Skip to main content
Log in

Body composition and muscle performance during menopause and hormone replacement therapy

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Menopausal transition is characterized by ovarian failure and its consequent decrease in female sex steroid production. Earlier studies suggest that an increase and redistribution of body fat during menopause predispose women to cardiovascular disease and metabolic syndrome. In addition, peri- and post-menopausal women seem to have less lean body mass (LBM) compared with pre-menopausal women. Accordingly, a changing ovarian hormonal status may accelerate the loss of muscle mass and result in decreased muscle performance and functional capacity. Hormone replacement therapy (HRT) has been used to treat menopausal symptoms and as a primary prevention therapy in chronic conditions. Inconsistent findings have, however, been published on the effects of HRT on body composition in postmenopausal women. Some studies clearly suggest that HRT counteracts menopause-related changes in body composition whereas others fail to show any difference between post-menopausal HRT users and abstainers. Although cross-sectional studies show conflicting results concerning the association between HRT and muscle performance, experimental trials suggest that deterioration in muscle force during menopause can be prevented by HRT. In the future, longitudinal data need to be collected to confirm changes in body composition and muscle performance during menopausal transition irrespective of age. Although HRT seems to have beneficial effects on body composition and muscle performance in healthy post-menopausal women, there is considerable variation in the effects of HRT between different studies. The underlying mechanism of HRT action on muscle performance is still unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamberts SWJ, van den Beld AW, van den Lely AJ. The endocrinology of aging. Science 1997, 278: 419–24.

    Article  PubMed  CAS  Google Scholar 

  2. Rannevik G, Carlström K, Jeppsson S, Bjerre B, Svanberg L. A prospective long-term study in women from pre-menopause to post-menopause: changing profiles of go-nadotrophins, oestrogens and androgens. Maturitas 1986, 8: 197–307.

    Article  Google Scholar 

  3. Cauley JA, Zmuda JM, Ensrud KE, Bauer DC, Ettinger B. Timing of estrogen replacement therapy for optimal osteoporosis prevention. J Clin Endocrin Metab 2001, 86: 5700–5.

    Article  CAS  Google Scholar 

  4. Mosca L, Collines P, Herrington DM, et al. Hormone replacement therapy and cardiovascular disease. A statement for healthcare professionals from the American Heart Association. Circulation 2001, 104: 499–503.

    Article  PubMed  CAS  Google Scholar 

  5. Snieder H, MacGregor AJ, Spector TD. Genes control the cessation of a woman’s reproductive life: A twin study of hysterectomy and age at menopause. J Clin Endocr Metab 1998, 83: 1875–80.

    PubMed  CAS  Google Scholar 

  6. Wise PM, Krajnak KM, Kashon ML. Menopause: The aging of multiple pacemakers. Science 1996, 273: 67–70.

    Article  PubMed  CAS  Google Scholar 

  7. Douchi T, Yamamoto S, Yoshimitsu N, Andoh T, Matsuo T, Nagata Y Relative contribution of aging and menopause to changes in lean and fat mass in segmental regions. Maturitas 2002, 42: 301–6.

    Article  PubMed  Google Scholar 

  8. Gambacciani M, Ciaponi M, Cappagli B, Benussi C, De Simone L, Genazzani AR. Climacteric modifications in body weight and fat tissue distribution. Climacteric 1999, 2: 37–44.

    Article  PubMed  CAS  Google Scholar 

  9. Svendsen OL, Hassager C, Christiansen C. Age- and menopause-associated variations in body composition and fat distribution in healthy women as measured by dual-energy x-ray absorptiometry. Metabolism 1995, 44: 369–73.

    Article  PubMed  CAS  Google Scholar 

  10. Toth MJ, Tchernof A, Sites CK, Poehlman ET. Effects of menopausal status on body composition and abdomina fat distribution. Int J Obesity 2000, 24: 226–31.

    Article  CAS  Google Scholar 

  11. Trémollieres FA, Pouilles JM, Ribot CA. Relative influence of age and menopause on total and regional body composition changes in postmenopausal women. Am J Obstet Gynecol 1996, 175: 1594–600.

    Article  PubMed  Google Scholar 

  12. Panotopoulos G, Ruiz JC, Raison J, Guy-Grand B, Basdevant A. Menopause, fat and lean distribution in obese women. Maturitas 1996, 25: 11–9.

    Article  PubMed  CAS  Google Scholar 

  13. Poehlman ET, Toth MJ, Gardner AW. Changes in energy balance and body composition at menopause: A controlled longitudinal study. Ann Intern Med 1995, 123: 673–5.

    Article  PubMed  CAS  Google Scholar 

  14. Wang Q, Hassager C, Ravn P, Wang S, Christiansen C. Total and regional body-composition changes in early postmenopausal women: age-related or menopause-re-lated. Am J Clin Nutr 1994, 60: 843–8.

    PubMed  CAS  Google Scholar 

  15. Lexell J, Taylor CC, Sjostrom M. What is the cause of the aging atrophy. Total number, size and proportion of different fiber types studied in whole lastus lateralis muscle from 15-to 83-year-old men. J Neurol Sci 1988, 84: 275–94.

    Article  PubMed  CAS  Google Scholar 

  16. Kovanen V, Suominen H, Peltonen L, et al. Effects of aging and life-long physical training on collagen in slow and fast skeletal muscle in rats. A morphometric and im-munohistochemical study. Cell Tissue Res 1987, 248: 247–55.

    Article  PubMed  CAS  Google Scholar 

  17. Douchi T, Yamamoto S, Nakamura S, et al. The effects of menopause on regional and total body lean mass. Maturitas 1998, 29: 247–52.

    Article  PubMed  CAS  Google Scholar 

  18. Rantanen T, Masaki K, Foley D, Izmirlian G, White L, Guralnik JM. Grip strength changes over 27 yr in Japanese-American men. J Appl Physiol 1998, 85: 2047–53.

    PubMed  CAS  Google Scholar 

  19. Bassey EJ, Harries UJ. Normal values for hand grip strength in 920 men and women aged over 65 years, and longitudinal changes over 4 years in 620 survivors. Clin Sci 1993, 84: 331–7.

    PubMed  CAS  Google Scholar 

  20. Skelton DA, Greig CA, Davies JM, Young A. Strength, power and related functional ability of healthy people aged 65–89 years. Age Aging 1994, 23: 371–7.

    Article  CAS  Google Scholar 

  21. Samson MM, Meeuwsen IBAE, Crowe A, Dessens AG, Duursma SA, Verhaar HJJ. Relationship between physica performance measures, age, height and body weight in healthy adults. Age Aging 2000, 29: 135–242.

    Article  Google Scholar 

  22. Phillips SK, Rook KM, Siddle NC, Bruce SA, Woledge RC. Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci 1993, 84: 95–8.

    PubMed  CAS  Google Scholar 

  23. Lindle RS, Metter EJ, Lynch NA, et al. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol 1997, 83:1581–7.

    PubMed  CAS  Google Scholar 

  24. Lynch NA, Metter EJ, Lindle RS, et al. Muscle quality. I. Age-associated differences between arm and leg muscle groups. J Appl Physiol 1999, 86: 188–94.

    PubMed  CAS  Google Scholar 

  25. Dittmar M. Comparison of soft tissue body composition in postmenopausal women with and without hormone replacement therapy considering the influence of reproductive history and lifestyle. Ann Hum Biol 2001, 28: 207–21.

    Article  PubMed  CAS  Google Scholar 

  26. Kahlert S, Grohé C, Karas RH, Löbbert K, Neyses L, Vetter H. Effects of estrogen on skeletal myoblast growth. Biochem Bioph Res Co 1997, 232: 373–8.

    Article  CAS  Google Scholar 

  27. Site CK, Brochu M, Tchernof A, Poehlman ET. Relationship between hormone replacement therapy use with body fat distribution and insulin sensitivity in obese postmenopausa women. Metabolism 2001, 50: 835–40.

    Article  Google Scholar 

  28. Gower BA, Nyman L. Association among oral estrogen use, free testosterone concentration, and lean body mass among postmenopausal women. J Clin Endocr Metab 2000, 85: 4476–80.

    PubMed  CAS  Google Scholar 

  29. Bemben DA, Lagdon DB. Relationship between estrogen use and musculoskeletal function in postmenopausal women. Maturitas 2002, 42: 119–27.

    Article  PubMed  CAS  Google Scholar 

  30. Taaffe DR, Villa ML, Delay R, Marcus R. Maximal muscle strength of elderly women is not influenced by oestrogen status. Age Aging 1995, 24: 329–33.

    Article  CAS  Google Scholar 

  31. Davis S, Walker KZ, Strauss BJG. Effects of estradiol with and without testosterone on body composition and relationship with lipids in postmenopausal women. Menopause 2000, 7: 395–401.

    Article  PubMed  CAS  Google Scholar 

  32. Gambacciani M, Ciaponi M, Cappagli B, De Simone L, Orlandi R, Gennazzani AR. Prospective evaluation of body weight and body fat distribution in early postmenopausa women with and without hormonal replacement therapy. Maturitas 2001, 39: 125–32.

    Article  PubMed  CAS  Google Scholar 

  33. Sørensen MB, Rosenfalck AM, Højgaard L, Ottesen B. Obesity and sarcopenia after menopause are reversed by sex hormone replacement therapy. Obes Res 2001, 9: 622–6.

    Article  PubMed  Google Scholar 

  34. Aloia JF, Vaswani A, Russo L, Sheehan M, Flaster E. The influence of menopause and hormonal replacement therapy on body cell mass and body fat mass. Am J Obstet Gynecol 1995, 172: 896–900.

    Article  PubMed  CAS  Google Scholar 

  35. Reubinoff BE, Wurtman J, Rojansky N, et al. Effects of hormone replacement therapy on weight, body composition, fat distribution, and food intake in early postmenopausal women: a prospective study. Fertil Steri 1995, 64: 963–8.

    CAS  Google Scholar 

  36. Sipilä S, Taaffe D, Cheng S, Puolakka J, Toivanen J, Suominen H. Effects of hormone replacement therapy and high-impact physical exercise on skeletal muscle in postmenopausal women: a randomized placebo-controlled study. Clin Sci 2001, 101: 147–57.

    Article  PubMed  Google Scholar 

  37. Walker RJ, Lewis-Barned NJ, Sutherland WHF, et al. The effects of sequential combined oral 17β-estradio norethisterone acetate on insulin sensitivity and body composition in healthy postmenopausal women: a randomized single blind placebo-controlled study. Menopause 2001, 8: 27–32.

    Article  PubMed  CAS  Google Scholar 

  38. Jensen J, Christiansen C, Rødbor P. Oestrogen-progesto-gen replacement therapy changes body composition in early post-menopausal women. Maturitas 1986, 8: 209–16.

    Article  PubMed  CAS  Google Scholar 

  39. Cauley JA, Gutai JP, Kuller LH, LeDonne D, Powell JG. The epidemiology of serum sex hormones in postmenopausal women. Am J Epidemiol 1989, 129: 1120–31.

    PubMed  CAS  Google Scholar 

  40. Cauley JA, Petrini AM, LaPorte RE, et al. The decline of grip strength in the menopause: Relationship of physica activity, estrogen use and anthropometric factors. J Chron Dis 1987, 40: 115–20.

    Article  PubMed  CAS  Google Scholar 

  41. Seeley DG, Cauley JA, Grady D, Browner WS, Nevitt MC, Cummings SR. Is postmenopausal estrogen therapy associated with neuromuscular function or falling in elderly women? Arch Intern Med 1995, 155: 293–9.

    Article  PubMed  CAS  Google Scholar 

  42. Greeves JP, Cable NT, Reilly T, Kingsland C. Changes in muscle strength in women following the menopause: a longitudinal assessment of the efficacy of hormone replacement therapy. Clin Sci 1999, 97: 79–84.

    Article  PubMed  CAS  Google Scholar 

  43. Heikkinen J, Kyllönen E, Kurttila-Matero E, et al. HRT and exercise: effects on bone density, muscle strength and lipid metabolism. A placebo controlled 2-year prospective tria on two estrogen-progestin regimens in healthy postmenopausal women. Maturitas 1997, 26: 139–49.

    Article  PubMed  CAS  Google Scholar 

  44. Skelton DA, Phillips SK, Bruce SA, Naylor CH, Woledge RC. Hormone replacement therapy increases isometric muscle strength of adductor pollicis in post-menopausa women. Clin Sci 1999, 96: 357–64.

    Article  PubMed  CAS  Google Scholar 

  45. Skelton DA, Young A, Greig CA, Malbut KE. Effects of resistance training on strength, power, and selected functional abilities of women aged 75 and older. J Am Geriatr Soc 1995, 43: 1081–7.

    PubMed  CAS  Google Scholar 

  46. Albertazzi P, Purdie DW. The life and time of the estrogen receptors: an interim report. Climacteric 2001, 4: 194–202.

    Article  PubMed  CAS  Google Scholar 

  47. Saartok T. Steroid receptor in two types of rabbit skeleta muscle. Int J Sports Med 1984, 5: 130–6.

    Article  PubMed  CAS  Google Scholar 

  48. Dahlberg E. Characterization of the cytosolic estrogen receptor in rat skeletal muscle. Biochim Biophys Acta 1982, 717: 65–75.

    Article  PubMed  CAS  Google Scholar 

  49. Dionne FT, Dube JY, Frenette G, Tremblay RR. Effects of endocrine manipulations on oestrogen binding in cytosols from rat skeletal and perineal muscle. J Endocrinol 1980, 85: 351–8.

    Article  PubMed  CAS  Google Scholar 

  50. Dube JY, Lesage R, Tremblay RR. Androgen and estrogen binding in rat skeletal and perineal muscle. Can J Biochem 1976, 54: 50–5.

    Article  PubMed  CAS  Google Scholar 

  51. Meyer HH, Rapp M. Estrogen receptor in bovine skeleta muscle. J Anim Sci 1985, 60: 294–300.

    PubMed  CAS  Google Scholar 

  52. Pfaffl MW, Lange IG, Daxenberger A, Meyer HHD. Tissue-specific expression pattern of estrogen receptors (ES): Quantification of ERα and ERβ mRNA with real-time RT-PCR. APMIS 2001, 109: 345–55.

    Article  PubMed  CAS  Google Scholar 

  53. Saartok T, Dahlberg E, Bylund P, Eriksson E, Gustafsson J-Å. Steroid hormone receptors, protein, and DNA in erector spinae muscle from scoliotic patients. Clin Orthop 1984, 197–207.

    Google Scholar 

  54. Rance NE, Max SR. Modulation of the cytosolic androgen receptor in striated muscle by sex steroids. Endocrinology 1984, 115: 862–6.

    Article  PubMed  CAS  Google Scholar 

  55. Puah JA, Bailey CJ. Effects of ovarian hormones on glucose metabolism in mouse soleus muscle. Endocrinology 1985, 117: 1336–40.

    Article  PubMed  CAS  Google Scholar 

  56. Joe I, Ramirez VD. Binding of estrogen and progesterone-BSA conjugates to glyseraldehyde-3-phosphate dehydrogenase (GAPDH) and the effects of the free steroids on GAPDH enzyme activity: physiological implications. Steroids 2001, 66: 529–38.

    Article  PubMed  CAS  Google Scholar 

  57. Dragovic T, Minhall R, Jackman HL, Wang L-X, Erdos EG. Kininase II-type enzymes: their putative role in muscle energy metabolism. Diabetes 1996, 45: S34–7.

    Article  PubMed  Google Scholar 

  58. Montgomery H, Clarkson P, Barnard M, et al. Angiotensin-converting-enzyme gene insertion/depletion polymorphism and response to physical training. Lancet 1999: 353: 541–5.

    Article  PubMed  CAS  Google Scholar 

  59. Woods D, Onambele G, Woledge R, et al. Angiotensin-I converting enzyme genotype-dependent benefit from hormone replacement therapy in isometric muscle strength and bone mineral density. J Clin Endocr Metab 2001, 86: 2200–4.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sipilä MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipilä, S. Body composition and muscle performance during menopause and hormone replacement therapy. J Endocrinol Invest 26, 893–901 (2003). https://doi.org/10.1007/BF03345241

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345241

Key-words

Navigation