Skip to main content

Advertisement

Log in

Nitric oxide inhibits excitatory vagal afferent input to nucleus tractus solitarius neurons in anaesthetized rats

一氧化氮抑制迷走神经介导的孤束核神经元兴奋性传入

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

Endogenous nitric oxide (NO) has been implicated in the regulation of neuronal activity which mediates cardiovascular reflexes. However, there is controversy concerning the role of NO in the nucleus tractus solitarius (NTS). The present study aims to elucidate the possible physiological role of endogenous NO in modulating the excitatory vagal afferent input to NTS neurons.

Methods

All the experiments in the rat were conducted under anaesthetic conditions. Ionophoresis method was used for the application of NO donor or nitric oxide synthase (NOS) inhibitor, and single unit recording method was employed to detect the effects of these applications on vagal afferent- or cardio-pulmonary C-fibre reflex-evoked neuronal excitation in NTS.

Results

Ionophoresis applications of L-arginine (L-Arg), a substrate of NOS, and sodium nitroprusside (SNP), a NO donor, both attenuated the vagal afferent-evoked discharge by (51.5±7.6)% (n = 17) and (68.3±7.1)% (n = 9), respectively. In contrast, application of D-Arg at the same current exerted no overall effect on this input. Also, both L-Arg and SNP inhibited spontaneous firing of most of the recorded neurons. In contrast, ionophoresis application of NG-nitro-Larginine methyl ester (L-NAME) enhanced vagal afferent-evoked excitation by (66.3±11.4)% (n = 7). In addition, ionophoresis application of L-Arg and SNP significantly attenuated cardio-pulmonary C-fibre reflex-induced excitation in the tested NTS neurons.

Conclusion

Activation of local NO pathway in the NTS could suppress vagal afferent-evoked excitation, suggesting that NO is an important neuromodulator of visceral sensory input in the NTS.

摘要

目的

一氧化氮在延髓孤束核内调控心血管反射功能的确切机制尚未得到阐明。 本实验将微电泳与细胞外神经元记录技术结合, 研究一氧化氮对孤束核神经元接受迷走神经介导的兴奋性传入的调控作用, 揭示一氧化氮在延髓孤束核内调控心血管反射的重要作用。

方法

将大鼠进行整体麻醉, 通过单细胞记录孤束核神经元的电活动。 微电泳给予一氧化氮供体或一氧化氮合成酶抑制剂, 观察其对迷走神经电刺激或肺化学感受器刺激下诱发的孤束核神经元兴奋性反应的调控作用。

结果

微电泳给予L-arginine (L-Arg) 或硝普纳均能抑制迷走神经刺激诱发的孤束核神经元兴奋反应, 分别降低了(51.5±7.6)% (n = 17) 和 (68.3±7.1)% (n = 9)。 而在相同条件下给予D-Arg并未出现任何影响。 并且在大部分所测神经元中, L-Arg 和硝普纳均能抑制神经元的自放电行为。 相反, 微电泳给予 L-NAME 则会加强迷走神经刺激诱发的孤束核神经元兴奋反应, 增强了 (66.3±11.4)% (n = 7)。 另外, 微电泳给予L-Arg 或硝普纳都能抑制肺化学感受器刺激下诱发的孤束核神经元兴奋性反应。

结论

在延髓孤束核内一氧化氮对迷走神经介导的心血管反射具有负调控作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jordan D, Spyer KM. Brainstem integration of cardiovascular and pulmonary afferent activity. Pro Brain Res 1986, 67: 295–314.

    Article  CAS  Google Scholar 

  2. Paton JFR, Li YW, Kasparov S. Reflex response and convergence of pharyngoesophageal and peripheral chemoreceptors in the nucleus of the solitary tract. Neuroscience 1999, 93: 143–154.

    Article  PubMed  CAS  Google Scholar 

  3. Mifflin SW. Arterial chemoreceptor input to nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 1992, 263: R368–R375.

    CAS  Google Scholar 

  4. Taylor EW, Jordan D, Coote JH. Central control of the cardiovascular and respiratory systems and their interactions in vertebrates. Physiol Rev 1999, 79: 855–916.

    PubMed  CAS  Google Scholar 

  5. Timmers HJ, Wieling W, Karemaker JM, Lenders JW. Denervation of carotid baro- and chemoreceptors in humans. J Physiol 2003, 553: 3–11.

    Article  PubMed  CAS  Google Scholar 

  6. Jordan, D. Vagal control of the heart: central serotonergic (5-HT) mechanisms. Exp Physiol 2005, 90: 175–181.

    Article  PubMed  CAS  Google Scholar 

  7. Krukoff TL. Central actions of nitric oxide in regulation of autonomic functions. Brain Res Rev 1999, 30: 52–65.

    Article  PubMed  CAS  Google Scholar 

  8. Paton JFR, Deuchars, Wang S, Kasparov S. Nitroxergic modulation in the NTS: implications for cardiovascular function. In Advances in Vagal Afferent Neurobiology, ed. Undem BJ & Weinreich D. CRC Press, Boca Raton, London, New York, Singapore, 2005.

    Google Scholar 

  9. Iwase K, Iyama K, Akagi S, Yano K, Fukunaga E, Miyamoto M, et al. Precise distribution of neuronal nitric oxide synthase mRNA in the rat brain revealed by non-radioiso-topic in situ hybridization. Mol Brain Res 1998, 53: 1–12.

    Article  PubMed  CAS  Google Scholar 

  10. Vincent SR, Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 1992, 46: 755–784.

    Article  PubMed  CAS  Google Scholar 

  11. Lin LH, Taktakishvili O, Talman WT. Identification and localization of cell types that express endothelial and neuronal nitric oxide synthase in the rat nucleus tractus solitarii. Brain Res 2007, 1171: 42–51.

    Article  PubMed  CAS  Google Scholar 

  12. Esteves FO, McWilliam PN, Batten TF. Nitric oxide producing neurones in the rat medulla oblongata that project to nucleus tractus solitarii. J Chem Neuroanat 2000, 20: 185–197.

    Article  PubMed  CAS  Google Scholar 

  13. Ruggiero DA, Mtui EP, Otake K, Anwar M. Central and primary visceral afferents to nucleus tractus solitarii may generate nitric oxide as a membrane-permeant neuronal messenger. J Comp Neurol 1996, 364: 51–67.

    Article  PubMed  CAS  Google Scholar 

  14. Babic T, de Oliveira CV, Ciriello J. Collateral axonal projections from rostral ventromedial medullary nitric oxide synthase containing neurons to brainstem autonomic sites. Brain Res 2008, 1211: 44–56.

    Article  PubMed  CAS  Google Scholar 

  15. Maeda M, Hirano H, Kudo H, Doi Y, Higashi K, Fujimoto S. Injection of antisense oligos to nNOS into nucleus tractus solitarii increases blood pressure. Neuroreport 1999, 10: 1957–1960.

    Article  PubMed  CAS  Google Scholar 

  16. Hirooka Y, Shigematsu H, Kishi T, Kimura Y, Ueta Y, Takeshita A. Reduced nitric oxide synthase in the brainstem contributes to enhanced sympathetic drive in rats with heart failure. J Cardiovasc Pharmacol 2003, 42: S111–S115.

    PubMed  CAS  Google Scholar 

  17. Talman WT, Dragon DN. Transmission of arterial baroreflex signals depends on neuronal nitric oxide synthase. Hypertension 2004, 43: 820–824.

    Article  PubMed  CAS  Google Scholar 

  18. Dias AC, Colombari E, Mifflin SW. Effect of nitric oxide on excitatory amino acid-evoked discharge of neurons in NTS. Am J Physiol Heart Circ Physiol 2003, 284: H234–H240.

    PubMed  CAS  Google Scholar 

  19. Dias AC, Vitela M, Colombari E, Mifflin SW. Nitric oxide modulation of glutamatergic, baroreflex, and cardiopulmonary transmission in the nucleus of the solitary tract. Am J Physiol Heart Circ Physiol 2005, 288: H256–H262.

    Article  PubMed  CAS  Google Scholar 

  20. Paton JF, Deuchars J, Ahmad Z, Wong LF, Murphy D, Kasparov S. Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol 2001, 531: 445–458.

    Article  PubMed  CAS  Google Scholar 

  21. Waki H, Kasparov S, Wong LF, Murphy D, Shimizu T, Paton JF. Chronic inhibition of endothelial nitric oxide synthase activity in nucleus tractus solitarii enhances baroreceptor reflex in conscious rats. J Physiol 2003, 546: 233–242.

    Article  PubMed  CAS  Google Scholar 

  22. Zanzinger J, Czachurski J, Seller H. Effects of nitric oxide on sympathetic baroreflex transmission in the nucleus tractus solitarii and caudal ventrolateral medulla in cats. Neurosci Lett 1995, 197: 199–202.

    Article  PubMed  CAS  Google Scholar 

  23. Wang Y, Ramage AG, Jordan D. In vivo effects of 5-hydroxytryptamine receptor activation on rat nucleus tractus solitarius neurones excited by vagal C-fibre afferents. Neuropharmacol 1997, 36: 489–498.

    Article  CAS  Google Scholar 

  24. Jeggo RD, Wang Y, Jordan D, Ramage AG. Activation of 5-HT1B and 5-HT1D receptors in the rat nucleus tractus solitarius: opposing action on neurons that receive an excitatory vagal C-fibre afferent input. Br J Pharmacol 2007, 150: 987–995.

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Jones JF, Jeggo RD, de Burgh Daly M, Jordan D, Ramage AG. Effect of pulmonary C-fibre afferent stimulation on cardiac vagal neurones in the nucleus ambiguus in anaesthetized cats. J Physiol 2000, 526: 157–165.

    Article  PubMed  CAS  Google Scholar 

  26. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. Academic Press, New York, 1998.

    Google Scholar 

  27. Ferrari MF, Fior-Chadi DR. Differential expression of nNOS mRNA and protein in the nucleus tractus solitarii of young and aged Wistar-Kyoto and spontaneously hypertensive rats. J Hypertens 2005, 23(9): 1683–1690.

    Article  PubMed  CAS  Google Scholar 

  28. Waki H, Murphy D, Yao ST, Kasparov S, Paton JF. Endothelial NO synthase activity in nucleus tractus solitarii contributes to hypertension in spontaneously hypertensive rats. Hypertension 2006, 48: 552–554.

    Article  CAS  Google Scholar 

  29. Silva LG, Dias AC, Furlan E, Colombari E. Nitric oxide modulates the cardiovascular effects elicited by acetylcholine in the NTS of awake rats. Am J Physiol Regul Integr Comp Physiol 2008, 295: R1774–R1781.

    PubMed  Google Scholar 

  30. Paton JF, Lonergan T, Deuchars J, James PE, Kasparov S. Detection of angiotensin II mediated nitric oxide release within the nucleus of the solitary tract using electron-paramagnetic resonance (EPR) spectroscopy. Auton Neurosci 2006, 126–127: 193–201.

    Article  PubMed  CAS  Google Scholar 

  31. Paton JF, Wang S, Polson JW, Kasparov S. Signaling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension. J Mol Med 2008, 86: 705–710.

    Article  PubMed  CAS  Google Scholar 

  32. Shih CD, Chuang YC. Nitric oxide and GABA mediate bi-directional cardiovascular effects of orexin in the nucleus tractus solitarii of rats. Neuroscience 2007, 149: 625–635.

    Article  PubMed  CAS  Google Scholar 

  33. Wang S, Teschemacher AG, Paton JF, Kasparov S. Mechanism of nitric oxide action on inhibitory GABAergic signaling within the nucleus tractus solitarii. FASEB J 2006, 20(9): 1537–1539.

    Article  PubMed  CAS  Google Scholar 

  34. Chianca DA Jr, Lin LH, Dragon DN, Talman WT. NMDA receptors in nucleus tractus solitarii are linked to soluble guanylate cyclase. Am J Physiol Heart Circ Physiol 2004, 286: H1521–H1527.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang  (王云).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, SZ., Fan, MX., Zhang, BH. et al. Nitric oxide inhibits excitatory vagal afferent input to nucleus tractus solitarius neurons in anaesthetized rats. Neurosci. Bull. 25, 325–334 (2009). https://doi.org/10.1007/s12264-009-0624-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-009-0624-x

Keywords

CLC number

关键词

Navigation