Skip to main content
Log in

Comparison of multiforce nickel–titanium wires to multistrand wires without force zones in bending and torque measurements

Vergleich von Mehrzonenbögen aus Nickel-Titan und verseilten Bögen ohne Kraftzonen in Biege- und Torquemessungen

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

The aim was to compare rectangular multiforce nickel–titanium (NiTi) wires to rectangular wires with only one force zone. Both types of wires are primarily intended for use during the levelling phase of orthodontic treatment. Thus, basic mechanical properties were examined by means of a three-point bending test. Torque expression, which is dependent on both wire parameters and interslot distances, was analyzed using the Orthodontic Measurement and Simulation System (OMSS).

Material/methods

Four multizone products were tested: DuoForce™ (Forestadent, Pforzheim, Germany), TriTanium™ (American Orthodontics, Sheboygan, WI, USA), Triple Force™ (ODS, Kisdorf, Germany), Bio-Active™ (GC, Breckerfeld, Germany), and two multistrand products without force zones: a nine-strand NiTi, TurboWire™ (Ormco, Orange, CA, USA) and an eight-strand stainless steel (SS) wire, Multibraid™ (GAC, Dentsply Sirona, York, PA, USA). All the wires had the dimension 0.40 mm × 0.56 mm (0.016 inch × 0.022 inch) except the nine-strand NiTi wire TurboWire™, which had a dimension of 0.43 mm × 0.65 mm (0.017 inch × 0.025 inch). Six different bracket systems in the 0.018 inch slot system were chosen: the conventional brackets discovery® and discovery® smart (Dentaurum, Ispringen, Germany), the active self-ligating brackets InOvation™ and InOvation™ mini (GAC, Dentsply Sirona, York, PA, USA) and the passive self-ligating brackets Carrière™ (ODS, Kisdorf, Germany) and BioPassive® (Forestadent, Pforzheim, Germany). The first set-up was a three-point bending test according to DIN EN ISO 15841. For the second experiment, the bracket products glued on a maxilla model were combined with the wire products. The torque moments arising during torqueing of the wires between +20° and −20° were measured in three positions: first incisor, canine and second bicuspid.

Results

Bending tests confirmed variation of the force corresponding to the force zones. The nine-strand NiTi wire TurboWireTM and the eight-strand SS wire Multibraid™ did not show any variation dependent on the tested area. Torque-moments generated by the multizone wires were higher compared to the braided wires. The nine-strand NiTi wire showed the lowest moments in spite of the higher dimension. As expected, increasing the interbracket distance reduced the torque moments.

Conclusion

The tests verified the existence of multiple force zones in the NiTi wires for forces and moments, respectively. As the torque–moments arising from the multizone wires were rather high, it is not recommended to use these wires as a first “leveling wire” in orthodontic treatment, especially in extremely crowded cases.

Zusammenfassung

Ziel

Ziel der Studie war es, rechteckige Mehrzonenbögen aus Nickel-Titan (NiTi) und rechteckige Bögen mit nur einer Kraftzone zu vergleichen. Beide Arten von Bögen sind in erster Linie für die initiale Phase der kieferorthopädischen Behandlung vorgesehen. Die mechanischen Eigenschaften wurden mittels eines Drei-Punkt-Biegetests und einer Torquemessung mit dem Orthodontischen Mess- und Simulationssystem (OMSS) ermittelt.

Material/Methode

Unter den getesteten Bögen waren 4 Mehrzonenbögen, DuoForce™ (Forestadent, Pforzheim, Deutschland), TriTanium™ (American Orthodontics, Sheboygan/WI, USA), Triple Force™ (ODS, Kisdorf, Deutschland), Bio-Active™ (GC, Breckerfeld, Deutschland), und 2 verseilte Bögen ohne Kraftzonen, ein NiTi-Bogen mit 9 Strängen TurboWire™ (Ormco, Orange/CA, USA) und ein SS(„stainless steel“)-Bogen mit 8 Strängen, Multibraid™ (GAC, Dentsply Sirona, York/PA, USA). Alle Bögen hatten die Dimension 0,40 × 0,56 mm (0,016 × 0,022 inch) außer TurboWire™, welcher in der Dimension 0,43 × 0,65 mm (0,017 × 0,025 inch) vorlag. Sechs unterschiedliche Bracketsysteme mit 0,018-inch-Slotsystem wurden getestet: die konventionellen Brackets discovery® und discovery® smart (Dentaurum, Ispringen, Deutschland), die aktiven selbstligierenden Brackets InOvation™ und InOvation™ mini (GAC, Dentsply Sirona, York, PA, USA) sowie die passiven selbstligierenden Brackets Carrière™ (ODS, Kisdorf, Deutschland) und BioPassive® (Forestadent, Pforzheim, Deutschland). Der erste Versuchsaufbau entsprach der Norm DIN EN ISO 15841. Für das zweite Experiment wurden die Bracketprodukte auf ein Oberkiefermodell geklebt und mit den Bogenprodukten kombiniert. Das Drehmoment, das bei einem Torque von +20° und −20° entsteht, wurde an drei Stellen ermittelt: erster Schneidezahn, Eckzahn und zweiter Prämolar.

Ergebnisse

Die Biegemessungen bestätigten das Vorliegen unterschiedlicher Kraftzonen innerhalb der Mehrzonenbögen. Der verseilte NiTi-Bogen TurboWire™ und der SS-Bogen Multibraid™ zeigten keine unterschiedlichen Kraftentwicklungen innerhalb des Bogenverlaufs. Unerwartet war die Entwicklung hoher Drehmomente durch die Mehrzonenbögen im Vergleich zu den verseilten Bögen. Trotz größerer Dimension entwickelte der NiTi TurboWire™ die geringsten Drehmomente. Wie erwartet führte ein erhöhter Interbracketabstand zu einer Abnahme des Drehmoments.

Schlussfolgerung

Die Ergebnisse konnten die Existenz von Kraftzonen im Verlauf der untersuchten NiTi-Bögen bestätigen. Aufgrund der Größe der von Mehrzonenbögen erzeugten Drehmomente wird jedoch nicht empfohlen, diese Produkte zu Beginn einer kieferorthopädischen Behandlung zu nutzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8

Similar content being viewed by others

References

  1. Al Fakir H, Carey JP, Melenka GW et al (2014) Investigation into the effects of stainless steel ligature ties on the mechanical characteristics of conventional and self-ligated brackets subjected to torque. J Orthod 41:188–200

    Article  Google Scholar 

  2. Andreasen GF, Brady PR (1972) A use hypothesis for 55 Nitinol wire for orthodontics. Angle Orthod 42:172–177

    PubMed  Google Scholar 

  3. Andrews LF (1976) The straight-wire appliance, origin, controversy, commentary. J Clin Orthod 10:99–114

    PubMed  Google Scholar 

  4. Archambault A, Major TW, Carey JP et al (2010) A comparison of torque expression between stainless steel, titanium molybdenum alloy, and copper nickel titanium wires in metallic self-ligating brackets. Angle Orthod 80:884–889

    Article  Google Scholar 

  5. Badawi HM, Toogood RW, Carey JPR et al (2008) Torque expression of self-ligating brackets. Am J Orthod Dentofacial Orthop 133:721–728

    Article  Google Scholar 

  6. Bench RW, Gugino CF, Hilgers JJ (1977) Bio-progressive therapy, part 2. J Clin Orthod 11:661–682

    PubMed  Google Scholar 

  7. Berger J (2000) Self-Ligation in the Year 2000. J Clin Orthod 34:74–81

    Google Scholar 

  8. Bourauel C, Drescher D, Thier M (1992) An experimental apparatus for the simulation of three-dimensional movements in orthodontics. J Biomed Eng 14:371–378

    Article  Google Scholar 

  9. Burstone CJ (1981) Variable-modulus orthodontics. Am J Orthod 80:1–16

    Article  Google Scholar 

  10. Burstone CJ, Qin B, Morton JY (1985) Chinese NiTi wire – A new orthodontic alloy. Am J Orthod 87:445–452

    Article  Google Scholar 

  11. Cannon JL (1984) Dual-flex archwires. J Clin Orthod 18:648–649

    PubMed  Google Scholar 

  12. Dalstra M, Eriksen H, Bergamini C et al (2015) Actual versus theoretical torsional play in conventional and self-ligating bracket systems. J Orthod 42:103–113

    Article  Google Scholar 

  13. Damon DH (1998) The rationale, evolution and clinical application of the self-ligating bracket. Clin Orthod Res 1:52–61

    Article  Google Scholar 

  14. DIN EN ISO 15841. (2014) Dentistry-Wires for use in orthodontics. Beuth Verlag.

  15. Drescher D, Bourauel C, Thier M (1991) Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. Eur J Orthod 13:169–178

    Article  Google Scholar 

  16. Fischer-Brandies H, Orthuber W, Es-Souni M et al (2000) Torque transmission between square wire and bracket as a function of measurement, form and hardness parameters. J Orofac Orthop 61:258–265

    Article  Google Scholar 

  17. Gmyrek H, Bourauel C, Richter G et al (2002) Torque capacity of metal and plastic brackets with reference to materials, application, technology and biomechanics. J Orofac Orthop 63:113–128

    Article  Google Scholar 

  18. Harzer W, Bourauel C, Gmyrek H (2004) Torque capacity of metal and polycarbonate brackets with and without a metal slot. Eur J Orthod 26:435–441

    Article  Google Scholar 

  19. Ibe DM, Segner D (1998) Superelastic materials displaying different force levels within one archwire. J Orofac Orthop 59:29–38

    Article  Google Scholar 

  20. Kapur-Wadhwa R (2004) Physical and mechanical properties affecting torque control. J Clin Orthod 38:335–340

    PubMed  Google Scholar 

  21. Keim RG, Vogels DS 3rd, Vogels PB (2020) JCO study of orthodontic diagnosis and treatment procedures, part 1: results and trends. J Clin Orthod 54:581–610

    PubMed  Google Scholar 

  22. Lombardo L, Ceci M, Mollica F et al (2019) Mechanical properties of multi-force vs. conventional NiTi archwires. J Orofac Orthop 80:57–67

    Article  Google Scholar 

  23. Major TW, Carey JP, Nobes DS et al (2011) Mechanical effects of third-order movement in self-ligated brackets by the measurement of torque expression. Am J Orthod Dentofacial Orthop 139:e31–e44

    Article  Google Scholar 

  24. Meling T, Ødegaard J, Meling E (1993) A theoretical evaluation of the influence of variation in bracket slot height and wire rounding on the amount of torsional play between bracket and wire. Kieferorthop Mit 7:41–47

    Google Scholar 

  25. Miura F, Mogi M, Ohura Y et al (1986) The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofac Orthop 90:1–10

    Article  Google Scholar 

  26. Miura F, Mogi M, Ohura Y et al (1988) Japanese NiTi alloy wire: use of the direct electric resistance heat treatment method. Eur J Orthod 10(3):187–191

    Article  Google Scholar 

  27. Olsen ME (2020) Smartarch multi-force superelastic archwires: a new paradigm in orthodontic treatment efficiency. J Clin Orthod 54:70–81

    PubMed  Google Scholar 

  28. Pandis N, Strigou S, Eliades T (2006) Maxillary incisor torque with conventional and self-ligating brackets: a prospective clinical trial. Orthod Craniofac Res 9:193–198

    Article  Google Scholar 

  29. Papageorgiou SN, Sifakakis I, Doulis I et al (2016) Torque efficiency of square and rectangular archwires into 0.018 and 0.022 in. conventional brackets. Prog Orthod 17:1–6

    Article  Google Scholar 

  30. Pelton AR, Dicello J, Miyazaki S (2000) Optimisation of processing and properties of medical grade Nitinol wire. Minim Invasive Ther Allied Technol 9:107–118

    Article  Google Scholar 

  31. Rubin RM (1999) Putting nickel titanium wire in its place. Angle Orthod 69:214

    PubMed  Google Scholar 

  32. Sifakakis I, Pandis N, Makou M et al (2013) Torque expression of 0.018 and 0.022 inch conventional brackets. Eur J Orthod 35:610–614

    Article  Google Scholar 

  33. Sifakakis I, Pandis M, Makou M et al (2014) Torque efficiency of different archwires in 0.018- and 0.022-inch conventional brackets. Angle Orthod 84:149–154

    Article  Google Scholar 

  34. Thompson WJ (1988) Combination anchorage technique: an update of current mechanics. Am J Orthod Dentofacial Orthop 93:363–379

    Article  Google Scholar 

  35. Wildman AJ, Hice TL, Lang HM et al (1972) The edgelok bracket. J Clin Orthod 6:613–633

    PubMed  Google Scholar 

  36. Zar JH (2013) Biostatistical analysis, 5th edn. Pearson Education Limited,

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the companies for providing materials free of charge. There was no further funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Johannessen.

Ethics declarations

Conflict of interest

E. Sanders, L. Johannessen, J. Nadal, A. Jäger and C. Bourauel declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanders, E., Johannessen, L., Nadal, J. et al. Comparison of multiforce nickel–titanium wires to multistrand wires without force zones in bending and torque measurements. J Orofac Orthop 83, 382–394 (2022). https://doi.org/10.1007/s00056-021-00321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-021-00321-2

Keywords

Schlüsselwörter

Navigation