Skip to main content
Log in

Comparative analysis of passive play and torque expression in self-ligating and traditional lingual brackets

Vergleichende Analyse des Torquespiels und der Torqueexpression in selbstligierenden und konventionellen lingualen Klammern

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Introduction

The aim of this study was to determine and compare the play and torque expression of self-ligating and conventionally ligated lingual brackets, with square and rectangular slots, when engaged with archwires of different size, cross section and material.

Methods

Passive play and torque expression of 3 types of archwires and 5 types of brackets from four different manufacturers were measured and compared using a dynamometer. Each archwire was tested five times in each bracket; passive play was compared to ideal values, while torque expression was tested at 5, 10 and 20 Nmm as clinically efficacious values.

Results

Regarding full thickness stainless steel archwires, the lowest passive play was found in STb brackets (2.66 ± 0.89°, Ormco, Glendora, CA, USA), which was statistically significantly lower than for ALIAS brackets (4.44 ± 0.75°, Ormco), In-Ovation L brackets (6.14 ± 3.22°, Dentsply GAC, Bohemia, NY, USA), Harmony brackets (7.76 ± 2.94°, American Orthodontics, Sheboygan, WI, USA) and eBrace brackets (9.46 ± 3.94°, Riton Biomaterial, Guangzhou, China). Increasing the torsional load to the greatest torsional load clinically applicable, there were no statistically significant differences between STb, ALIAS, In-Ovation L and Harmony brackets.

Conclusions

STb and ALIAS brackets generated the lowest passive play; STb and In-Ovation L brackets showed the lowest angle of play at the greatest torque expression. These measurements allow to understand the accuracy of lingual systems and at the same time the amount of overcorrections to be applied in the setup in order to obtain high quality orthodontic treatments.

Zusammenfassung

Einführung

Ziel dieser Studie war es, das Spiel und die Torqueexpression von selbstligierenden und konventionell ligierten lingualen Brackets mit quadratischen und rechteckigen Slots zu bestimmen und beim Einsatz mit Drahtbögen unterschiedlicher Größe sowie unterschiedlichen Querschnitts und Materials zu vergleichen.

Methoden

Das Torquespiel und die Torqueexpression von 3 Arten von Drahtbögen und 5 Brackettypen von 4 Herstellern wurden gemessen und unter Verwendung eines Dynamometers miteinander verglichen. Jeder Drahtbogen wurde 5‑mal in jedem Bracket untersucht. Das Torquespiel wurde mit idealen Werten verglichen, während die Torqueexpression bei den klinisch wirksamen Werten 5, 10 und 20 Nmm getestet wurde.

Ergebnisse

Bei den Edelstahlbögen in voller Stärke wurde das geringste Torquespiel bei STb-Brackets (2,66 ± 0,89°, Ormco, Glendora, CA, USA) festgestellt, es war statistisch signifikant niedriger als bei ALIAS- (4,44 ± 0.75°, Ormco), In-Ovation-L- (6,14 ± 3,22°, Dentsply GAC, Bohemia, NY, USA), Harmonie- (7,76 ± 2,94°, American Orthodontics, Sheboygan, WI, USA) und eBrace-Brackets (9,46 ± 3,94°, Riton Biomaterial, Guangzhou, China). Bei Erhöhung der Torsionsbelastung auf die maximale klinisch anwendbare Torsionsbelastung gab es keine statistisch signifikanten Unterschiede zwischen STb‑, ALIAS-, In-Ovation-L- und Harmony-Brackets.

Schlussfolgerungen

STb- und ALIAS-Brackets verursachten das geringste Torquespiel; STb- und In-Ovation-L-Brackets zeigten den geringsten Spielwinkel bei der größten Torqueexpression. Diese Messungen ermöglichen es, die Genauigkeit der lingualen Systeme zu verstehen und damit auch das Ausmaß der im Setup anzuwendenden Überkorrekturen, um qualitativ hochwertige kieferorthopädische Behandlungen zu erhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6

Similar content being viewed by others

References

  1. Archambault A, Major TW, Carey JP, Heo G, Badawi H, Major PW (2010) A comparison of torque expression between stainless steel, titanium molybdenum alloy, and copper nickel titanium wires in metallic self-ligating brackets. Angle Orthod 80:884–889

    Article  Google Scholar 

  2. Badawi HM, Toogood RW, Carey JPR, Heo G, Major PW (2008) Torque expression of self-ligating brackets. Am J Orthod Dentofacial Orthop 133:721–728

    Article  Google Scholar 

  3. Burstone CJ (1966) The mechanics of the segmented arch techniques. Angle Orthod 36:99–120

    PubMed  Google Scholar 

  4. Chen SS, Greenlee GM, Kim JE, Smith CL, Huang GJ (2010) Systematic review of self-ligating brackets. Am J Orthod Dentofacial Orthop 137:726:e1–8

    Google Scholar 

  5. Creekmore T (1989) Lingual orthodontics—its renaissance. Am J Orthod Dentofacial Orthop 96:120–137

    Article  Google Scholar 

  6. Daratsianos N, Bourauel C, Fimmers R, Jager A, Schwestka-Polly R (2015) In vitro biomechanical analysis of torque capabilities of various 0.018″ lingual bracket-wire systems: total torqueplay and slot size. Eur J Orthod 38:459–469

    Article  Google Scholar 

  7. Ehsani S, Mandich MA, El-Bialy TH, Flores-Mir C (2009) Frictional resistance in self-ligating orthodontic brackets and conventionally ligated brackets. A systematic review. Angle Orthod 79:592–601

    Article  Google Scholar 

  8. Germane N, Bentley BE Jr, Isaacson RJ (1989) Three biologic variables modifying faciolingual tooth angulation by straight-wire appliances. Am J Orthod Dentofacial Orthop 96:312–319

    Article  Google Scholar 

  9. Gmyrek H, Bourauel C, Richter G, Harzer W (2002) Torque capacity of metal and plastic brackets with reference to materials, application, technology and biomechanics. J Orofac Orthop 63:113–128

    Article  Google Scholar 

  10. Harradine NW (2008) The history and development of self-ligating brackets. Semin Orthod 14:5–18

    Article  Google Scholar 

  11. Harzer W, Bourauel C, Gmyrek H (2004) Torque capacity of metal and polycarbonate brackets with and without a metal slot. Eur J Orthod 26:435–441

    Article  Google Scholar 

  12. Huang Y, Keilig L, Rahimi A, Reimann S, Eliades T, Jäger A et al (2009) Numeric modeling of torque capabilities of self-ligating and conventional brackets. Am J Orthod Dentofacial Orthop 136:638–643

    Article  Google Scholar 

  13. Lombardo L, Arreghini A, Bratti E, Mollica F, Spedicato G, Merlin M et al (2015) Comparative analysis of real and ideal wire-slot play in square and rectangular archwires. Angle Orthod 85:848–858

    Article  Google Scholar 

  14. Major TW, Carey JP, Nobes DS, Heo G, Major PW (2011) Mechanical effects of third-order movement in self-ligated brackets by the measurement of torque expression. Am J Orthod 139:e31–44

    Article  Google Scholar 

  15. Major TW, Carey JP, Nobes DS, Heo G, Melenka GW, Major PW (2013) An investigation into the mechanical characteristics of select self-ligated brackets at a series of clinically relevant maximum torquing angles: loading and unloading curves and bracket deformation. Eur J Orthod 35:719–729

    Article  Google Scholar 

  16. Melenka GW, Lacoursiere RA, Carey JP, Nobes DS, Heo G, Major PW (2014) Comparison of deformation and torque expression of the orthos and orthos Ti bracket systems. Eur J Orthod 36(4):381–388

    Article  Google Scholar 

  17. Meling TR, Odegaard J, Meling E (1997) On mechanical properties of square and rectangular stainless steel wires tested in torsion. Am J Orthod Dentofac Orthop 111:310–320

    Article  Google Scholar 

  18. Meling TR, Ødegaard J, Seqner D (1998) On bracket slot height: a methodologic study. Am J Orthod Dentofacial Orthop 113:387–393

    PubMed  Google Scholar 

  19. Morina E, Eliades T, Pandis N, Jäger A, Bourauel C (2008) Torque expression of self-ligating brackets com- pared with conventional metallic, ceramic, and plas-tic brackets. Eur J Orthod 30:233–238

    Article  Google Scholar 

  20. Rauch ED (1959) Torque and its application to orthodontics. Am J Orthod 45:817–830

    Article  Google Scholar 

  21. Reitan K (1967) Clinical and histologic observations on tooth movement during and after orthodontic treatment. Am J Orthod 53:721–745

    Article  Google Scholar 

  22. Thurow RC (1982) Edgewise orthodontics, 4th edn. Mosby, St Louis, p 327

    Google Scholar 

  23. Zimmer B, Sino H (2018) Coordinating bracket torque and incisor inclination : Part 1: The development of widely applicable equations. J Orofac Orthop 79(3:157–167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Albertini.

Ethics declarations

Conflict of interest

P. Albertini, V. Mazzanti, F. Mollica, L. Lombardo and G. Siciliani declare that they have no competing interests.

Ethical standards

All procedures performed in the study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. The study design was reviewed and approved by the Ethics Committee of Postgraduated School of Orthodontics of Ferrara University ,via Borsari 46, Ferrara, Italy (approval number 9/2017).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albertini, P., Mazzanti, V., Mollica, F. et al. Comparative analysis of passive play and torque expression in self-ligating and traditional lingual brackets. J Orofac Orthop 83, 13–22 (2022). https://doi.org/10.1007/s00056-021-00314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-021-00314-1

Keywords

Schlüsselwörter

Navigation