Skip to main content

Advertisement

Log in

Complement: coming full circle

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

An Erratum to this article was published on 10 April 2010

Abstract

The complement system has long been known to be a major element of innate immunity. Traditionally, it was regarded as the first line of defense against invading pathogens, leading to opsonization and phagocytosis or the direct lysis of microbes. However, from the second half of the twentieth century on, it became clear that complement is also intimately involved in the induction and “fine tuning” of adaptive B- and T-cell responses as well as lineage commitment. This growing recognition of the complement system’s multifunctional role in immunity is consistent with the recent paradigm that complement is also necessary for the successful contraction of an adaptive immune response. This review aims at giving a condensed overview of complement’s rise from a simple innate stop-and-go system to an essential and efficient participant in general immune homeostasis and acquired immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agnello V, De Bracco MM, Kunkel HG (1972) Hereditary C2 deficiency with some manifestations of systemic lupus erythematosus. J Immunol 108: 837–840

    CAS  PubMed  Google Scholar 

  • Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744–751

    CAS  PubMed  Google Scholar 

  • Alford SK, Longmore GD, Stenson WF et al (2008) CD46–induced immunomodulatory CD4+ T cells express the adhesion molecule and chemokine receptor pattern of intestinal T cells. J Immunol 181: 2544–2555

    CAS  PubMed  Google Scholar 

  • Al-Sharif WZ, Sunyer JO, Lambris JD et al (1998) Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol 160: 2983–2997

    CAS  PubMed  Google Scholar 

  • Astier AL, Meiffren G, Freeman S et al (2006) Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest 116: 3252–3257

    CAS  PubMed  Google Scholar 

  • Astier A, Trescol-Biemont MC, Azocar O et al (2000) Cutting edge: CD46, a new costimulatory molecule for T cells, that induces p120CBL and LAT phosphorylation. J Immunol 164: 6091–6095

    CAS  PubMed  Google Scholar 

  • Azumi K, De Santis R, De Tomaso A et al (2003) Genomic analysis of immunity in a Urochordate and the emergence of the vertebrate immune system: “waiting for Godot”. Immunogenetics 55: 570–581

    CAS  PubMed  Google Scholar 

  • Barrington RA, Pozdnyakova O, Zafari MR et al (2002) B lymphocyte memory: role of stromal cell complement and FcgammaRIIB receptors. J Exp Med 196: 1189–1199

    CAS  PubMed  Google Scholar 

  • Bernet J, Mullick J, Singh AK et al (2003) Viral mimicry of the complement system. J Biosci 28: 249–264

    CAS  PubMed  Google Scholar 

  • Bonifati DM, Kishore U (2007) Role of complement in neurodegeneration and neuroinflammation. Mol Immunol 44: 999–1010

    CAS  PubMed  Google Scholar 

  • Bordet J, Gengou O (1901) Sur l’existence de substances sensibilisatrices dans la plupart des serums antimicrobiens. Ann De l’Inst Pasteur 15: 289–303

    Google Scholar 

  • Botto M, Dell’Agnola C, Bygrave AE et al (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19: 56–59

    CAS  PubMed  Google Scholar 

  • Brown KM, Sacks SH, Sheerin NS (2007) Mechanisms of disease: the complement system in renal injury – new ways of looking at an old foe. Nat Clin Pract Nephrol 3: 277–286

    CAS  PubMed  Google Scholar 

  • Capasso M, Durrant LG, Stacey M et al (2006) Costimulation via CD55 on human CD4+ T cells mediated by CD97. J Immunol 177: 1070–1077

    CAS  PubMed  Google Scholar 

  • Carroll MC (2004) The complement system in B cell regulation. Mol Immunol 41: 141–146

    CAS  PubMed  Google Scholar 

  • Carroll MC (2004) The complement system in regulation of adaptive immunity. Nat Immunol 5: 981–986

    CAS  PubMed  Google Scholar 

  • Cattaneo R (2004) Four viruses, two bacteria, and one receptor: membrane cofactor protein (CD46) as pathogens’ magnet. J Virol 78: 4385–4388

    CAS  PubMed  Google Scholar 

  • Ciurana CL, Zwart B, van Mierlo G et al (2004) Complement activation by necrotic cells in normal plasma environment compares to that by late apoptotic cells and involves predominantly IgM. Eur J Immunol 34: 2609–2619

    CAS  PubMed  Google Scholar 

  • Davis AE 3rd (2005) The pathophysiology of hereditary angioedema. Clin Immunol 114: 3–9

    PubMed  Google Scholar 

  • Day NK, Geiger H, McLean R et al (1973) C2 deficiency. Development of lupus erythematosus. J Clin Invest 52: 1601–1607

    CAS  Google Scholar 

  • Dempsey PW, Allison ME, Akkaraju S et al (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271: 348–350

    CAS  PubMed  Google Scholar 

  • Diamond LE, Quinn CM, Martin MJ et al (2001) A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation 71: 132–142

    CAS  PubMed  Google Scholar 

  • Dishaw LJ, Smith SL, Bigger CH (2005) Characterization of a C3-like cDNA in a coral: phylogenetic implications. Immunogenetics 57: 535–548

    CAS  PubMed  Google Scholar 

  • Drouin SM, Corry DB, Kildsgaard J et al (2001) Cutting edge: the absence of C3 demonstrates a role for complement in Th2 effector functions in a murine model of pulmonary allergy. J Immunol 167: 4141–4145

    CAS  PubMed  Google Scholar 

  • Du Pasquier L, Litman GW (2000) Origin and evolution of the vertebrate immune system. Springer Edition, Berlin

    Google Scholar 

  • Ehrlich P (1960) The collected papers of Paul Ehrlich. In: Himmelweit F, Marquardt M, Dale H (eds) Histology, biochemistry and pathology 1956, immunology and cancer research 1957, chemotherapy 1960 Chapter. Pergamon Press, London Oxford-New York-Paris

  • Elward K, Griffiths M, Mizuno M et al (2005) CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J Biol Chem 280: 36342–36354

    CAS  PubMed  Google Scholar 

  • Fadok VA, Bratton DL, Konowal A et al (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101: 890–898

    CAS  PubMed  Google Scholar 

  • Fang C, Miwa T, Shen H et al (2007) Complement-dependent enhancement of CD8+ T cell immunity to lymphocytic choriomeningitis virus infection in decay-accelerating factor-deficient mice. J Immunol 179: 3178–3186

    CAS  PubMed  Google Scholar 

  • Fearon DT, Wong WW (1983) Complement ligand-receptor interactions that mediate biological responses. Annu Rev Immunol 1: 243–271

    CAS  PubMed  Google Scholar 

  • Fischer WH, Hugli TE (1997) Regulation of B cell functions by C3a and C3a(desArg): suppression of TNF-alpha, IL-6, and the polyclonal immune response. J Immunol 159: 4279–4286

    CAS  PubMed  Google Scholar 

  • Fishelson Z, Attali G, Mevorach D (2001) Complement and apoptosis. Mol Immunol 38: 207–219

    CAS  PubMed  Google Scholar 

  • Fleming SD, Shea-Donohue T, Guthridge JM et al (2002) Mice deficient in complement receptors 1 and 2 lack a tissue injury-inducing subset of the natural antibody repertoire. J Immunol 169: 2126–2133

    CAS  PubMed  Google Scholar 

  • Frade R (1999) Structure and functions of proteases which cleave human C3 and are expressed on normal or tumor human cells: some are involved in tumorigenic and metastatic properties of human melanoma cells. Immunopharmacology 42: 39–45

    CAS  PubMed  Google Scholar 

  • Fremeaux-Bacchi V, Dragon-Durey MA, Blouin J et al (2004) Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet 41: e84

    CAS  PubMed  Google Scholar 

  • Fremeaux-Bacchi V, Moulton EA, Kavanagh D et al (2006) Genetic and functional analyses of membrane cofactor protein (CD46) mutations in atypical hemolytic uremic syndrome. J Am Soc Nephrol 17: 2017–2025

    CAS  PubMed  Google Scholar 

  • Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8: 478–486

    CAS  PubMed  Google Scholar 

  • Gerard NP, Gerard C (2002) Complement in allergy and asthma. Curr Opin Immunol 14: 705–708

    CAS  PubMed  Google Scholar 

  • Ghannam A, Hammache D, Matias C (2008) High-density rafts preferentially host the complement activator measles virus F glycoprotein but not the regulators of complement activation. Mol Immunol 45: 3036–3044

    CAS  PubMed  Google Scholar 

  • Gorter A, Meri S (1999) Immune evasion of tumor cells using membrane-bound complement regulatory proteins. Immunol Today 20: 576–582

    CAS  PubMed  Google Scholar 

  • Grossman WJ, Ley TJ (2004) Granzymes A and B are not expressed in human neutrophils. Blood 104:906--907; author reply 907--908

    Google Scholar 

  • Grossman WJ, Verbsky JW, Barchet W et al (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21: 589–601

    CAS  PubMed  Google Scholar 

  • Guo RF, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23: 821–852

    CAS  PubMed  Google Scholar 

  • Hansch GM, Hammer CH, Vanguri P et al (1981) Homologous species restriction in lysis of erythrocytes by terminal complement proteins. Proc Natl Acad Sci USA 78: 5118–5121

    CAS  PubMed  Google Scholar 

  • Hara T, Matsumoto M, Tsuji S et al (1996) Homologous complement activation on drug-induced apoptotic cells from a human lung adenocarcinoma cell line. Immunobiology 196: 491–503

    PubMed  Google Scholar 

  • Hardy RR, Hayakawa K (2001) B cell development pathways. Annu Rev Immunol 19: 595–621

    CAS  PubMed  Google Scholar 

  • Hawlisch H, Belkaid Y, Baelder R et al (2005) C5a negatively regulates toll-like receptor 4-induced immune responses. Immunity 22: 415–426

    CAS  PubMed  Google Scholar 

  • Hawlisch H, Kohl J (2006) Complement and Toll-like receptors: key regulators of adaptive immune responses. Mol Immunol 43: 13–21

    CAS  PubMed  Google Scholar 

  • Heeger PS, Lalli PN, Lin F et al (2005) Decay-accelerating factor modulates induction of T cell immunity. J Exp Med 201: 1523–1530

    CAS  PubMed  Google Scholar 

  • Helmy KY, Katschke KJ Jr, Gorgani NN et al (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124: 915–927

    CAS  PubMed  Google Scholar 

  • Hill A, Richards SJ, Hillmen P (2007) Recent developments in the understanding and management of paroxysmal nocturnal haemoglobinuria. Br J Haematol 137: 181–192

    CAS  PubMed  Google Scholar 

  • Hiom K, Melek M, Gellert M (1998) DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94: 463–470

    CAS  PubMed  Google Scholar 

  • Holme ER, Veitch J, Johnston A et al (1989) Familial properdin deficiency associated with chronic discoid lupus erythematosus. Clin Exp Immunol 76: 76–81

    CAS  PubMed  Google Scholar 

  • Hourcade DE (2006) The role of properdin in the assembly of the alternative pathway C3 convertases of complement. J Biol Chem 281: 2128–2132

    CAS  PubMed  Google Scholar 

  • Jacquier-Sarlin MR, Gabert FM, Villiers MB et al (1995) Modulation of antigen processing and presentation by covalently linked complement C3b fragment. Immunology 84: 164–170

    CAS  PubMed  Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216

    CAS  PubMed  Google Scholar 

  • Janeway C, Murphy KP, Travers P et al (2008) Janeway’s immunobiology, 7th edn. Garland Science, New York, NY

    Google Scholar 

  • Jensen JA, Festa E, Smith DS et al (1981) The complement system of the nurse shark: hemolytic and comparative characteristics. Science 214: 566–569

    CAS  PubMed  Google Scholar 

  • Jones J, Morgan BP (1995) Apoptosis is associated with reduced expression of complement regulatory molecules, adhesion molecules and other receptors on polymorphonuclear leucocytes: functional relevance and role in inflammation. Immunology 86: 651–660

    CAS  PubMed  Google Scholar 

  • Kang YS, Do Y, Lee HK et al (2006) A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with C1q. Cell 125: 47–58

    CAS  PubMed  Google Scholar 

  • Karp CL, Grupe A, Schadt E et al (2000) Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol 1: 221–226

    CAS  PubMed  Google Scholar 

  • Karp CL, Wysocka M, Wahl LM et al (1996) Mechanism of suppression of cell-mediated immunity by measles virus. Science 273: 228–231

    CAS  PubMed  Google Scholar 

  • Kavanagh D, Richards A, Atkinson J (2008) Complement regulatory genes and hemolytic uremic syndromes. Annu Rev Med 59: 293–309

    CAS  PubMed  Google Scholar 

  • Kawano M, Tsunoda S, Koni I et al (1997) Decreased expression of 20-kD homologous restriction factor (HRF20, CD59) on T lymphocytes in Epstein-Barr virus (EBV)-induced infectious mononucleosis. Clin Exp Immunol 108: 260–265

    CAS  PubMed  Google Scholar 

  • Kemper C, Atkinson JP (2007) T-cell regulation: with complements from innate immunity. Nat Rev Immunol 7: 9–18

    CAS  PubMed  Google Scholar 

  • Kemper C, Chan AC, Green JM et al (2003) Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421: 388–392

    CAS  PubMed  Google Scholar 

  • Kemper C, Mitchell LM, Zhang L et al (2008) The complement protein properdin binds apoptotic T cells and promotes complement activation and phagocytosis. Proc Natl Acad Sci USA 105: 9023–9028

    CAS  PubMed  Google Scholar 

  • Kemper C, Verbsky JW, Price JD et al (2005) T-cell stimulation and regulation: with complements from CD46. Immunol Res 32: 31–43

    CAS  PubMed  Google Scholar 

  • Kerekes K, Cooper PD, Prechl J et al (2001) Adjuvant effect of gamma-inulin is mediated by C3 fragments deposited on antigen-presenting cells. J Leukoc Biol 69: 69–74

    CAS  PubMed  Google Scholar 

  • Kim AH, Dimitriou ID, Holland MC et al (2004) Complement C5a receptor is essential for the optimal generation of antiviral CD8+ T cell responses. J Immunol 173: 2524–2529

    CAS  PubMed  Google Scholar 

  • Kohl J, Baelder R, Lewkowich IP et al (2006) A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J Clin Invest 116: 783–796

    CAS  PubMed  Google Scholar 

  • Kopf M, Abel B, Gallimore A et al (2002) Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat Med 8: 373–378

    CAS  PubMed  Google Scholar 

  • Korb LC, Ahearn JM (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158: 4525–4528

    CAS  PubMed  Google Scholar 

  • Kuhn R, Lohler J, Rennick D et al (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75: 263–274

    CAS  PubMed  Google Scholar 

  • Kvell K, Cooper EL, Engelmann P et al (2007) Blurring borders: innate immunity with adaptive features. Clin Dev Immunol 2007: 83671

    CAS  PubMed  Google Scholar 

  • Lambris JD, Ricklin D, Geisbrecht BV (2008) Complement evasion by human pathogens. Nat Rev Microbiol 6: 132–142

    CAS  PubMed  Google Scholar 

  • Lewis MJ, Botto M (2006) Complement deficiencies in humans and animals: links to autoimmunity. Autoimmunity 39: 367–378

    CAS  PubMed  Google Scholar 

  • Li K, Anderson KJ, Peng Q et al (2008) Cyclic AMP plays a critical role in C3a-receptor-mediated regulation of dendritic cells in antigen uptake and T-cell stimulation. Blood 112: 5084–5094

    CAS  PubMed  Google Scholar 

  • Lin F, Kaminski HJ, Conti-Fine BM et al (2002) Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. J Clin Invest 110: 1269–1274

    CAS  PubMed  Google Scholar 

  • Lin F, Spencer D, Hatala DA et al (2004) Decay-accelerating factor deficiency increases susceptibility to dextran sulfate sodium-induced colitis: role for complement in inflammatory bowel disease. J Immunol 172: 3836–3841

    CAS  PubMed  Google Scholar 

  • Litman GW, Cannon JP, Dishaw LJ (2005) Reconstructing immune phylogeny: new perspectives. Nat Rev Immunol 5: 866–879

    CAS  PubMed  Google Scholar 

  • Liu J, Miwa T, Hilliard B et al (2005) The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J Exp Med 201: 567–577

    CAS  PubMed  Google Scholar 

  • Longhi MP, Harris CL, Morgan BP et al (2006) Holding T cells in check – a new role for complement regulators. Trends Immunol 27: 102–108

    CAS  PubMed  Google Scholar 

  • Longhi MP, Sivasankar B, Omidvar N et al (2005) Cutting edge: murine CD59a modulates antiviral CD4+ T cell activity in a complement-independent manner. J Immunol 175: 7098–7102

    CAS  PubMed  Google Scholar 

  • Loveland BE, Milland J, Kyriakou P et al (2004) Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non- -immunosuppressed baboons. Xenotransplantation 11: 171–183

    PubMed  Google Scholar 

  • Machado F, Esper L, Dias A et al (2008) Pathogen-driven CCR5-C5aR heterodimerization initiates a JNK2/JIP1-dependent signaling pathway that protects from Toxoplasma gondii infection. Mol Immumol 45: 4110

    Google Scholar 

  • Manderson AP, Botto M, Walport MJ (2004) The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 22: 431–456

    CAS  PubMed  Google Scholar 

  • Marie JC, Astier AL, Rivailler P et al (2002) Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 3: 659–666

    CAS  PubMed  Google Scholar 

  • Markiewski MM, DeAngelis RA, Benencia F et al (2008) Modulation of the antitumor immune response by complement. Nat Immunol 9: 1225–1235

    CAS  PubMed  Google Scholar 

  • Markiewski MM, Lambris JD (2007) The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 171: 715–727

    CAS  PubMed  Google Scholar 

  • Markiewski MM, Nilsson B, Ekdahl KN et al (2007) Complement and coagulation: strangers or partners in crime. Trends Immunol 28: 184–192

    CAS  PubMed  Google Scholar 

  • Marth T, Kelsall BL (1997) Regulation of interleukin-12 by complement receptor 3 signaling. J Exp Med 185: 1987–1995

    CAS  PubMed  Google Scholar 

  • Martinez-Forero I, Garcia-Munoz R, Martinez-Pasamar S et al (2008) IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis. Eur J Immunol 38: 576–586

    CAS  PubMed  Google Scholar 

  • Matsumoto AK, Martin DR, Carter RH et al (1993) Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J Exp Med 178: 1407–1417

    CAS  PubMed  Google Scholar 

  • Matsushita M, Endo Y, Fujita T (1998) MASP1 (MBL-associated serine protease 1). Immunobiology 199: 340–347

    CAS  PubMed  Google Scholar 

  • Matsushita M, Matsushita A, Endo Y et al (2004) Origin of the classical complement pathway: Lamprey orthologue of mammalian C1q acts as a lectin. Proc Natl Acad Sci USA 101: 10127–10131

    CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343: 338–344

    CAS  PubMed  Google Scholar 

  • Meri S, Pangburn MK (1994) Regulation of alternative pathway complement activation by glycosaminoglycans: specificity of the polyanion binding site on factor H. Biochem Biophys Res Commun 198: 52–59

    CAS  PubMed  Google Scholar 

  • Miller DJ, Hemmrich G, Ball EE et al (2007) The innate immune repertoire in cnidaria – ancestral complexity and stochastic gene loss. Genome Biol 8: R59

    PubMed  Google Scholar 

  • Morgan BP, Harris CL (1999) Complement Regulatory Proteins. Academic Press, London, UK

    Google Scholar 

  • Morgan BP, Marchbank KJ, Longhi MP et al (2005) Complement: central to innate immunity and bridging to adaptive responses. Immunol Lett 97: 171–179

    CAS  PubMed  Google Scholar 

  • Mullighan CG, Marshall SE, Welsh KI (2000) Mannose binding lectin polymorphisms are associated with early age of disease onset and autoimmunity in common variable immunodeficiency. Scand J Immunol 51: 111–122

    CAS  PubMed  Google Scholar 

  • Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6: 173–182

    CAS  PubMed  Google Scholar 

  • Nauta AJ, Raaschou-Jensen N, Roos A et al (2003) Mannose- -binding lectin engagement with late apoptotic and necrotic cells. Eur J Immunol 33: 2853–2863

    CAS  PubMed  Google Scholar 

  • Nauta AJ, Trouw LA, Daha MR et al (2002) Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol 32: 1726–1736

    CAS  PubMed  Google Scholar 

  • Nicholson-Weller A, Halperin JA (1993) Membrane signaling by complement C5b-9, the membrane attack complex. Immunol Res 12: 244–257

    CAS  PubMed  Google Scholar 

  • Niculescu F, Rus H (2001) Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells. Immunol Res 24: 191–199

    CAS  PubMed  Google Scholar 

  • Nonaka M, Kimura A (2006) Genomic view of the evolution of the complement system. Immunogenetics 58: 701–713

    CAS  PubMed  Google Scholar 

  • Nonaka M, Takahashi M, Sasaki M (1994) Molecular cloning of a lamprey homologue of the mammalian MHC class III gene, complement factor B. J Immunol 152: 2263–2269

    CAS  PubMed  Google Scholar 

  • Noris M, Brioschi S, Caprioli J et al (2003) Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 362: 1542–1547

    CAS  PubMed  Google Scholar 

  • Nussenzweig V, Bianco C, Dukor P et al (1971) Receptors for C3 on B lymphocytes: Possible Role in the Immune Response. Academic Press Edition, New York

    Google Scholar 

  • O’Garra A, Vieira P (2004) Regulatory T cells and mechanisms of immune system control. Nat Med 10: 801–805

    PubMed  Google Scholar 

  • Ogden CA, deCathelineau A, Hoffmann PR et al (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194: 781–795

    CAS  PubMed  Google Scholar 

  • Ohlenschlaeger T, Garred P, Madsen HO et al (2004) Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus. N Engl J Med 351: 260–267

    CAS  PubMed  Google Scholar 

  • Ottonello L, Corcione A, Tortolina G et al (1999) rC5a directs the in vitro migration of human memory and naive tonsillar B lymphocytes: implications for B cell trafficking in secondary lymphoid tissues. J Immunol 162: 6510–6517

    CAS  PubMed  Google Scholar 

  • Pangburn MK, Rawal N (2002) Structure and function of complement C5 convertase enzymes. Biochem Soc Trans 30: 1006–1010

    CAS  PubMed  Google Scholar 

  • Pappworth IY, Kulik L, Haluszczak C et al (2009) Increased B cell deletion and significantly reduced auto-antibody titre due to premature expression of human complement receptor 2 (CR2, CD21). Mol Immunol 46: 1042–1049

    CAS  PubMed  Google Scholar 

  • Pepys MB (1972) Role of complement in induction of the allergic response. Nat New Biol 237: 157–159

    CAS  PubMed  Google Scholar 

  • Pickering MC, Botto M, Taylor PR et al (2000) Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 76: 227–324

    CAS  PubMed  Google Scholar 

  • Pickering MC, Cook HT, Warren J et al (2002) Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet 31: 424–428

    CAS  PubMed  Google Scholar 

  • Potempa M, Potempa J, Kantyka T et al (2009) Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3. PLoS Pathog 5: e1000316

    PubMed  Google Scholar 

  • Pratt JR, Basheer SA, Sacks SH (2002) Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat Med 8: 582–587

    CAS  PubMed  Google Scholar 

  • Prodeus AP, Goerg S, Shen LM et al (1998) A critical role for complement in maintenance of self-tolerance. Immunity 9: 721–731

    CAS  PubMed  Google Scholar 

  • Reid RR, Woodcock S, Shimabukuro-Vornhagen A et al (2002) Functional activity of natural antibody is altered in Cr2- -deficient mice. J Immunol 169: 5433–5440

    CAS  PubMed  Google Scholar 

  • Richards A, Kemp EJ, Liszewski MK et al (2003) Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome. Proc Natl Acad Sci USA 100: 12966–12971

    CAS  PubMed  Google Scholar 

  • Ricklin D, Lambris JD (2007) Complement-targeted therapeutics. Nat Biotechnol 25: 1265–1275

    CAS  PubMed  Google Scholar 

  • Riley-Vargas RC, Gill DB, Kemper C et al (2004) CD46: expanding beyond complement regulation. Trends Immunol 25: 496–503

    CAS  PubMed  Google Scholar 

  • Rubtsov YP, Rasmussen JP, Chi EY et al (2008) Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28: 546–558

    CAS  PubMed  Google Scholar 

  • Rugonfalvi-Kiss S, Endresz V, Madsen HO et al (2002) Association of Chlamydia pneumoniae with coronary artery disease and its progression is dependent on the modifying effect of mannose-binding lectin. Circulation 106: 1071–1076

    CAS  PubMed  Google Scholar 

  • Rushmere NK, Tomlinson S, Morgan BP (1997) Expression of rat CD59: functional analysis confirms lack of species selectivity and reveals that glycosylation is not required for function. Immunology 90: 640–646

    CAS  PubMed  Google Scholar 

  • Sadlack B, Merz H, Schorle H et al (1993) Ulcerative colitis–like disease in mice with a disrupted interleukin-2 gene. Cell 75: 253–261

    CAS  PubMed  Google Scholar 

  • Sanchez A, Feito MJ, Rojo JM (2004) CD46-mediated costimulation induces a Th1-biased response and enhances early TCR/CD3 signaling in human CD4+ T lymphocytes. Eur J Immunol 34: 2439–2448

    CAS  PubMed  Google Scholar 

  • Savill J, Dransfield I, Gregory C et al (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2: 965–975

    CAS  PubMed  Google Scholar 

  • Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407: 784–788

    CAS  PubMed  Google Scholar 

  • Sjoholm AG, Jonsson G, Braconier JH et al (2006) Complement deficiency and disease: an update. Mol Immunol 43: 78–85

    CAS  PubMed  Google Scholar 

  • Smith LC, Shih CS, Dachenhausen SG (1998) Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system. J Immunol 161: 6784–6793

    CAS  PubMed  Google Scholar 

  • Soane L, Cho HJ, Niculescu F et al (2001) C5b-9 terminal complement complex protects oligodendrocytes from death by regulating Bad through phosphatidylinositol 3-kinase/Akt pathway. J Immunol 167: 2305–2311

    CAS  PubMed  Google Scholar 

  • Spahn TW, Kucharzik T (2004) Modulating the intestinal immune system: the role of lymphotoxin and GALT organs. Gut 53: 456–465

    CAS  PubMed  Google Scholar 

  • Spitzer D, Mitchell LM, Atkinson JP et al (2007) Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol 179: 2600–2608

    CAS  PubMed  Google Scholar 

  • Stager S, Alexander J, Kirby AC et al (2003) Natural antibodies and complement are endogenous adjuvants for vaccine- -induced CD8+ T-cell responses. Nat Med 9: 1287–1292

    PubMed  Google Scholar 

  • Strainic MG, Liu J, Huang D et al (2008) Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28: 425–435

    CAS  PubMed  Google Scholar 

  • Stuart LM, Takahashi K, Shi L et al (2005) Mannose-binding lectin-deficient mice display defective apoptotic cell clearance but no autoimmune phenotype. J Immunol 174: 3220–3226

    CAS  PubMed  Google Scholar 

  • Suresh M, Molina H, Salvato MS et al (2003) Complement component 3 is required for optimal expansion of CD8 T cells during a systemic viral infection. J Immunol 170: 788–794

    CAS  PubMed  Google Scholar 

  • Suzuki MM, Satoh N, Nonaka M (2002) C6-like and C3-like molecules from the cephalochordate, amphioxus, suggest a cytolytic complement system in invertebrates. J Mol Evol 54: 671–679

    CAS  PubMed  Google Scholar 

  • Takahashi M, Iwaki D, Matsushita A et al (2006) Cloning and characterization of mannose-binding lectin from lamprey (Agnathans). J Immunol 176: 4861–4868

    CAS  PubMed  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21: 335–376

    CAS  PubMed  Google Scholar 

  • Terado T, Okamura K, Ohta Y et al (2003) Molecular cloning of C4 gene and identification of the class III complement region in the shark MHC. J Immunol 171: 2461–2466

    CAS  PubMed  Google Scholar 

  • Thiel S (2007) Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol Immunol 44: 3875–3888

    CAS  PubMed  Google Scholar 

  • Tsujimura A, Shida K, Kitamura M et al (1998) Molecular cloning of a murine homologue of membrane cofactor protein (CD46): preferential expression in testicular germ cells. Biochem J 330(Pt 1): 163–168

    CAS  PubMed  Google Scholar 

  • Varela JC, Atkinson C, Woolson R et al (2008) Upregulated expression of complement inhibitory proteins on bladder cancer cells and anti-MUC1 antibody immune selection. Int J Cancer 123: 1357–1363

    CAS  PubMed  Google Scholar 

  • Verschoor A, Brockman MA, Gadjeva M et al (2003) Myeloid C3 determines induction of humoral responses to peripheral herpes simplex virus infection. J Immunol 171: 5363–5371

    CAS  PubMed  Google Scholar 

  • Volanakis JE, Frank MM (1998) The Human Complement System in Health and Disease. Marcel Dekker, Inc, New York

    Google Scholar 

  • Wagner C, Hansch GM (2006) Receptors for complement C3 on T-lymphocytes: relics of evolution or functional molecules. Mol Immunol 43: 22–30

    CAS  PubMed  Google Scholar 

  • Walport MJ (2001) Complement. First of two parts. N Engl J Med 344: 1058–1066

    CAS  Google Scholar 

  • Walport MJ (2001) Complement. Second of two parts. N Engl J Med 344: 1140–1144

    CAS  Google Scholar 

  • Warwicker P, Goodship TH, Donne RL et al (1998) Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int 53: 836–844

    CAS  PubMed  Google Scholar 

  • Warwicker P, Goodship TH, Goodship JA (1997) Three new polymorphisms in the human complement factor H gene and promoter region. Immunogenetics 46: 437–438

    CAS  PubMed  Google Scholar 

  • Wetsel RA (1995) Structure, function and cellular expression of complement anaphylatoxin receptors. Curr Opin Immunol 7: 48–53

    CAS  PubMed  Google Scholar 

  • Xu Y, Narayana SV, Volanakis JE (2001) Structural biology of the alternative pathway convertase. Immunol Rev 180: 123–135

    CAS  PubMed  Google Scholar 

  • Zhang X, Kimura Y, Fang C et al (2007) Regulation of Toll–like receptor-mediated inflammatory response by complement in vivo. Blood 110: 228–236

    CAS  PubMed  Google Scholar 

  • Zhou W, Patel H, Li K et al (2006) Macrophages from C3-deficient mice have impaired potency to stimulate alloreactive T cells. Blood 107: 2461–2469

    CAS  PubMed  Google Scholar 

  • Zhu Y, Thangamani S, Ho B et al (2005) The ancient origin of the complement system. EMBO J 24: 382–394

    CAS  PubMed  Google Scholar 

  • Zipfel PF, Wurzner R, Skerka C (2007) Complement evasion of pathogens: common strategies are shared by diverse organisms. Mol Immunol 44:3850–3857

    Google Scholar 

  • Zwart B, Ciurana C, Rensink I et al (2004) Complement activation by apoptotic cells occurs predominantly via IgM and is limited to late apoptotic (secondary necrotic) cells. Autoimmunity 37: 95–102

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Kemper Ph.D..

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00005-010-0078-x

About this article

Cite this article

Friec, G.L., Kemper, C. Complement: coming full circle. Arch. Immunol. Ther. Exp. 57, 393–407 (2009). https://doi.org/10.1007/s00005-009-0047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-009-0047-4

Keywords

Navigation