauer PA, Rosenberg AG, Black J, Sumner DR. The pattern of bone mineral density in the proximal femur and radiographic signs of early joint degeneration. J Rheumatol 1999; 26: 636–40.

    PubMed  CAS  Google Scholar 

  98. Arden NK, Nevitt MC, Lane NE, et al. Osteoarthritis and risk of falls, rates of bone loss, and osteoporotic fractures. Study of Osteoporotic Fractures Research Group. Arthritis Rheum 1999; 42: 1378–85.

    Article  CAS  Google Scholar 

  99. Hochberg MC, Altman RD, Brandt KD, et al. Guidelines for the medical management of osteoarthritis. Part I. Osteoarthritis of the hip. American College of Rheumatology. Arthritis Rheum 1995; 38: 1535–40.

    Article  CAS  Google Scholar 

  100. Karvonen RL, Miller PR, Nelson DA, Granda JL, Fernandez-Madrid F. Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol 1998; 25: 187–94.

    Google Scholar 

  101. Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KPH. Sub-chondral bone in osteoarthritis. Calcif Tissue Int 1991; 49: 20–6.

    Article  PubMed  CAS  Google Scholar 

  102. Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis and osteoarthritis. J Bone Miner Res 1997; 12: 641–51.

    Article  PubMed  CAS  Google Scholar 

  103. Li B, Aspden RM. Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 1997; 56: 247–54.

    Article  PubMed  CAS  Google Scholar 

  104. Fazzalari NL, Parkinson IH. Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip. J Bone Miner Res 1997; 12: 632–40.

    Article  PubMed  CAS  Google Scholar 

  105. Seibel MJ, Duncan A, Robins SP. Urinary hydroxypyridinium crosslinks provide indices of cartilage and bone involvement in arthritic diseases. J Rheumatol 1989; 16: 964–70.

    PubMed  CAS  Google Scholar 

  106. Brandt KD, Schauwecker DS, Dansereau S, Meyer J, O’Connor B, Myers SL. Bone scintigraphy in the canine cruciate deficiency model of osteoarthritis: comparison of the unstable and contralateral knee. J Rheumatol 1997; 24: 140–5.

    PubMed  CAS  Google Scholar 

  107. Carter DR, Hayes WC. Bone compressive strength: the influence of density and strain rate. Science 1976; 94: 1174–6.

    Article  Google Scholar 

  108. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Rel Res 1986; 213: 34–40.

    Google Scholar 

  109. Dequeker J, Mohan S, Finkelman RD, Aerssens J. Baylink DJ. Generalized osteoarthritis associated with increased insulin-like growth factor types I and II and transforming growth factor β in cortical bone from the iliac crest. Arthritis Rheum 1993; 36: 1702–8.

    CAS  Google Scholar 

  110. Lloyd ME, Hart DJ, Nandra D, et al. Relation between insulin-like growth factor-I concentrations, osteoarthritis, bone density, and fractures in the general population: the Chingford Study. Ann Rheum Dis 1996; 55: 870–4.

    Article  PubMed  CAS  Google Scholar 

  111. McAlindon TE, Teale JD, Dieppe PA. Levels of insulin related growth factor 1 in osteoarthritis of the knee. Ann Rheum Dis 1993; 52: 229–31.

    Article  PubMed  CAS  Google Scholar 

  112. Hamerman D, Stanley ER. Perspective: implications of increased bone density in osteoarthritis. J Bone Miner Res 1996; 11: 1205–8.

    Article  PubMed  CAS  Google Scholar 

  113. Mansell JP, Tarlton JF, Bailey AJ. Biochemical evidence for altered subchondral bone collagen metabolism in osteoarthritis of the hip. Br J Rheumatol 1997; 36: 16–9.

    Article  PubMed  CAS  Google Scholar 

  114. Westacott CI, Webb GR, Warnock MG, Sims JV, Elson CJ. Alteration of cartilage metabolism by cells from osteoarthritic bone. Arthritis Rheum 1997; 40: 1282–91.

    PubMed  CAS  Google Scholar 

  115. Hilal G, Martel-Pelletier JP, Ranger P, Lajeunesse D. Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: Possible role in subchondral bone sclerosis. Arthritis Rheum 1998; 41: 891–9.

    Article  PubMed  CAS  Google Scholar 

  116. Hilal G, Martel-Pelletier J, Pelletier J-P, Duval N, Lajeunesse D. Abnormal regulation of urokinase plasminogen activator by insulin-like growth factor 1 in human osteoarthritic subchondral osteoblasts. Arthritis Rheum 1999; 42: 2112–22.

    Article  PubMed  CAS  Google Scholar 

  117. Takeuchi Y, Nakayama K, Matsumoto T. Differentiation and cell surface expression of transforming growth factor-beta receptors are regulated by interaction with matrix collagen in murine osteoblastic cells. J Biol Chem 1996; 272: 3938–44.

    Google Scholar 

  118. Dallas SL, Miazono K, Skerry TM, Mundy GR, Bonewald LF. Dual role for the latent transforming growth-factor-beta binding-protein in storage of latent TGF-beta in the extracellular-matrix and as a structural matrix protein. J Cell Biol 1995; 131: 539–49.

    Article  PubMed  CAS  Google Scholar 

  119. Knott L, Muir PM, Bailey AJ. Collagen type I homotrimer in the subchondral bone of human osteoarthritic femoral heads. In: 45th Meeting of the Orthopaedic Research Society. Anaheim. California, 1999.

  120. Knott L, Bailey A. Collagen cross-links in mineralising tissues: a review of their chemistry, function, and clinical relevance. Bone 1998; 22: 181–7.

    Article  PubMed  CAS  Google Scholar 

  121. Milgram JW, Jasty M. Osteopetrosis — a morphological study of twenty-one cases. J Bone Joint Surg 1982; 64A: 912–29.

    Google Scholar 

  122. Benichou OD, Laredo JD, De Vernejoul MC. Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone 2000; 26: 87–93.

    Article  PubMed  CAS  Google Scholar 

  123. Serra R, Johnson M, Filvaroff EH, et al. Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol 1997; 139: 541–52.

    Article  PubMed  CAS  Google Scholar 

  124. von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Stoss H. Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum 1992; 35: 806–11.

    Article  Google Scholar 

  125. Weinstein M, Yang X, Deng C. Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev 2000; 11: 49–58.

    Article  PubMed  CAS  Google Scholar 

  126. Luyten FP, Lories R, De Valck D, De Bari C, Dell’Accio F. Bone morphogenetic proteins and the synovial joints. In Vukicevic S. Sampath K. Bone Morphogenetic Proteins. Basel: Birkhaüser Verlag, 2002: 223–48.

    Chapter  Google Scholar 

  127. Tomita T, Nakase T, Kanako M, et al. Distributions of BMP-2 and BMP receptors in the osteophytes of patients with osteoarthritis. Arthritis Rheum 2000; 43: S350.

    Google Scholar 

  128. Erlacher L, Ng CK, Ullrich R, Krieger S, Luyten FP. Presence of cartilage-derived morphogenetic proteins in articular cartilage and enhancement of matrix replacement in vitro. Arthritis Rheum 1998; 41: 263–73.

    Article  PubMed  CAS  Google Scholar 

  129. Chubinskaya S, Merrihew C, Cs-Szabo G, et al. Human articular chondrocytes express osteogenic protein-1. J Histochem Cytochem 2000; 48: 239–50.

    Article  PubMed  CAS  Google Scholar 

  130. Jordan GR, Loveridge N, Power J, Clarke MT, Parker M, Reeve J. The ratio of osteocytic incorporation to bone matrix formation in femoral neck cancellous bone: an enhanced osteoblast work rate in the vicinity of hip osteoarthritis. Calcif Tissue Int 2003: 72: 190–6.

    Article  PubMed  CAS  Google Scholar 

  131. Uchino M, Izumi T, Tominaga T, et al. Growth factor expression in the osteophytes of the human femoral head in osteoarthritis. Clin Orthop Rel Res 2000; 377: 119–25.

    Article  Google Scholar 

  132. Zoricic S, Maric I, Bobinac D, Vukicevic S. Expression of bone morphogenetic proteins and cartilage-derived morphogenetic proteins during osteophyte formation in humans. J Anat 2003; 202: 269–77.

    Article  PubMed  CAS  Google Scholar 

  133. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin ligand in the regulation of bone resorption. J Bone Miner Res 2000; 15: 2–12.

    Article  PubMed  CAS  Google Scholar 

  134. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis. lymphocyte development and lymph-node organogenesis. Nature 1999; 28: 315–23.

    Google Scholar 

  135. Atkins GJ, Findlay DM, Kuliwaba JS, Forwood MR, Fazzalari NL. Gene expression in osteoarthritic cancellous bone is consistent with osteoarthritis being a disease of the skeleton. J Bone Miner Res 1999; S542 (Abstract SA062).

  136. Bailey AJ, Mansell JP. Do subchondral bone changes exacerbate or precede articular cartilage destruction in osteoarthritis of the elderly? Gerontology 1997; 43: 296–304.

    Article  PubMed  CAS  Google Scholar 

  137. Evans RG, Collins C, Miller P, Ponford PM, Elsen CI. Radiological scoring of osteoarthritis in STR/ORT mice. Osteoarthr Cart 1994; 2: 103–9.

    Article  CAS  Google Scholar 

  138. Meacock SCR, Bodmer JL, Billingham ME. Experimental osteoarthritis in guinea pigs. J Exp Pathol 1990; 71: 279–93.

    CAS  Google Scholar 

  139. Carlson CS, Loeser RF, Jayo MJ, Weaver DS, Adams MR, Jerome CP. Osteoarthritis in cynomologus macaques: a primate model of naturally occurring disease. J Orthop Res 1994; 12: 331–9.

    Article  PubMed  CAS  Google Scholar 

  140. Carlson CS, Loeser RF, Purser CB, Gardin JF, Jerome CP. Osteoarthritis in cynomologus macaques. II. Effects of age, gender, and subchondral bone thickness on the severity of disease. J Bone Miner Res 1996; 11: 1209–17.

    Article  CAS  Google Scholar 

  141. Anderson-Mackenzie JM, Bailey AJ, Billingham ME. Collagen remodeling in the anterior cruciate ligament associated with developing spontaneous murine osteoarthritis. Biochem Biophys Res Commun 1999; 258: 763–7.

    Article  PubMed  CAS  Google Scholar 

  142. Perinpanyagam H, Zaharias R, Stanford C, Brand R, Keller J, Schneider G. Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts. J Orthop Res 2001; 19: 993–1000.

    Article  Google Scholar 

  143. Morrison NA, Cheng JQI, Akifumi R, et al. Prediction of bone density from vitamin D receptor alleles. Nature 1994; 367: 284–7.

    Article  PubMed  CAS  Google Scholar 

  144. Brandi ML, Gennari L, Cerinic MM, et al. Genetic markers of osteoarticular disorders: facts and hopes. Arthritis Res 2001; 3: 270–80.

    Article  PubMed  CAS  Google Scholar 

  145. Aerssens J, Dequeker J, Peeters J, Breemans S, Boonen S. Lack of association between osteoarthritis of the hip and gene polymorphisms of VDR, COL1A1 and COL2A1 in postmenopausal women. Arthritis Rheum 1998; 41: 1946–50.

    Article  PubMed  CAS  Google Scholar 

  146. Aerssens J, Dequeker J, Peeters J, Breemans S, Broos P, Boonen S. Polymorphisms of the VDR, ER and COLIA1 genes and osteoporotic hip fracture in elderly postmenopausal women. Osteoporos Int 2000; 11: 583–91.

    Article  PubMed  CAS  Google Scholar 

  147. Yamada Y, Okuizumi H, Miyauchi A, Takagi Y, Ikeda K, Harada A. Association of transforming growth factor β1 genotype with spinal osteophytosis in Japanese women. Arthritis Rheum 2000; 43: 452–60.

    Article  PubMed  CAS  Google Scholar 

  148. Ogata N, Matsumura Y, Shiraki M, et al. Association of Klotho gene polymorphism with bone density and spondylosis of the lumbar spine in postmenopausal women. Bone 2002; 31: 37–42.

    Article  PubMed  CAS  Google Scholar 

  149. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutations of the mouse klotho gene leads to a syndrome resembling aging. Nature 1997; 390: 45–51.

    Article  PubMed  CAS  Google Scholar 

  150. Arden NK, Griffiths GO, Hart DJ, Doyle DV, Spector TD. The association between osteoarthritis and osteoporotic fracture. The Chingford Study. Br J Rheumatol 1996; 35: 1299–304.

    Article  CAS  Google Scholar 

  151. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 2000; 15: 613–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Dequeker MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dequeker, J., Aerssens, J. & Luyten, F.P. Osteoarthritis and osteoporosis: Clinical and research evidence of inverse relationship. Aging Clin Exp Res 15, 426–439 (2003). https://doi.org/10.1007/BF03327364

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03327364

Keywords

Navigation