Skip to main content

Advertisement

Log in

The Classification of Microglial Activation Phenotypes on Neurodegeneration and Regeneration in Alzheimer’s Disease Brain

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive decline of cognitive function. There is no therapy that can halt or reverse its progression. Contemporary research suggests that age-dependent neuroinflammatory changes may play a significant role in the decreased neurogenesis and cognitive impairments in AD. The innate immune response is characterized by pro-inflammatory (M1) activation of macrophages and subsequent production of specific cytokines, chemokines, and reactive intermediates, followed by resolution and alternative activation for anti-inflammatory signaling (M2a) and wound healing (M2c). We propose that microglial activation phenotypes are analogous to those of macrophages and that their activation plays a significant role in regulating neurogenesis in the brain. Microglia undergo a switch from an M2- to an M1-skewed activation phenotype during aging. This review will assess the neuroimmunological studies that led to characterization of the different microglial activation states in AD mouse models. It will also discuss the roles of microglial activation on neurogenesis in AD and propose anti-inflammatory molecules as exciting therapeutic targets for research. Molecules such as interleukin-4 and CD200 have proven to be important anti-inflammatory mediators in the regulation of neuroinflammation in the brain, which will be discussed in detail for their therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid β-peptide

AD:

Alzheimer’s disease

AICD:

APP intracellular domain

APP:

Amyloid precursor protein

ARG1:

Arginase 1

ATP:

Adenosine triphosphate

CD200:

Cluster of differentiation 200 (aka OX2)

CNS:

Central nervous system

Dok:

Downstream of tyrosine kinase

Erk:

Extracellular signal-regulated kinase

EAE:

Experimental autoimmune encephalomyelitis

EAU:

Experimental autoimmune uveoretinitis

FGF-2:

Fibroblast growth factor-2

HPA:

Hypothalamo-pituitary-adrenal

IGF-1:

Insulin-like growth factor-1

IgSF:

Immunoglobulin superfamily

IFN-γ:

Interferon-γ

IL:

Interleukin

ITIM:

Immunotyrosine-based inhibitory motif

JNK:

c-Jun N-terminal kinase

LPS:

Lipopolysaccharide

LTP:

Long-term potentiation

MAPK:

Mitogen-activated protein kinase

MDP:

Muramyl dipeptide

MS:

Multiple sclerosis

NFT:

Neurofibrillary tangle

NLR:

NOD-like receptor

NOD:

Nucleotide oligomerization domain

NOS:

Nitric oxide synthase

NPC:

Neural progenitor cell

NSAID:

Non-steroidal anti-inflammatory drug

NSC:

Neural stem cell

PAMP:

Pathogen-associated molecular pattern

PRR:

Pathogen recognition receptor

PS:

Presenilin

RasGAP:

RAS p21 protein activator 1

SGZ:

Subgranular zone

SH2:

Src homology 2

SVZ:

Subventricular zone

TGF-β:

Transforming growth factor-β

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

YM1:

Chitinase 3-like 3

References

  • Abbas N, Bednar I, Mix E et al (2002) Up-regulation of the inflammatory cytokines IFN-gamma and IL-12 and down-regulation of IL-4 in cerebral cortex regions of APP(SWE) transgenic mice. J Neuroimmunol 126:50–57

    Article  PubMed  CAS  Google Scholar 

  • Aizenstein HJ, Nebes RD, Saxton JA et al (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65:1509–1517

    Article  PubMed  Google Scholar 

  • Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  PubMed  CAS  Google Scholar 

  • Alzheimer A, Stelzmann RA, Schnitzlein HN et al (1995) An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 8:429–431

    Article  PubMed  CAS  Google Scholar 

  • Apelt J, Schliebs R (2001) Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Res 894:21–30

    Article  PubMed  CAS  Google Scholar 

  • Baek SH, Ohgi KA, Rose DW et al (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-κB and beta-amyloid precursor protein. Cell 110:55–67

    Article  PubMed  CAS  Google Scholar 

  • Bailey SL, Carpentier PA, McMahon EJ et al (2006) Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 26:149–188

    PubMed  CAS  Google Scholar 

  • Baker BJ, Akhtar LN, Benveniste EN (2009) SOCS1 and SOCS3 in the control of CNS immunity. Trends Immunol 30:392–400

    Article  PubMed  CAS  Google Scholar 

  • Banerjee D, Dick AD (2004) Blocking CD200–CD200 receptor axis augments NOS-2 expression and aggravates experimental autoimmune uveoretinitis in Lewis rats. Ocul Immunol Inflamm 12:115–125

    Article  PubMed  CAS  Google Scholar 

  • Barclay AN (1981) Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy-1 and MRC OX 2 antigens. Immunology 44:727–736

    PubMed  CAS  Google Scholar 

  • Bastos GN, Moriya T, Inui F et al (2008) Involvement of cyclooxygenase-2 in lipopolysaccharide-induced impairment of the newborn cell survival in the adult mouse dentate gyrus. Neuroscience 155:454–462

    Article  PubMed  CAS  Google Scholar 

  • Bauer J, Strauss S, Schreiter-Gasser U et al (1991) Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer’s disease cortices. FEBS Lett 285:111–114

    Article  PubMed  CAS  Google Scholar 

  • Bauer J, Ganter U, Strauss S et al (1992) The participation of interleukin-6 in the pathogenesis of Alzheimer’s disease. Res Immunol 143:650–657

    Article  PubMed  CAS  Google Scholar 

  • Behrens MM, Ali SS, Dugan LL (2008) Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci 28:13957–13966

    Article  PubMed  CAS  Google Scholar 

  • Bennett DA, Schneider JA, Arvanitakis Z et al (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66:1837–1844

    Article  PubMed  CAS  Google Scholar 

  • Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    PubMed  CAS  Google Scholar 

  • Benzing WC, Wujek JR, Ward EK et al (1999) Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging 20:581–589

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BW, Bamburg JR (2003) Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci 23:1–6

    PubMed  CAS  Google Scholar 

  • Bird TD (2008) Genetic aspects of Alzheimer disease. Genet Med 10:231–239

    Article  PubMed  CAS  Google Scholar 

  • Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535

    Article  PubMed  CAS  Google Scholar 

  • Boekhoorn K, Joels M, Lucassen PJ (2006) Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis 24:1–14

    Article  PubMed  CAS  Google Scholar 

  • Boudakov I, Liu J, Fan N et al (2007) Mice lacking CD200R1 show absence of suppression of lipopolysaccharide-induced tumor necrosis factor-alpha and mixed leukocyte culture responses by CD200. Transplantation 84:251–257

    Article  PubMed  CAS  Google Scholar 

  • Broderick C, Hoek RM, Forrester JV et al (2002) Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol 161:1669–1677

    Article  PubMed  CAS  Google Scholar 

  • Brown GC (2007) Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans 35(Pt 5):1119–1121

    PubMed  CAS  Google Scholar 

  • Bruck A, Kurki T, Kaasinen V et al (2004) Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson’s disease is related to cognitive impairment. J Neurol Neurosurg Psychiatry 75:1467–1469

    Article  PubMed  CAS  Google Scholar 

  • Bruel-Jungerman E, Rampon C, Laroche S (2007) Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev Neurosci 18:93–114

    Article  PubMed  CAS  Google Scholar 

  • Bsibsi M, Ravid R, Gveric D et al (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021

    PubMed  CAS  Google Scholar 

  • Burton MD, Sparkman NL, Johnson RW (2011) Inhibition of interleukin-6 trans-signaling in the brain facilitates recovery from lipopolysaccharide-induced sickness behavior. J Neuroinflammation 8:54

    Article  PubMed  CAS  Google Scholar 

  • Butovsky O, Talpalar AE, Ben-Yaakov K et al (2005) Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 29:381–393

    Article  PubMed  CAS  Google Scholar 

  • Butovsky O, Koronyo-Hamaoui M, Kunis G et al (2006a) Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci USA 103:11784–11789

    Article  PubMed  CAS  Google Scholar 

  • Butovsky O, Ziv Y, Schwartz A et al (2006b) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31:149–160

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Sudhof TC (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293:115–120

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Sudhof TC (2004) Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem 279:24601–24611

    Article  PubMed  CAS  Google Scholar 

  • Carpentier PA, Palmer TD (2009) Immune influence on adult neural stem cell regulation and function. Neuron 64:79–92

    Article  PubMed  CAS  Google Scholar 

  • Chandler S, Coates R, Gearing A et al (1995) Matrix metalloproteinases degrade myelin basic protein. Neurosci Lett 201:223–226

    Article  PubMed  CAS  Google Scholar 

  • Chauhan VS, Sterka DG Jr, Furr SR et al (2009) NOD2 plays an important role in the inflammatory responses of microglia and astrocytes to bacterial CNS pathogens. Glia 57:414–423

    Article  PubMed  Google Scholar 

  • Chen DX, Gorczynski RM (2005) Discrete monoclonal antibodies define functionally important epitopes in the CD200 molecule responsible for immunosuppression function. Transplantation 79:282–288

    Article  PubMed  CAS  Google Scholar 

  • Chitnis T, Imitola J, Wang Y et al (2007) Elevated neuronal expression of CD200 protects Wlds mice from inflammation-mediated neurodegeneration. Am J Pathol 170:1695–1712

    Article  PubMed  CAS  Google Scholar 

  • Choi SH, Veeraraghavalu K, Lazarov O et al (2008) Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation. Neuron 59:568–580

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Oltersdorf T, Haass C et al (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360:672–674

    Article  PubMed  CAS  Google Scholar 

  • Clark MJ, Gagnon J, Williams AF et al (1985) MRC OX-2 antigen: a lymphoid/neuronal membrane glycoprotein with a structure like a single immunoglobulin light chain. EMBO J 4:113–118

    PubMed  CAS  Google Scholar 

  • Cole GM, Frautschy SA (2010) Mechanisms of action of non-steroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease. CNS Neurol Disord: Drug Targets 9:140–148

    CAS  Google Scholar 

  • Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418

    Article  PubMed  Google Scholar 

  • Colton CA, Mott RT, Sharpe H et al (2006a) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 3:27

    Article  PubMed  CAS  Google Scholar 

  • Colton CA, Vitek MP, Wink DA et al (2006b) NO synthase 2 (NOS2) deletion promotes multiple pathologies in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 103:12867–12872

    Article  PubMed  CAS  Google Scholar 

  • Colton CA, Wilcock DM, Wink DA et al (2008) The effects of NOS2 gene deletion on mice expressing mutated human AβPP. J Alzheimers Dis 15:571–587

    PubMed  CAS  Google Scholar 

  • Copland DA, Calder CJ, Raveney BJ et al (2007) Monoclonal antibody-mediated CD200 receptor signaling suppresses macrophage activation and tissue damage in experimental autoimmune uveoretinitis. Am J Pathol 171:580–588

    Article  PubMed  CAS  Google Scholar 

  • Costello DA, Lyons A, Browne T et al (2011) Long-term potentiation is impaired in CD200-deficient mice: a role for Toll-like receptor activation. J Biol Chem 286:34722–34732

    Article  PubMed  CAS  Google Scholar 

  • David JR (1975) Macrophage activation induced by lymphocyte mediators. Acta Endocrinol Suppl 194:245–261

    CAS  Google Scholar 

  • Davies CA, Mann DM, Sumpter PQ et al (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78:151–164

    Article  PubMed  CAS  Google Scholar 

  • Dayer AG, Cleaver KM, Abouantoun T et al (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168:415–427

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Saxe MD, Gallina IS et al (2009) Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci 29:13532–13542

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350

    Article  PubMed  CAS  Google Scholar 

  • Dickson DW, Farlo J, Davies P et al (1988) Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am J Pathol 132:86–101

    PubMed  CAS  Google Scholar 

  • Duan X, Kang E, Liu CY et al (2008) Development of neural stem cell in the adult brain. Curr Opin Neurobiol 18:108–115

    Article  PubMed  CAS  Google Scholar 

  • Edison P, Archer HA, Gerhard A et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32:412–419

    Article  PubMed  CAS  Google Scholar 

  • Ekdahl CT, Claasen JH, Bonde S et al (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 100:13632–13637

    Article  PubMed  CAS  Google Scholar 

  • Elenkov IJ, Chrousos GP (2002) Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann NY Acad Sci 966:290–303

    Article  PubMed  CAS  Google Scholar 

  • Emsley JG, Mitchell BD, Kempermann G et al (2005) Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 75:321–341

    Article  PubMed  CAS  Google Scholar 

  • Esch FS, Keim PS, Beattie EC et al (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248:1122–1124

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo C, Pais TF, Gomes JR et al (2008) Neuron–microglia crosstalk up-regulates neuronal FGF-2 expression which mediates neuroprotection against excitotoxicity via JNK1/2. J Neurochem 107:73–85

    Article  PubMed  CAS  Google Scholar 

  • Fillit H, Ding WH, Buee L et al (1991) Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci Lett 129:318–320

    Article  PubMed  CAS  Google Scholar 

  • Firuzi O, Pratico D (2006) Coxibs and Alzheimer’s disease: should they stay or should they go? Ann Neurol 59:219–228

    Article  PubMed  CAS  Google Scholar 

  • Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    Article  PubMed  CAS  Google Scholar 

  • Gabryelewicz T, Styczynska M, Luczywek E et al (2007) The rate of conversion of mild cognitive impairment to dementia: predictive role of depression. Int J Geriatr Psychiatry 22:563–567

    Article  PubMed  CAS  Google Scholar 

  • Gomi M, Aoki T, Takagi Y et al (2011) Single and local blockade of interleukin-6 signaling promotes neuronal differentiation from transplanted embryonic stem cell-derived neural precursor cells. J Neurosci Res 89:1388–1399

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  • Gutowicz M (2011) The influence of reactive oxygen species on the central nervous system. Postepy Hig Med Dosw 65:104–113

    Google Scholar 

  • Gutteridge JM, Halliwell B (1989) Iron toxicity and oxygen radicals. Baillieres Clin Haematol 2:195–256

    Article  PubMed  CAS  Google Scholar 

  • Haass C, De Strooper B (1999) The presenilins in Alzheimer’s disease—proteolysis holds the key. Science 286:916–919

    Article  PubMed  CAS  Google Scholar 

  • Haga S, Akai K, Ishii T (1989) Demonstration of microglial cells in and around senile (neuritic) plaques in the Alzheimer brain. An immunohistochemical study using a novel monoclonal antibody. Acta Neuropathol 77:569–575

    Article  PubMed  CAS  Google Scholar 

  • Haigis MC, Yankner BA (2010) The aging stress response. Mol Cell 40:333–344

    Article  PubMed  CAS  Google Scholar 

  • Hara H, Mouri A, Yonemitsu Y et al (2011) Mucosal immunotherapy in an Alzheimer mouse model by recombinant Sendai virus vector carrying Aβ1-43/IL-10 cDNA. Vaccine 29:7474–7482

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  • Hatherley D, Barclay AN (2004) The CD200 and CD200 receptor cell surface proteins interact through their N-terminal immunoglobulin-like domains. Eur J Immunol 34:1688–1694

    Article  PubMed  CAS  Google Scholar 

  • Haughey NJ, Nath A, Chan SL et al (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83:1509–1524

    Article  PubMed  CAS  Google Scholar 

  • Hawkes C (2006) Olfaction in neurodegenerative disorder. Adv Otorhinolaryngol 63:133–151

    PubMed  Google Scholar 

  • He P, Zhong Z, Lindholm K et al (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178:829–841

    Article  PubMed  CAS  Google Scholar 

  • Hein AM, Stasko MR, Matousek SB et al (2010) Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav Immun 24:243–253

    Article  PubMed  CAS  Google Scholar 

  • Heinrich PC, Behrmann I, Muller-Newen G et al (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334(Pt 2):297–314

    PubMed  CAS  Google Scholar 

  • Hoehn BD, Palmer TD, Steinberg GK (2005) Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke 36:2718–2724

    Article  PubMed  CAS  Google Scholar 

  • Hoek RM, Ruuls SR, Murphy CA et al (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771

    Article  PubMed  CAS  Google Scholar 

  • Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223

    Article  PubMed  CAS  Google Scholar 

  • Hoozemans JJ, Veerhuis R, Rozemuller JM et al (2006) Neuroinflammation and regeneration in the early stages of Alzheimer’s disease pathology. Int J Dev Neurosci 24:157–165

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K, Alonso AC, Gong CX et al (1998) Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J Neural Transm Suppl 53:169–180

    PubMed  CAS  Google Scholar 

  • Ishii T, Haga S (1992) Complements, microglial cells and amyloid fibril formation. Res Immunol 143:614–616

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo T, Mann DM, Odaka A et al (1995) Amyloid beta protein (Aβ) deposition: a beta 42(43) precedes A beta 40 in Down syndrome. Ann Neurol 37:294–299

    Article  PubMed  CAS  Google Scholar 

  • Jakubs K, Bonde S, Iosif RE et al (2008) Inflammation regulates functional integration of neurons born in adult brain. J Neurosci 28:12477–12488

    Article  PubMed  CAS  Google Scholar 

  • Janelsins MC, Mastrangelo MA, Oddo S et al (2005) Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2:23

    Article  PubMed  CAS  Google Scholar 

  • Janelsins MC, Mastrangelo MA, Park KM et al (2008) Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTg-AD mice. Am J Pathol 173:1768–1782

    Article  PubMed  CAS  Google Scholar 

  • Jankowsky JL, Fadale DJ, Anderson J et al (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13:159–170

    Article  PubMed  CAS  Google Scholar 

  • Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32:4693–4697

    Article  PubMed  CAS  Google Scholar 

  • Jimenez S, Baglietto-Vargas D, Caballero C et al (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Peel AL, Mao XO et al (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 101:343–347

    Article  PubMed  CAS  Google Scholar 

  • Jin JJ, Kim HD, Maxwell JA et al (2008) Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 5:23

    Article  PubMed  CAS  Google Scholar 

  • Kadir A, Marutle A, Gonzalez D et al (2011) Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer’s disease. Brain 134(Pt 1):301–317

    Article  PubMed  Google Scholar 

  • Kimberly WT, LaVoie MJ, Ostaszewski BL et al (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 100:6382–6387

    Article  PubMed  CAS  Google Scholar 

  • Kish SJ, Bergeron C, Rajput A et al (1992) Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem 59:776–779

    Article  PubMed  CAS  Google Scholar 

  • Kiyota T, Yamamoto M, Schroder B et al (2009a) AAV1/2-mediated CNS gene delivery of dominant-negative CCL2 mutant suppresses gliosis, beta-amyloidosis, and learning impairment of APP/PS1 mice. Mol Ther 17:803–809

    Article  PubMed  CAS  Google Scholar 

  • Kiyota T, Yamamoto M, Xiong H et al (2009b) CCL2 accelerates microglia-mediated Aβ oligomer formation and progression of neurocognitive dysfunction. PLoS ONE 4:e6197

    Article  PubMed  CAS  Google Scholar 

  • Kiyota T, Okuyama S, Swan RJ et al (2010) CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP + PS1 bigenic mice. FASEB J 24:3093–3102

    Article  PubMed  CAS  Google Scholar 

  • Kiyota T, Ingraham KL, Swan RJ et al (2011) AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP + PS1 mice. Gene Ther. doi:10.1038/gt.2011.126

    PubMed  Google Scholar 

  • Koning N, van Eijk M, Pouwels W et al (2010) Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J Innate Immun 2:195–200

    Article  PubMed  CAS  Google Scholar 

  • Kopan R, Schroeter EH, Weintraub H et al (1996) Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci USA 93:1683–1688

    Article  PubMed  CAS  Google Scholar 

  • Kopydlowski KM, Salkowski CA, Cody MJ et al (1999) Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J Immunol 163:1537–1544

    PubMed  CAS  Google Scholar 

  • Kretz-Rommel A, Qin F, Dakappagari N et al (2007) CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol 178:5595–5605

    PubMed  CAS  Google Scholar 

  • Kummer MP, Hermes M, Delekarte A et al (2011) Nitration of tyrosine 10 critically enhances amyloid beta aggregation and plaque formation. Neuron 71:833–844

    Article  PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  PubMed  CAS  Google Scholar 

  • Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25:294–297

    Article  PubMed  CAS  Google Scholar 

  • Leissring MA, Murphy MP, Mead TR et al (2002) A physiologic signaling role for the gamma-secretase-derived intracellular fragment of APP. Proc Natl Acad Sci USA 99:4697–4702

    Article  PubMed  CAS  Google Scholar 

  • Lemere CA, Blusztajn JK, Yamaguchi H et al (1996) Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 3:16–32

    Article  PubMed  CAS  Google Scholar 

  • Levy-Lahad E, Wasco W, Poorkaj P et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–977

    Article  PubMed  CAS  Google Scholar 

  • Li H, Hu J, Ma L et al (2010) Comprehensive study of baicalin down-regulating NOD2 receptor expression of neurons with oxygen-glucose deprivation in vitro and cerebral ischemia-reperfusion in vivo. Eur J Pharmacol 649:92–99

    Article  PubMed  CAS  Google Scholar 

  • Loerch PM, Lu T, Dakin KA et al (2008) Evolution of the aging brain transcriptome and synaptic regulation. PLoS ONE 3:e3329

    Article  PubMed  CAS  Google Scholar 

  • Lotz M, Ebert S, Esselmann H et al (2005) Amyloid beta peptide 1–40 enhances the action of Toll-like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures. J Neurochem 94:289–298

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Pan Y, Kao SY et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  PubMed  CAS  Google Scholar 

  • Lue LF, Kuo YM, Roher AE et al (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    Article  PubMed  CAS  Google Scholar 

  • Lund S, Christensen KV, Hedtjarn M et al (2006) The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. J Neuroimmunol 180:71–87

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA (2010) Age-related neuroinflammatory changes negatively impact on neuronal function. Front Aging Neurosci 1:6

    PubMed  Google Scholar 

  • Lynch AM, Walsh C, Delaney A et al (2004) Lipopolysaccharide-induced increase in signalling in hippocampus is abrogated by IL-10—a role for IL-1β? J Neurochem 88:635–646

    Article  PubMed  CAS  Google Scholar 

  • Lyons A, Downer EJ, Crotty S et al (2007a) CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J Neurosci 27:8309–8313

    Article  PubMed  CAS  Google Scholar 

  • Lyons A, Griffin RJ, Costelloe CE et al (2007b) IL-4 attenuates the neuroinflammation induced by amyloid-beta in vivo and in vitro. J Neurochem 101:771–781

    Article  PubMed  CAS  Google Scholar 

  • Lyons A, McQuillan K, Deighan BF et al (2009) Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain Behav Immun 23:1020–1027

    Article  PubMed  CAS  Google Scholar 

  • Mackaness GB (1970) The monocyte in cellular immunity. Semin Hematol 7:172–184

    PubMed  CAS  Google Scholar 

  • Maeda A, Sobel RA (1996) Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55:300–309

    Article  PubMed  CAS  Google Scholar 

  • Magavi SS, Mitchell BD, Szentirmai O et al (2005) Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J Neurosci 25:10729–10739

    Article  PubMed  CAS  Google Scholar 

  • Maher FO, Nolan Y, Lynch MA (2005) Downregulation of IL-4-induced signalling in hippocampus contributes to deficits in LTP in the aged rat. Neurobiol Aging 26:717–728

    Article  PubMed  CAS  Google Scholar 

  • Maher FO, Clarke RM, Kelly A et al (2006) Interaction between interferon gamma and insulin-like growth factor-1 in hippocampus impacts on the ability of rats to sustain long-term potentiation. J Neurochem 96:1560–1571

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  PubMed  CAS  Google Scholar 

  • Martin BK, Szekely C, Brandt J et al (2008) Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 65:896–905

    Article  PubMed  Google Scholar 

  • Matsuda H (2007) The role of neuroimaging in mild cognitive impairment. Neuropathology 27:570–577

    Article  PubMed  Google Scholar 

  • Mattson MP, Partin J, Begley JG (1998) Amyloid beta-peptide induces apoptosis-related events in synapses and dendrites. Brain Res 807:167–176

    Article  PubMed  CAS  Google Scholar 

  • McGeer EG, McGeer PL (2010) Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 19:355–361

    PubMed  Google Scholar 

  • McGeer PL, Akiyama H, Itagaki S et al (1989) Immune system response in Alzheimer’s disease. Can J Neurol Sci 16(4 Suppl):516–527

    PubMed  CAS  Google Scholar 

  • McGeer PL, Rogers J, McGeer EG (1994) Neuroimmune mechanisms in Alzheimer disease pathogenesis. Alzheimer Dis Assoc Disord 8:149–158

    Article  PubMed  CAS  Google Scholar 

  • McMaster WR, Williams AF (1979) Identification of Ia glycoproteins in rat thymus and purification from rat spleen. Eur J Immunol 9:426–433

    Article  PubMed  CAS  Google Scholar 

  • Mihrshahi R, Barclay AN, Brown MH (2009) Essential roles for Dok2 and RasGAP in CD200 receptor-mediated regulation of human myeloid cells. J Immunol 183:4879–4886

    Article  PubMed  CAS  Google Scholar 

  • Mills CD, Kincaid K, Alt JM et al (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    PubMed  CAS  Google Scholar 

  • Minati L, Edginton T, Bruzzone MG et al (2009) Current concepts in Alzheimer’s disease: a multidisciplinary review. Am J Alzheimers Dis Other Demen 24:95–121

    Article  PubMed  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  PubMed  CAS  Google Scholar 

  • Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    Article  PubMed  CAS  Google Scholar 

  • Moreaux J, Hose D, Reme T et al (2006) CD200 is a new prognostic factor in multiple myeloma. Blood 108:4194–4197

    Article  PubMed  CAS  Google Scholar 

  • Moreaux J, Veyrune JL, Reme T et al (2008) CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun 366:117–122

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Akashi S, Nagafuku M et al (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3:667–672

    PubMed  CAS  Google Scholar 

  • Niederkorn JY (2006) See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol 7:354–359

    Article  PubMed  CAS  Google Scholar 

  • Nolan Y, Maher FO, Martin DS et al (2005) Role of interleukin-4 in regulation of age-related inflammatory changes in the hippocampus. J Biol Chem 280:9354–9362

    Article  PubMed  CAS  Google Scholar 

  • Oitzl MS, van Oers H, Schobitz B et al (1993) Interleukin-1β, but not interleukin-6, impairs spatial navigation learning. Brain Res 613:160–163

    Article  PubMed  CAS  Google Scholar 

  • Okello A, Edison P, Archer HA et al (2009) Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology 72:56–62

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim JJ, Rosenstreich DL (1976) Signals regulating in vitro activation of lymphocytes. Prog Allergy 20:65–194

    Article  PubMed  CAS  Google Scholar 

  • Patel NS, Paris D, Mathura V et al (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2:9

    Article  PubMed  CAS  Google Scholar 

  • Petermann KB, Rozenberg GI, Zedek D et al (2007) CD200 is induced by ERK and is a potential therapeutic target in melanoma. J Clin Invest 117:3922–3929

    PubMed  CAS  Google Scholar 

  • Plunkett JA, Yu CG, Easton JM et al (2001) Effects of interleukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exp Neurol 168:144–154

    Article  PubMed  CAS  Google Scholar 

  • Poewe W (2008) Non-motor symptoms in Parkinson’s disease. Eur J Neurol 15(Suppl 1):14–20

    Article  PubMed  Google Scholar 

  • Pratico D, Sung S (2004) Lipid peroxidation and oxidative imbalance: early functional events in Alzheimer’s disease. J Alzheimers Dis 6:171–175

    PubMed  CAS  Google Scholar 

  • Pratico D, Uryu K, Leight S et al (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21:4183–4187

    PubMed  CAS  Google Scholar 

  • Prolla TA (2002) DNA microarray analysis of the aging brain. Chem Senses 27:299–306

    Article  PubMed  CAS  Google Scholar 

  • Qin H, Wilson CA, Roberts KL et al (2006) IL-10 inhibits lipopolysaccharide-induced CD40 gene expression through induction of suppressor of cytokine signaling-3. J Immunol 177:7761–7771

    PubMed  CAS  Google Scholar 

  • Raes G, De Baetselier P, Noel W et al (2002) Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol 71:597–602

    PubMed  CAS  Google Scholar 

  • Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492

    Article  PubMed  CAS  Google Scholar 

  • Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89

    Article  PubMed  CAS  Google Scholar 

  • Reed-Geaghan EG, Savage JC, Hise AG et al (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J Neurosci 29:11982–11992

    Article  PubMed  CAS  Google Scholar 

  • Reed-Geaghan EG, Reed QW, Cramer PE et al (2010) Deletion of CD14 attenuates Alzheimer’s disease pathology by influencing the brain’s inflammatory milieu. J Neurosci 30:15369–15373

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA, Sullivan N, Esiri MM (2001) White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke 32:1162–1168

    Article  PubMed  CAS  Google Scholar 

  • Salloway S, Sperling R, Gilman S et al (2009) A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73:2061–2070

    Article  PubMed  CAS  Google Scholar 

  • Samavati L, Lee I, Mathes I et al (2008) Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem 283:21134–21144

    Article  PubMed  CAS  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA et al (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384

    Article  PubMed  CAS  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA et al (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508

    Article  PubMed  CAS  Google Scholar 

  • Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393:382–386

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1996) Amyloid beta-protein and the genetics of Alzheimer’s disease. J Biol Chem 271:18295–18298

    PubMed  CAS  Google Scholar 

  • Serrats J, Schiltz JC, Garcia-Bueno B et al (2010) Dual roles for perivascular macrophages in immune-to-brain signaling. Neuron 65:94–106

    Article  PubMed  CAS  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F et al (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359:325–327

    Article  PubMed  CAS  Google Scholar 

  • Seubert P, Oltersdorf T, Lee MG et al (1993) Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature 361:260–263

    Article  PubMed  CAS  Google Scholar 

  • Shaftel SS, Kyrkanides S, Olschowka JA et al (2007) Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest 117:1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Shankar GM, Walsh DM (2009) Alzheimer’s disease: synaptic dysfunction and Aβ. Mol Neurodegener 4:48

    Article  PubMed  CAS  Google Scholar 

  • Shein NA, Grigoriadis N, Horowitz M et al (2008) Microglial involvement in neuroprotection following experimental traumatic brain injury in heat-acclimated mice. Brain Res 1244:132–141

    Article  PubMed  CAS  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  PubMed  CAS  Google Scholar 

  • Shinohara H, Inoue A, Toyama-Sorimachi N et al (2005) Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling. J Exp Med 201:333–339

    Article  PubMed  CAS  Google Scholar 

  • Shiryaev SA, Remacle AG, Savinov AY et al (2009) Inflammatory proprotein convertase-matrix metalloproteinase proteolytic pathway in antigen-presenting cells as a step to autoimmune multiple sclerosis. J Biol Chem 284:30615–30626

    Article  PubMed  CAS  Google Scholar 

  • Shoji M, Golde TE, Ghiso J et al (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258:126–129

    Article  PubMed  CAS  Google Scholar 

  • Sierra A, Encinas JM, Deudero JJ et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495

    Article  PubMed  CAS  Google Scholar 

  • Siva A, Xin H, Qin F et al (2008) Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol Immunother 57:987–996

    Article  PubMed  CAS  Google Scholar 

  • Snelgrove RJ, Goulding J, Didierlaurent AM et al (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9:1074–1083

    Article  PubMed  CAS  Google Scholar 

  • So K, Moriya T, Nishitani S et al (2008) The olfactory conditioning in the early postnatal period stimulated neural stem/progenitor cells in the subventricular zone and increased neurogenesis in the olfactory bulb of rats. Neuroscience 151:120–128

    Article  PubMed  CAS  Google Scholar 

  • Song M, Jin J, Lim JE et al (2011) TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 8:92

    Article  PubMed  CAS  Google Scholar 

  • Sparkman NL, Johnson RW (2008) Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation 15:323–330

    Article  PubMed  CAS  Google Scholar 

  • Stadler J, Bentz BG, Harbrecht BG et al (1992) Tumor necrosis factor alpha inhibits hepatocyte mitochondrial respiration. Ann Surg 216:539–546

    Article  PubMed  CAS  Google Scholar 

  • Struble RG, Ala T, Patrylo PR et al (2010) Is brain amyloid production a cause or a result of dementia of the Alzheimer’s type? J Alzheimers Dis 22:393–399

    PubMed  CAS  Google Scholar 

  • Tahara K, Kim HD, Jin JJ et al (2006) Role of toll-like receptor signalling in Aβ uptake and clearance. Brain 129(Pt 11):3006–3019

    Article  PubMed  Google Scholar 

  • Takasugi N, Tomita T, Hayashi I et al (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422:438–441

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2004) Microbial recognition by Toll-like receptors. J Dermatol Sci 34:73–82

    Article  PubMed  CAS  Google Scholar 

  • Tamura Y, Kataoka Y, Cui Y et al (2007) Multi-directional differentiation of doublecortin- and NG2-immunopositive progenitor cells in the adult rat neocortex in vivo. Eur J Neurosci 25:3489–3498

    Article  PubMed  Google Scholar 

  • Tang SC, Arumugam TV, Xu X et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci USA 104:13798–13803

    Article  PubMed  CAS  Google Scholar 

  • Tesseur I, Zou K, Esposito L et al (2006) Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116:3060–3069

    Article  PubMed  CAS  Google Scholar 

  • Town T, Laouar Y, Pittenger C et al (2008) Blocking TGF-β-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 14:681–687

    PubMed  CAS  Google Scholar 

  • Tronel S, Belnoue L, Grosjean N et al (2012) Adult-born neurons are necessary for extended contextual discrimination. Hippocampus 22:292–298

    Article  PubMed  Google Scholar 

  • Unkeless JC, Scigliano E, Freedman VH (1988) Structure and function of human and murine receptors for IgG. Annu Rev Immunol 6:251–281

    Article  PubMed  CAS  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  PubMed  CAS  Google Scholar 

  • Villeda SA, Luo J, Mosher KI et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94

    Article  PubMed  CAS  Google Scholar 

  • Voloboueva LA, Giffard RG (2011) Inflammation, mitochondria, and the inhibition of adult neurogenesis. J Neurosci Res 89:1989–1996

    Article  PubMed  CAS  Google Scholar 

  • Waldau B, Shetty AK (2008) Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci 65:2372–2384

    Article  PubMed  CAS  Google Scholar 

  • Walker DG, Dalsing-Hernandez JE, Campbell NA et al (2009) Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol 215:5–19

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Honsek SD, Illes S et al (2011) A new role for interferon gamma in neural stem/precursor cell dysregulation. Mol Neurodegener 6:18

    Article  PubMed  CAS  Google Scholar 

  • Webb M, Barclay AN (1984) Localisation of the MRC OX-2 glycoprotein on the surfaces of neurones. J Neurochem 43:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Wegiel J, Wisniewski HM (1990) The complex of microglial cells and amyloid star in three-dimensional reconstruction. Acta Neuropathol 81:116–124

    Article  PubMed  CAS  Google Scholar 

  • Wen PH, Hof PR, Chen X et al (2004) The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol 188:224–237

    Article  PubMed  CAS  Google Scholar 

  • Wilcock DM, Lewis MR, Van Nostrand WE et al (2008) Progression of amyloid pathology to Alzheimer’s disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2. J Neurosci 28:1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Wiley CA, Lopresti BJ, Venneti S et al (2009) Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol 66:60–67

    Article  PubMed  Google Scholar 

  • Wisniewski HM, Wegiel J (1991) Spatial relationships between astrocytes and classical plaque components. Neurobiol Aging 12:593–600

    Article  PubMed  CAS  Google Scholar 

  • Wright GJ, Puklavec MJ, Willis AC et al (2000) Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13:233–242

    Article  PubMed  CAS  Google Scholar 

  • Wright GJ, Cherwinski H, Foster-Cuevas M et al (2003) Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 171:3034–3046

    PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Lin C, Yan F et al (2001) TGF-β1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7:612–618

    Article  PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Yan F, Lin AH et al (2002) Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA 99:10837–10842

    Article  PubMed  CAS  Google Scholar 

  • Xapelli S, Bernardino L, Ferreira R et al (2008) Interaction between neuropeptide Y (NPY) and brain-derived neurotrophic factor in NPY-mediated neuroprotection against excitotoxicity: a role for microglia. Eur J Neurosci 27:2089–2102

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Kiyota T, Horiba M et al (2007) Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 170:680–692

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Kiyota T, Walsh SM et al (2008) Cytokine-mediated inhibition of fibrillar amyloid-beta peptide degradation by human mononuclear phagocytes. J Immunol 181:3877–3886

    PubMed  CAS  Google Scholar 

  • Yasuda T, Bundo K, Hino A et al (2007) Dok-1 and Dok-2 are negative regulators of T cell receptor signaling. Int Immunol 19:487–495

    Article  PubMed  CAS  Google Scholar 

  • Yokokura M, Mori N, Yagi S et al (2011) In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 38:343–351

    Article  PubMed  CAS  Google Scholar 

  • Zell R, Geck P, Werdan K et al (1997) TNF-alpha and IL-1 alpha inhibit both pyruvate dehydrogenase activity and mitochondrial function in cardiomyocytes: evidence for primary impairment of mitochondrial function. Mol Cell Biochem 177:61–67

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Cherwinski H, Sedgwick JD et al (2004) Molecular mechanisms of CD200 inhibition of mast cell activation. J Immunol 173:6786–6793

    PubMed  CAS  Google Scholar 

  • Zhang YW, Thompson R, Zhang H et al (2011) APP processing in Alzheimer’s disease. Mol Brain 4:3

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Xie W, Xiao Q et al (2006) Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J Neurochem 99:1176–1187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Seiko Ikezu and Maya Woodbury for editing the manuscript. This work was supported in part by National Institute of Health grants 5T32GM008541 to M.M. Varnum, and MH072539 and AG032600 to T. Ikezu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneya Ikezu.

About this article

Cite this article

Varnum, M.M., Ikezu, T. The Classification of Microglial Activation Phenotypes on Neurodegeneration and Regeneration in Alzheimer’s Disease Brain. Arch. Immunol. Ther. Exp. 60, 251–266 (2012). https://doi.org/10.1007/s00005-012-0181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-012-0181-2

Keywords

Navigation