Skip to main content

Advertisement

Log in

Reddish, scaly, and itchy: how proteases and their inhibitors contribute to inflammatory skin diseases

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

The skin protects us from water loss and mechanical damage. The surface-exposed epidermis, a self-renewing stratified squamous epithelium composed of several layers of keratinocytes, is most important in the barrier defense against these challenges. Endogenous and exogenous proteases such as kallikreins, matriptase, caspases, cathepsins, and proteases derived from microorganisms are important in the desquamation process of the stratum corneum and are able to activate and inactivate defense molecules in human epidermis. Protease inhibitors such as like LEKTI, elafin, SLPI, SERPINs, and cystatins regulate their proteolytic activity and contribute to the integrity and protective barrier function of the skin. Changes in the proteolytic balance of the skin can result in inflammation, which leads to the typical clinical signs of redness, scaling, and itching. This review summarizes the current knowledge of how proteases, their inhibitors, and their target proteins, including filaggrin, protease-activated receptors, and corneodesmosin, contribute to the pathophysiology of inflammation of the skin and highlight their role in common inflammatory skin diseases such as atopic dermatitis, rosacea, and psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alef T, Torres S, Hausser I et al (2009) Ichthyosis, follicular atrophoderma, and hypotrichosis caused by mutations in ST14 is associated with impaired profilaggrin processing. J Invest Dermatol 129: 862–869

    Article  PubMed  CAS  Google Scholar 

  • Basel-Vanagaite L, Attia R, Ishida-Yamamoto A et al (2007) Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. Am J Hum Genet 80: 467–477

    Article  PubMed  CAS  Google Scholar 

  • Bjorck L (1990) Proteinase inhibition, immunoglobulin-binding proteins and a novel antimicrobial principle. Mol Microbiol 4: 1439–1442

    Article  PubMed  CAS  Google Scholar 

  • Bobek LA, Levine MJ (1992) Cystatins – inhibitors of cysteine proteinases. Crit Rev Oral Biol Med 3: 307–332

    PubMed  CAS  Google Scholar 

  • Brattsand M, Stefansson K, Hubiche T et al (2009) SPINK9: a selective, skin-specific kazal-type serine protease inhibitor. J Invest Dermatol 129: 1656–1665

    Article  PubMed  CAS  Google Scholar 

  • Bugge TH, List K, Szabo R (2007) Matriptase-dependent cell surface proteolysis in epithelial development and pathogenesis. Front Biosci 12: 5060–5070

    Article  PubMed  CAS  Google Scholar 

  • Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6: 328–340

    Article  PubMed  CAS  Google Scholar 

  • Chavanas S, Bodemer C, Rochat A et al (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25: 141–142

    Article  PubMed  CAS  Google Scholar 

  • Cheng T, Hitomi K, Vlijmen-Willems IM et al (2006) Cystatin M/E is a high affinity inhibitor of cathepsin V and cathepsin L by a reactive site that is distinct from the legumain-binding site. A novel clue for the role of cystatin M/E in epidermal cornification. J Biol Chem 281: 15893–15899

    Article  PubMed  CAS  Google Scholar 

  • Dahlen JR, Foster DC, Kisiel W (1997a) Expression, purification, and inhibitory properties of human proteinase inhibitor 8. Biochemistry 36: 14874–14882

    Article  CAS  Google Scholar 

  • Dahlen JR, Foster DC, Kisiel W (1997b) Human proteinase inhibitor 9 (PI9) is a potent inhibitor of subtilisin A. Biochem Biophys Res Commun 238: 329–333

    Article  PubMed  CAS  Google Scholar 

  • Deleuran M, Ellingsen AR, Paludan K et al (1998) Purified Der p1 and p2 patch tests in patients with atopic dermatitis: evidence for both allergenicity and proteolytic irritancy. Acta Derm Venereol 78: 241–243

    Article  PubMed  CAS  Google Scholar 

  • Demerjian M, Hachem JP, Tschachler E et al (2008) Acute modulations in permeability barrier function regulate epidermal cornification: role of caspase-14 and the protease-activated receptor type 2. Am J Pathol 172: 86–97

    Article  PubMed  CAS  Google Scholar 

  • Denecker G, Hoste E, Gilbert B et al (2007) Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 9: 666–674

    Article  PubMed  CAS  Google Scholar 

  • Denecker G, Ovaere P, Vandenabeele P et al (2008) Caspase-14 reveals its secrets. J Cell Biol 180: 451–458

    Article  PubMed  CAS  Google Scholar 

  • Deraison C, Bonnart C, Lopez F et al (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 18: 3607–3619

    Article  PubMed  CAS  Google Scholar 

  • Descargues P, Deraison C, Bonnart C et al (2005) Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet 37: 56–65

    PubMed  CAS  Google Scholar 

  • Descargues P, Deraison C, Prost C et al (2006) Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin-and chymotrypsin-like hyperactivity in Netherton syndrome. J Invest Dermatol 126: 1622–1632

    Article  PubMed  CAS  Google Scholar 

  • Egberts F, Heinrich M, Jensen JM et al (2004) Cathepsin D is involved in the regulation of transglutaminase 1 and epidermal differentiation. J Cell Sci 117: 2295–2307

    Article  PubMed  CAS  Google Scholar 

  • Egelrud T (2000) Desquamation in the stratum corneum. Acta Derm Venereol Suppl 208: 44–45

    CAS  Google Scholar 

  • Egelrud T, Brattsand M, Kreutzmann P et al (2005) hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Br J Dermatol 153: 1200–1203

    Article  PubMed  CAS  Google Scholar 

  • Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5: 1317–1327

    Article  PubMed  CAS  Google Scholar 

  • Frick IM, Akesson P, Herwald H et al (2006) The contact system – a novel branch of innate immunity generating antibacterial peptides. EMBO J 25: 5569–5578

    Article  PubMed  CAS  Google Scholar 

  • Griffiths WA, Leigh IM, Judge MR et al (1998) Disorders of keratinization. In: Champion RH, Breathnach SM, Burns DA(eds) Textbook of Dermatology. Blackwell Science, Oxford, pp 1486–1588

    Google Scholar 

  • Hachem JP, Houben E, Crumrine D et al (2006a) Serine pro-tease signaling of epidermal ermeability barrier homeostasis. J Invest Dermatol 126: 2074–2086

    Article  PubMed  CAS  Google Scholar 

  • Hachem JP, Wagberg F, Schmuth M et al (2006) Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Invest Dermatol 126: 1609–1621

    Article  PubMed  CAS  Google Scholar 

  • Hansson L, Backman A, Ny A et al (2002) Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: a model for chronic itchy dermatitis. J Invest Dermatol 118: 444–449

    Article  PubMed  CAS  Google Scholar 

  • Hart TC, Hart PS, Bowden DW et al (1999) Mutations of the cathepsin C gene are responsible for Papillon-Lefevre syndrome. J Med Genet 36: 881–887

    PubMed  CAS  Google Scholar 

  • Hart TC, Hart PS, Michalec MD et al (2000) Haim-Munk syndrome and Papillon-Lefevre syndrome are allelic mutations in cathepsin C. J Med Genet 37: 88–94

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi T, Igarashi S, Uchiwa H et al (1999) Role of endogenous cathepsin D-like and chymotrypsin-like proteolysis in human epidermal desquamation. Br J Dermatol 141: 453–459

    Article  PubMed  CAS  Google Scholar 

  • Ishida-Yamamoto A, Deraison C, Bonnart C et al (2005) LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum. J Invest Dermatol 124: 360–366

    Article  PubMed  CAS  Google Scholar 

  • Ishida-Yamamoto A, Simon M, Kishibe M et al (2004) Epidermal lamellar granules transport different cargoes as distinct aggregates. J Invest Dermatol 122: 1137–1144

    Article  PubMed  Google Scholar 

  • Jeong SK, Kim HJ, Youm JK et al (2008) Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Invest Dermatol 128: 1930–1939

    Article  PubMed  CAS  Google Scholar 

  • Kaiserman D, Whisstock JC, Bird PI (2006) Mechanisms of serpin dysfunction in disease. Expert Rev Mol Med 8: 1–19

    Article  PubMed  Google Scholar 

  • Kalinin A, Marekov LN, Steinert PM (2001) Assembly of the epidermal cornified cell envelope. J Cell Sci 114: 3069–3070

    PubMed  CAS  Google Scholar 

  • Kato A, Fukai K, Oiso N et al (2003) Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br J Dermatol 148: 665–669

    Article  PubMed  CAS  Google Scholar 

  • Komatsu N, Saijoh K, Toyama T et al (2005) Multiple tissue kallikrein mRNA and protein expression in normal skin and skin diseases. Br J Dermatol 153: 274–281

    Article  PubMed  CAS  Google Scholar 

  • Komatsu N, Suga Y, Saijoh K et al (2006) Elevated human tissue kallikrein levels in the stratum corneum and serum of peeling skin syndrome-type B patients suggests an over-desquamation of corneocytes. J Invest Dermatol 126: 2338–2342

    Article  PubMed  CAS  Google Scholar 

  • Komatsu N, Takata M, Otsuki N et al (2003) Expression and localization of tissue kallikrein mRNAs in human epidermis and appendages. J Invest Dermatol 121: 542–549

    Article  PubMed  CAS  Google Scholar 

  • Komiyama T, Gron H, Pemberton PA et al (1996) Interaction of subtilisins with serpins. Protein Sci 5: 874–882

    Article  PubMed  CAS  Google Scholar 

  • Lai-Cheong JE, Arita K, McGrath JA (2007) Genetic diseases of junctions. J Invest Dermatol 127: 2713–2725

    Article  PubMed  CAS  Google Scholar 

  • List K, Currie B, Scharschmidt TC et al (2007) Autosomal ichthyosis with hypotrichosis syndrome displays low matriptase proteolytic activity and is phenocopied in ST14 hypomorphic mice. J Biol Chem 282: 36714–36723

    Article  PubMed  CAS  Google Scholar 

  • Lundwall A, Brattsand M (2008) Kallikrein-related peptidases. Cell Mol Life Sci 65: 2019–2038

    Article  PubMed  CAS  Google Scholar 

  • Magert HJ, Standker L, Kreutzmann P et al (1999) LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J Biol Chem 274: 21499–21502

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Hoffert U, Wichmann N, Schwichtenberg L et al (2003) Supernatants of Pseudomonas aeruginosa induce the Pseudomonas-specific antibiotic elafin in human keratinocytes. Exp Dermatol 12: 418–425

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Hoffert U, Wingertszahn J, Wiedow O (2004) Human leukocyte elastase induces keratinocyte proliferation by epidermal growth factor receptor activation. J Invest Dermatol 123: 338–345

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Hoffert U, Wu Z, Schröder JM (2009) Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor. PLoS ONE 4: e4372

    Article  PubMed  CAS  Google Scholar 

  • Mitsudo K, Jayakumar A, Henderson Y et al (2003) Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Biochemistry 42: 3874–3881

    Article  PubMed  CAS  Google Scholar 

  • Morar N, Willis-Owen SA, Moffatt MF (2006) The genetics of atopic dermatitis. J Allergy Clin Immunol 118: 24–34

    Article  PubMed  CAS  Google Scholar 

  • Munch J, Standker L, Adermann K et al (2007) Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 129: 263–275

    Article  PubMed  CAS  Google Scholar 

  • Nelson D, Potempa J, Kordula T et al (1999) Purification and characterization of a novel cysteine proteinase (periodontain) from Porphyromonas gingivalis. Evidence for a role in the inactivation of human alpha1-proteinase inhibitor. J Biol Chem 274: 12245–12251

    Article  PubMed  CAS  Google Scholar 

  • Netzel-Arnett S, Currie BM, Szabo R et al (2006) Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 281: 32941–32945

    Article  PubMed  CAS  Google Scholar 

  • Nishio Y, Noguchi E, Shibasaki M et al (2003) Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese. Genes Immun 4: 515–517

    Article  PubMed  CAS  Google Scholar 

  • Nordahl EA, Rydengard V, Nyberg P et al (2004) Activation of the complement system generates antibacterial peptides. Proc Natl Acad Sci USA 101: 16879–16884

    Article  PubMed  CAS  Google Scholar 

  • Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84: 579–621

    Article  PubMed  CAS  Google Scholar 

  • Palmer CN, Irvine AD, Terron-Kwiatkowski A et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38: 441–446

    Article  PubMed  CAS  Google Scholar 

  • Pham CT, Ivanovich JL, Raptis SZ et al (2004) Papillon-Lefevre syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. J Immunol 173: 7277–7281

    PubMed  CAS  Google Scholar 

  • Pham CT, Ley TJ (1999) Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci USA 96: 8627–8632

    Article  PubMed  CAS  Google Scholar 

  • Rao NV, Rao GV, Hoidal JR (1997) Human dipeptidyl-peptidase I. Gene characterization, localization, and expression. J Biol Chem 272: 10260–10265

    Article  PubMed  CAS  Google Scholar 

  • Rawlings AV, Harding CR (2004) Moisturization and skin barrier function. Dermatol Ther 17(suppl 1): 43–48

    Article  PubMed  Google Scholar 

  • Resing KA, Thulin C, Whiting K et al (1995) Characterization of profilaggrin endoproteinase 1. A regulated cytoplasmic endoproteinase of epidermis. J Biol Chem 270: 28193–28198

    Article  PubMed  CAS  Google Scholar 

  • Resing KA, Walsh KA, Dale BA (1984) Identification of two intermediates during processing of profilaggrin to filaggrin in neonatal mouse epidermis. J Cell Biol 99: 1372–1378

    Article  PubMed  CAS  Google Scholar 

  • Resing KA, Walsh KA, Haugen-Scofield J et al (1989) Identi-fication of proteolytic cleavage sites in the conversion of profilaggrin to filaggrin in mammalian epidermis. J Biol Chem 264: 1837–1845

    PubMed  CAS  Google Scholar 

  • Rogalski C, Meyer-Hoffert U, Proksch E et al (2002) Human leukocyte elastase induces keratinocyte proliferation in vitro and in vivo. J Invest Dermatol 118: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Sandilands A, O’Regan GM, Liao H et al (2006) Prevalent and rare mutations in the gene encoding filaggrin cause ichthyosis vulgaris and predispose individuals to atopic dermatitis. J Invest Dermatol 126: 1770–1775

    Article  PubMed  CAS  Google Scholar 

  • Schechter NM, Choi EJ, Wang ZM et al (2005) Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol Chem 386: 1173–1184

    Article  PubMed  CAS  Google Scholar 

  • Silverman GA, Bartuski AJ, Cataltepe S et al (1998) SCCA1 and SCCA2 are proteinase inhibitors that map to the serpin cluster at 18q21.3. Tumour Biol 19: 480–487

    Article  PubMed  CAS  Google Scholar 

  • Smith FJ, Irvine AD, Terron-Kwiatkowski A et al (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38: 337–342

    Article  PubMed  CAS  Google Scholar 

  • Sondell B, Thornell LE, Egelrud T (1995) Evidence that stratum corneum chymotryptic enzyme is transported to the stratum corneum extracellular space via lamellar bodies. J Invest Dermatol 104: 819–823

    Article  PubMed  CAS  Google Scholar 

  • Stefansson K, Brattsand M, Roosterman D et al (2008) Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases. J Invest Dermatol 128: 18–25

    Article  PubMed  CAS  Google Scholar 

  • Steinhoff M, Buddenkotte J, Shpacovitch V et al (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26: 1–43

    Article  PubMed  CAS  Google Scholar 

  • Stewart GA, Thompson PJ (1996) The biochemistry of common aeroallergens. Clin Exp Allergy 26: 1020–1044

    Article  PubMed  CAS  Google Scholar 

  • Toomes C, James J, Wood AJ et al (1999) Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat Genet 23: 421–424

    Article  PubMed  CAS  Google Scholar 

  • Turk V, Bode W (1991) The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285: 213–219

    Article  PubMed  CAS  Google Scholar 

  • Walley AJ, Chavanas S, Moffatt MF et al (2001) Gene polymorphism in Netherton and common atopic disease. Nat Genet 29: 175–178

    Article  PubMed  CAS  Google Scholar 

  • Walz M, Kellermann S, Bylaite M et al (2007) Expression of the human Cathepsin L inhibitor hurpin in mice: skin alterations and increased carcinogenesis. Exp Dermatol 16: 715–723

    Article  PubMed  CAS  Google Scholar 

  • Weidinger S, Baurecht H, Wagenpfeil S et al (2008) Analysis of the individual and aggregate genetic contributions of previously identified serine peptidase inhibitor Kazal type 5 (SPINK5), kallikrein-related peptidase 7 (KLK7), and filaggrin (FLG) polymorphisms to eczema risk. J Allergy Clin Immunol 122: 560–568

    Article  PubMed  CAS  Google Scholar 

  • Wiedow O, Harder J, Bartels J et al (1998) Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem Biophys Res Commun 248: 904–909

    Article  PubMed  CAS  Google Scholar 

  • Wiedow O, Luademann J, Utecht B (1991) Elafin is a potent inhibitor of proteinase 3. Biochem Biophys Res Commun 174: 6–10

    Article  PubMed  CAS  Google Scholar 

  • Wiedow O, Meyer-Hoffert U (2005) Neutrophil serine pro-teases: potential key regulators of cell signalling during inflammation. J Intern Med 257: 319–328

    PubMed  CAS  Google Scholar 

  • Wiedow O, Muhle K, Streit V et al (1996) Human eosinophils lack human leukocyte elastase. Biochim Biophys Acta 1315: 185–187

    PubMed  Google Scholar 

  • Wiedow O, Schröder JM, Gregory H et al (1990) Elafin: an elastase-specific inhibitor of human skin. Purification, characterization, and complete amino acid sequence. J Biol Chem 265: 14791–14795

    PubMed  CAS  Google Scholar 

  • Wiedow O, Wiese F, Christophers E (1995) Lesional elastase activity in psoriasis. Diagnostic and prognostic significance. Arch Dermatol Res 287: 632–635

    Article  PubMed  CAS  Google Scholar 

  • Wiedow O, Young JA, Davison MD et al (1993) Antileukoprotease in psoriatic scales. J Invest Dermatol 101: 305–309

    Article  PubMed  CAS  Google Scholar 

  • Winton HL, Wan H, Cannell MB et al (1998) Class specific inhibition of house dust mite proteinases which cleave cell adhesion, induce cell death and which increase the permeability of lung epithelium. Br J Pharmacol 124: 1048–1059

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Hansmann B, Meyer-Hoffert U et al (2009) Molecular identification and expression analysis of filaggrin-2, a member of the S100 fused-type protein family. Identification and characterization of filaggrin-2 – a novel member of the S100 fused-type protein family – in human skin. PLoS ONE 4: e5227

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Meyer-Hoffert U, Reithmayer K et al (2009) Highly complex peptide aggregates of the S100 fused-type protein hornerin are present in human skin. J Invest Dermatol 129: 1446–1458

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Di Nardo A, Bardan A et al (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13: 975–980

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Schauber J, Coda A et al (2006) Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20: 2068–2080

    Article  PubMed  CAS  Google Scholar 

  • Yasueda H, Mita H, Akiyama K et al (1993) Allergens from Dermatophagoides mites with chymotryptic activity. Clin Exp Allergy 23: 384–390

    Article  PubMed  CAS  Google Scholar 

  • Yousef GM, Diamandis EP (2001) The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 22: 184–204

    Article  PubMed  CAS  Google Scholar 

  • Zeeuwen PL, Vlijmen-Willems IM, Hendriks W et al (2002) A null mutation in the cystatin M/E gene of ichq mice causes juvenile lethality and defects in epidermal cornification. Hum Mol Genet 11: 2867–2875

    Article  PubMed  CAS  Google Scholar 

  • Zeeuwen PL, Vlijmen-Willems IM, Olthuis D et al (2004) Evidence that unrestricted legumain activity is involved in disturbed epidermal cornification in cystatin M/E deficient mice. Hum Mol Genet 13: 1069–1079

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Meyer-Hoffert MD, Ph.D..

About this article

Cite this article

Meyer-Hoffert, U. Reddish, scaly, and itchy: how proteases and their inhibitors contribute to inflammatory skin diseases. Arch. Immunol. Ther. Exp. 57, 345–354 (2009). https://doi.org/10.1007/s00005-009-0045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-009-0045-6

Keywords

Navigation