Skip to main content

Advertisement

Log in

Effects of the Histone Deacetylase Inhibitor, Trichostatin A, in a Chronic Allergic Airways Disease Model in Mice

  • Original Article
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

There is a need for new asthma therapies that can concurrently address airway remodeling, airway hyperresponsiveness and progressive irreversible loss of lung function, in addition to inhibiting inflammation. Histone deacetylase inhibitors (HDACi) alter gene expression by interfering with the removal of acetyl groups from histones. The HDACi trichostatin A (TSA) has pleiotropic effects targeting key pathological processes in asthma including inflammation, proliferation, angiogenesis and fibrosis. The aim was to evaluate the effects of TSA treatment in a mouse model of chronic allergic airways disease (AAD). Wild-type BALB/c mice with AAD were treated intraperitoneally with 5 mg/kg TSA or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid (BALF) cell counts and histological examination of lung tissue sections. Remodeling was assessed by morphometric analysis and airway hyperresponsiveness was assessed by invasive plethysmography. TSA-treated mice had a reduced number of total inflammatory cells and eosinophils within the BALF as compared to vehicle-treated mice (both p < 0.05). Furthermore, airway remodeling changes were significantly reduced with TSA compared to vehicle-treated mice, with fewer goblet cells (p < 0.05), less subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness at the highest methacholine dose. These findings demonstrate that treatment with an HDACi can concurrently reduce structural airway remodeling changes and airway hyperresponsiveness, in addition to attenuating airway inflammation in a chronic AAD model. This has important implications for the development of novel treatments for severe asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adcock IM, Tsaprouni L, Bhavsar P et al (2007) Epigenetic regulation of airway inflammation. Curr Opin Immunol 19:694–700

    Article  PubMed  CAS  Google Scholar 

  • Belleguic C, Corbel M, Germain N et al (2002) Increased release of matrix metalloproteinase-9 in the plasma of acute severe asthmatic patients. Clin Exp Allergy 32:217–223

    Article  PubMed  CAS  Google Scholar 

  • Chakir J, Laviolette M, Boutet M et al (1996) Lower airways remodeling in nonasthmatic subjects with allergic rhinitis. Lab Investig 75:735–744

    PubMed  CAS  Google Scholar 

  • Chetta A, Foresi A, Del Donno M et al (1997) Airways remodeling is a distinctive feature of asthma and is related to severity of disease. Chest 111:852–857

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Oh SW, Kang MS et al (2005) Trichostatin A attenuates airway inflammation in mouse asthma model. Clin Exp Allergy 35:89–96

    Article  PubMed  CAS  Google Scholar 

  • Corteling R, Trifilieff A (2004) Gender comparison in a murine model of allergen-driven airway inflammation and the response to budesonide treatment. BMC Pharmacol 4:4

    Article  PubMed  Google Scholar 

  • Covar RA, Spahn JD, Murphy JR et al (2004) Progression of asthma measured by lung function in the childhood asthma management program. Am J Respir Crit Care Med 170:234–241

    Article  PubMed  Google Scholar 

  • Dani C, Bonatto D, Salvador M et al (2008) Antioxidant protection of resveratrol and catechin in Saccharomyces cerevisiae. J Agric Food Chem 56:4268–4272

    Article  PubMed  CAS  Google Scholar 

  • Davies DE, Holgate ST (2002) Asthma: the importance of epithelial mesenchymal communication in pathogenesis. Inflammation and the airway epithelium in asthma. Int J Biochem Cell Biol 34:1520–1526

    Article  PubMed  CAS  Google Scholar 

  • Dombrowsky H, Barrenschee M, Kunze M et al (2009) Conserved responses to trichostatin A in rodent lungs exposed to endotoxin or stretch. Pulm Pharmacol Ther 22:593–602

    Article  PubMed  CAS  Google Scholar 

  • Donnelly LE, Newton R, Kennedy GE et al (2004) Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Physiol Lung Cell Mol Physiol 287:L774–L783

    Article  PubMed  CAS  Google Scholar 

  • el Assem SK, Peh KH, Wan BY et al (2008) Effects of a selection of histone deacetylase inhibitors on mast cell activation and airway and colonic smooth muscle contraction. Int Immunopharmacol 8:1793–1801

    Article  CAS  Google Scholar 

  • Fiscus LC, Van Herpen J, Steeber DA et al (2001) l-Selectin is required for the development of airway hyperresponsiveness but not airway inflammation in a murine model of asthma. J Allergy Clin Immunol 107:1019–1024

    Article  PubMed  CAS  Google Scholar 

  • Grabiec AM, Krausz S, de Jager W et al (2010) Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J Immunol 184:2718–2728

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Adachi Y, Hasegawa K et al (2003) Less sensitivity for late airway inflammation in males than females in BALB/c mice. Scand J Immunol 57:562–567

    Article  PubMed  CAS  Google Scholar 

  • Hemmatazad H, Rodrigues HM, Maurer B et al (2009) Histone deacetylase 7, a potential target for the antifibrotic treatment of systemic sclerosis. Arthritis Rheum 60:1519–1529

    Article  PubMed  Google Scholar 

  • Hong Z, Han Z, Xiao M et al (2009) Microarray study of mechanism of trichostatin A inducing apoptosis of Molt-4 cells. J Huazhong Univ Sci Technol Med Sci 29:445–450

    Article  PubMed  Google Scholar 

  • Hoshino M, Nakamura Y, Sim J et al (1998) Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. J Allergy Clin Immunol 102:783–788

    Article  PubMed  CAS  Google Scholar 

  • Huber LC, Distler JH, Moritz F et al (2007) Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum 56:2755–2764

    Article  PubMed  CAS  Google Scholar 

  • Kankaanranta H, Janka-Junttila M, Ilmarinen-Salo P et al (2010) Histone deacetylase inhibitors induce apoptosis in human eosinophils and neutrophils. J Inflamm 7:9

    Article  Google Scholar 

  • Keramidaris E, Merson TD, Steeber DA et al (2001) l-Selectin and intercellular adhesion molecule 1 mediate lymphocyte migration to the inflamed airway/lung during an allergic inflammatory response in an animal model of asthma. J Allergy Clin Immunol 107:734–738

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Lee KS, Park SJ et al (2010a) Involvement of sirtuin 1 in airway inflammation and hyperresponsiveness of allergic airway disease. J Allergy Clin Immunol 125:449–460

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Jung JA, Kim GD et al (2010b) The histone deacetylase inhibitor, trichostatin A, inhibits the development of 2,4-dinitrofluorobenzene-induced dermatitis in NC/Nga mice. Int Immunopharmacol 10:1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Knight D (2001) Epithelium-fibroblast interactions in response to airway inflammation. Immunol Cell Biol 79:160–164

    Article  PubMed  CAS  Google Scholar 

  • Langley B, Brochier C, Rivieccio MA (2009) Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke. Stroke 40:2899–2905

    Article  PubMed  CAS  Google Scholar 

  • Lekgabe ED, Royce SG, Hewitson TD et al (2006) The effects of relaxin and estrogen deficiency on collagen deposition and hypertrophy of nonreproductive organs. Endocrinology 147:5575–5583

    Article  PubMed  CAS  Google Scholar 

  • Leung DY, Szefler SJ (1998) New insights into steroid resistant asthma. Pediatr Allergy Immunol 9:3–12

    Article  PubMed  CAS  Google Scholar 

  • Locke NR, Royce SG, Wainewright JS et al (2007) Comparison of airway remodeling in acute, subacute, and chronic models of allergic airways disease. Am J Respir Cell Mol Biol 36:625–632

    Article  PubMed  CAS  Google Scholar 

  • Marks PA (2010) The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin Investig Drugs 19:1049–1066

    Article  PubMed  CAS  Google Scholar 

  • Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90

    Article  PubMed  CAS  Google Scholar 

  • Melgert BN, Postma DS, Kuipers I et al (2005) Female mice are more susceptible to the development of allergic airway inflammation than male mice. Clin Exp Allergy 35:1496–1503

    Article  PubMed  CAS  Google Scholar 

  • Michaelis M, Michaelis UR, Fleming I et al (2004) Valproic acid inhibits angiogenesis in vitro and in vivo. Mol Pharmacol 65:520–527

    Article  PubMed  CAS  Google Scholar 

  • Mookerjee I, Solly NR, Royce SG et al (2006) Endogenous relaxin regulates collagen deposition in an animal model of allergic airway disease. Endocrinology 147:754–761

    Article  PubMed  CAS  Google Scholar 

  • Ordonez CL, Khashayar R, Wong HH et al (2001) Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med 163:517–523

    PubMed  CAS  Google Scholar 

  • Phunek P, Roche WR, Turzikova J et al (1997) Eosinophilic inflammation in the bronchial mucosa of children with bronchial asthma. Eur Respir J 19:160s

    Google Scholar 

  • Place RF, Noonan EJ, Giardina C (2005) HDACs and the senescent phenotype of WI-38 cells. BMC Cell Biol 6:37

    Article  PubMed  Google Scholar 

  • Royce SG, Tang ML (2009) The effects of current therapies on airway remodeling in asthma and new possibilities for treatment and prevention. Curr Mol Pharmacol 2:169–181

    Article  PubMed  CAS  Google Scholar 

  • Royce SG, Miao YR, Lee M et al (2009) Relaxin reverses airway remodeling and airway dysfunction in allergic airways disease. Endocrinology 150:2692–2699

    Article  PubMed  CAS  Google Scholar 

  • Sambucetti LC, Fischer DD, Zabludoff S et al (1999) Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem 274:34940–34947

    Article  PubMed  CAS  Google Scholar 

  • Samuel CS, Zhao C, Bathgate RA et al (2003) Relaxin deficiency in mice is associated with an age-related progression of pulmonary fibrosis. FASEB J 17:121–123

    PubMed  CAS  Google Scholar 

  • Samuel CS, Royce SG, Burton MD et al (2007) Relaxin plays an important role in the regulation of airway structure and function. Endocrinology 148:4259–4266

    Article  PubMed  CAS  Google Scholar 

  • Samuel CS, Royce SG, Chen B et al (2009) Relaxin family peptide receptor-1 protects against airway fibrosis during homeostasis but not against fibrosis associated with chronic allergic airways disease. Endocrinology 150:1495–1502

    Article  PubMed  CAS  Google Scholar 

  • Sanders YY, Tollefsbol TO, Varisco BM et al (2011) Epigenetic regulation of Thy-1 by histone deacetylase inhibitor in rat lung fibroblasts. Am J Respir Cell Mol Biol 45:16–23

    Article  PubMed  CAS  Google Scholar 

  • Shankar S, Srivastava RK (2008) Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. Adv Exp Med Biol 615:261–298

    Article  PubMed  CAS  Google Scholar 

  • Tang ML, Wilson JW, Stewart AG et al (2006) Airway remodelling in asthma: current understanding and implications for future therapies. Pharmacol Ther 112:474–488

    Article  PubMed  CAS  Google Scholar 

  • Temelkovski J, Hogan SP, Shepherd DP et al (1998) An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax 53:849–856

    Article  PubMed  CAS  Google Scholar 

  • Vanhaecke T, Papeleu P, Elaut G et al (2004) Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. Curr Med Chem 11:1629–1643

    PubMed  CAS  Google Scholar 

  • Wang L, Tao R, Hancock WW (2009) Using histone deacetylase inhibitors to enhance Foxp3(+) regulatory T-cell function and induce allograft tolerance. Immunol Cell Biol 87:195–202

    Article  PubMed  CAS  Google Scholar 

  • Ward C, Walters H (2005) Airway wall remodelling: the influence of corticosteroids. Curr Opin Allergy Clin Immunol 5:43–48

    Article  PubMed  CAS  Google Scholar 

  • Warner JO, Pohunek P, Marguet C et al (2000) Progression from allergic sensitization to asthma. Pediatr Allergy Immunol 11(Suppl 13):12–14

    Article  PubMed  Google Scholar 

  • Westergren-Thorsson G, Larsen K, Nihlberg K et al (2010) Pathological airway remodelling in inflammation. Clin Respir J 4(Suppl 1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP, Kurumizaka H (1998) The nucleosome: a powerful regulator of transcription. Prog Nucleic Acid Res Mol Biol 61:379–422

    Article  PubMed  CAS  Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhang ZY, Fauser U et al (2008) Valproic acid attenuates inflammation in experimental autoimmune neuritis. Cell Mol Life Sci 65:4055–4065

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Studies were funded by Australian National Health and Medical Research Council (NHMRC) project grants (546428 and 566559) and a Murdoch Children’s Research Institute Infection, Environment and Immunity Grant.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon G. Royce.

About this article

Cite this article

Royce, S.G., Dang, W., Yuan, G. et al. Effects of the Histone Deacetylase Inhibitor, Trichostatin A, in a Chronic Allergic Airways Disease Model in Mice. Arch. Immunol. Ther. Exp. 60, 295–306 (2012). https://doi.org/10.1007/s00005-012-0180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-012-0180-3

Keywords

Navigation