Skip to main content

Advertisement

Log in

Lobular Breast Cancer: Pathology, Biology, and Options for Clinical Intervention

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Lobular carcinoma is a breast cancer subtype comprising approximately 15 % of all breast cancer cases. Clinical diagnosis of this subtype is difficult due to a characteristic growth pattern that inhibits detection using palpation or standard X-ray mammography. While clinical intervention based on hormone antagonists has proven an effective strategy, hormone receptor negative or nonresponsive disease cannot be treated successfully, indicating the need for alternative curative approaches. In contrast to its well-defined histopathological characteristics that were first recognized a century ago, the surface of the underlying biology has only recently been scratched. Progress was made in understanding the biology of the disease, which will hopefully have its impact on future treatment modalities and initiate development of novel intervention strategies. Here, we review the pathological and molecular features of lobular breast cancer and report on the currently known mechanisms that control disease development and progression. Finally we will reflect on past, present, and future treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AJ:

Adherence junction

ALH:

Atypical lobular hyperplasia

DCIS:

Ductal carcinoma in situ

EGFR:

Epidermal growth factor receptor

ER:

Estrogen receptor

IDC:

Invasive ductal carcinoma

LCIS:

Lobular carcinoma in situ

LN:

Lobular neoplasia

ILC:

Invasive lobular carcinoma

p120:

p120-catenin

References

  • Abdel-Fatah TM, Powe DG et al (2007) High frequency of coexistence of columnar cell lesions, lobular neoplasia, and low grade ductal carcinoma in situ with invasive tubular carcinoma and invasive lobular carcinoma. Am J Surg Pathol 31:417–426

    PubMed  Google Scholar 

  • Ademuyiwa FO, Khoury T et al (2012) An 81-year-old patient with distant metastasis of invasive lobular carcinoma occurring 41 years after mastectomy. Clin Breast Cancer 12:293–295

    PubMed  Google Scholar 

  • Arpino G, Bardou VJ et al (2004) Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res 6:R149–R156

    PubMed Central  PubMed  Google Scholar 

  • Ashikari R, Huvos AG et al (1973) Infiltrating lobular carcinoma of the breast. Cancer 31:110–116

    CAS  PubMed  Google Scholar 

  • Aulmann S, Penzel R et al (2008) Clonality of lobular carcinoma in situ (LCIS) and metachronous invasive breast cancer. Breast Cancer Res Treat 107:331–335

    PubMed  Google Scholar 

  • Bauer VP, Ditkoff BA et al (2003) The management of lobular neoplasia identified on percutaneous core breast biopsy. Breast J 9:4–9

    PubMed  Google Scholar 

  • Berg WA, Mrose HE et al (2001) Atypical lobular hyperplasia or lobular carcinoma in situ at core-needle breast biopsy. Radiology 218:503–509

    CAS  PubMed  Google Scholar 

  • Berx G, Van Roy F (2001) The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 3:289–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berx G, Cleton-Jansen AM et al (1995) E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J 14:6107–6115

    CAS  PubMed  Google Scholar 

  • Berx G, Becker KF et al (1998) Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 12:226–237

    CAS  PubMed  Google Scholar 

  • Beute BJ, Kalisher L et al (1991) Lobular carcinoma in situ of the breast: clinical, pathologic, and mammographic features. AJR Am J Roentgenol 157:257–265

    CAS  PubMed  Google Scholar 

  • Biglia N, Mariani L et al (2007) Increased incidence of lobular breast cancer in women treated with hormone replacement therapy: implications for diagnosis, surgical and medical treatment. Endocr Relat Cancer 14:549–567

    CAS  PubMed  Google Scholar 

  • Blanco-Aparicio C, Renner O et al (2007) PTEN, more than the AKT pathway. Carcinogenesis 28:1379–1386

    CAS  PubMed  Google Scholar 

  • Bodian CA, Perzin KH et al (1996) Lobular neoplasia. Long term risk of breast cancer and relation to other factors. Cancer 78:1024–1034

    CAS  PubMed  Google Scholar 

  • Boetes C, Veltman J et al (2004) The role of MRI in invasive lobular carcinoma. Breast Cancer Res Treat 86:31–37

    PubMed  Google Scholar 

  • Borgstein PJ, Pijpers R et al (1998) Sentinel lymph node biopsy in breast cancer: guidelines and pitfalls of lymphoscintigraphy and gamma probe detection. J Am Coll Surg 186:275–283

    CAS  PubMed  Google Scholar 

  • Boussadia O, Kutsch S et al (2002) E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev 115:53–62

    CAS  PubMed  Google Scholar 

  • Boyault S, Drouet Y et al (2012) Mutational characterization of individual breast tumors: TP53 and PI3 K pathway genes are frequently and distinctively mutated in different subtypes. Breast Cancer Res Treat 132:29–39

    CAS  PubMed  Google Scholar 

  • Bratthauer GL, Tavassoli FA (2002) Lobular intraepithelial neoplasia: previously unexplored aspects assessed in 775 cases and their clinical implications. Virchows Arch 440:134–138

    PubMed  Google Scholar 

  • Brem RF, Ioffe M et al (2009) Invasive lobular carcinoma: detection with mammography, sonography, MRI, and breast-specific gamma imaging. Am J Roentgenol 192:379–383

    Google Scholar 

  • Broders AC (1932) Carcinoma in situ contrasted with benign penetrating epithelium. J Am Med Assoc 99:1670–1674

    Google Scholar 

  • Buchanan CL, Flynn LW et al (2008) Is pleomorphic lobular carcinoma really a distinct clinical entity? J Surg Oncol 98:314–317

    PubMed  Google Scholar 

  • Buttitta F, Felicioni L et al (2006) PIK3CA mutation and histological type in breast carcinoma: high frequency of mutations in lobular carcinoma. J Pathol 208:350–355

    CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Google Scholar 

  • Cannon-Albright LA, Thomas A et al (1994) Familiality of cancer in Utah. Cancer Res 54:2378–2385

    CAS  PubMed  Google Scholar 

  • Carter D, Smith RR (1977) Carcinoma in situ of the breast. Cancer 40:1189–1193

    CAS  PubMed  Google Scholar 

  • Chen YY, Hwang ES et al (2009) Genetic and phenotypic characteristics of pleomorphic lobular carcinoma in situ of the breast. Am J Surg Pathol 33:1683–1694

    PubMed Central  PubMed  Google Scholar 

  • Christgen M, Noskowicz M et al (2012) IPH-926 lobular breast cancer cells harbor a p53 mutant with temperature-sensitive functional activity and allow for profiling of p53-responsive genes. Lab Invest 92:1635–1647

    CAS  PubMed  Google Scholar 

  • Christgen M, Noskowicz M et al (2013) Oncogenic PIK3CA mutations in lobular breast cancer progression. Genes Chromosom Cancer 52:69–80

    CAS  PubMed  Google Scholar 

  • Chuba PJ, Hamre MR et al (2005) Bilateral risk for subsequent breast cancer after lobular carcinoma-in situ: analysis of surveillance, epidemiology, and end results data. J Clin Oncol 23:5534–5541

    PubMed  Google Scholar 

  • Clarke M, Collins R et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106

    CAS  PubMed  Google Scholar 

  • Cohen MA (2004) Cancer upgrades at excisional biopsy after diagnosis of atypical lobular hyperplasia or lobular carcinoma in situ at core-needle biopsy: some reasons why. Radiology 231:617–621

    PubMed  Google Scholar 

  • Cristofanilli M, Gonzalez-Angulo A et al (2005) Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol 23:41–48

    PubMed  Google Scholar 

  • Curtis C, Shah SP et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cutuli B, de Lafontan B et al (2005) Breast-conserving surgery and radiotherapy: a possible treatment for lobular carcinoma in situ? Eur J Cancer 41:380–385

    PubMed  Google Scholar 

  • Da Silva L, Parry S et al (2008) Aberrant expression of E-cadherin in lobular carcinomas of the breast. Am J Surg Pathol 32:773–783

    PubMed  Google Scholar 

  • Davis MA, Ireton RC et al (2003) A core function for p120-catenin in cadherin turnover. J Cell Biol 163:525–534

    CAS  PubMed  Google Scholar 

  • De Leeuw WJ, Berx G et al (1997) Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol 183:404–411

    PubMed  Google Scholar 

  • Derksen PW, Liu X et al (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10:437–449

    CAS  PubMed  Google Scholar 

  • Derksen PW, Braumuller TM et al (2011) Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice. Dis Model Mech 4:347–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Downs-Kelly E, Bell D et al (2011) Clinical implications of margin involvement by pleomorphic lobular carcinoma in situ. Arch Pathol Lab Med 135:737–743

    PubMed  Google Scholar 

  • Drees F, Pokutta S et al (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123:903–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Droufakou S, Deshmane V et al (2001) Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer 92:404–408

    CAS  PubMed  Google Scholar 

  • Dupont Jensen J, Laenkholm AV et al (2011) PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res 17:667–677

    CAS  PubMed  Google Scholar 

  • Elsheikh TM, Silverman JF (2005) Follow-up surgical excision is indicated when breast core needle biopsies show atypical lobular hyperplasia or lobular carcinoma in situ: a correlative study of 33 patients with review of the literature. Am J Surg Pathol 29:534–543

    PubMed  Google Scholar 

  • Ercan C, van Diest PJ et al (2012a) p53 mutations in classic and pleomorphic invasive lobular carcinoma of the breast. Cell Oncol 35:111–118

    CAS  Google Scholar 

  • Ercan C, Vermeulen JF et al (2012b) HIF-1alpha and NOTCH signaling in ductal and lobular carcinomas of the breast. Cell Oncol 35:435–442

    CAS  Google Scholar 

  • Eusebi V, Magalhaes F et al (1992) Pleomorphic lobular carcinoma of the breast: an aggressive tumor showing apocrine differentiation. Hum Pathol 23:655–662

    CAS  PubMed  Google Scholar 

  • Ewing J (1919) Neoplastic diseases: a textbook on tumors. WB Saunders Co., Philadelphia

    Google Scholar 

  • Fackler MJ, McVeigh M et al (2003) DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma. Int J Cancer 107:970–975

    CAS  PubMed  Google Scholar 

  • Fadare O, Wang SA et al (2008) The expression of cytokeratin 5/6 in invasive lobular carcinoma of the breast: evidence of a basal-like subset? Hum Pathol 39:331–336

    CAS  PubMed  Google Scholar 

  • Fechner RE (1975) Histologic variants of infiltrating lobular carcinoma of the breast. Hum Pathol 6:373–378

    CAS  PubMed  Google Scholar 

  • Fisher B, Costantino JP et al (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90:1371–1388

    CAS  PubMed  Google Scholar 

  • Fisher ER, Land SR et al (2004) Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: twelve-year observations concerning lobular carcinoma in situ. Cancer 100:238–244

    PubMed  Google Scholar 

  • Foote FW, Stewart FW (1941) Lobular carcinoma in situ: a rare form of mammary cancer. Am J Pathol 17:491–496

    CAS  PubMed  Google Scholar 

  • Frolik D, Caduff R et al (2001) Pleomorphic lobular carcinoma of the breast: its cell kinetics, expression of oncogenes and tumour suppressor genes compared with invasive ductal carcinomas and classical infiltrating lobular carcinomas. Histopathology 39:503–513

    CAS  PubMed  Google Scholar 

  • Frykberg ER (1999) Lobular carcinoma in situ of the breast. Breast J 5:296–303

    PubMed  Google Scholar 

  • Fujita Y, Krause G et al (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4:222–231

    CAS  PubMed  Google Scholar 

  • Gayther SA, Gorringe KL et al (1998) Identification of germ-line E-cadherin mutations in gastric cancer families of European origin. Cancer Res 58:4086–4089

    CAS  PubMed  Google Scholar 

  • Georgian-Smith D, Lawton TJ (2001) Calcifications of lobular carcinoma in situ of the breast: radiologic-pathologic correlation. Am J Roentgenol 176:1255–1259

    CAS  Google Scholar 

  • Geyer FC, Lacroix-Triki M et al (2011) Beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol 24:209–231

    CAS  PubMed  Google Scholar 

  • Goldwyn RM (1977) Subcutaneous mastectomy. N Engl J Med 297:503–505

    CAS  PubMed  Google Scholar 

  • Guilford P, Hopkins J et al (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392:402–405

    CAS  PubMed  Google Scholar 

  • Haagensen CD, Lane N et al (1978) Lobular neoplasia (so-called lobular carcinoma in situ) of the breast. Cancer 42:737–769

    CAS  PubMed  Google Scholar 

  • Hajdu SI, Tang P (2009) Lobular carcinoma in situ. Ann Clin Lab Sci 39:413–415

    PubMed  Google Scholar 

  • Halsted WS (1898) I. A clinical and histological study of certain adenocarcinomata of the breast: and a brief consideration of the supraclavicular operation and of the results of operations for cancer of the breast from 1889 to 1898 at the Johns Hopkins Hospital. Ann Surg 28:557–576

    CAS  PubMed  Google Scholar 

  • Han SP, Yap AS (2012) The cytoskeleton and classical cadherin adhesions. Subcell Biochem 60:111–135

    CAS  PubMed  Google Scholar 

  • Hartsock A, Nelson WJ (2012) Competitive regulation of E-cadherin juxtamembrane domain degradation by p120-catenin binding and Hakai-mediated ubiquitination. PLoS ONE 7:e37476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harvey DG, Fechner RE (1978) Atypical lobular and papillary lesions of the breast: a follow-up study of 30 cases. South Med J 71:361–364

    CAS  PubMed  Google Scholar 

  • Hayes MJ, Thomas D et al (2008) Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res 14:4038–4044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hazan RB, Norton L (1998) The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J Biol Chem 273:9078–9084

    CAS  PubMed  Google Scholar 

  • Hazan RB, Kang L et al (1997) Vinculin is associated with the E-cadherin adhesion complex. J Biol Chem 272:32448–32453

    CAS  PubMed  Google Scholar 

  • Hernandez-Aya LF, Gonzalez-Angulo AM (2011) Targeting the phosphatidylinositol 3-kinase signaling pathway in breast cancer. Oncologist 16:404–414

    CAS  PubMed  Google Scholar 

  • Hoefnagel LD, van de Vijver MJ et al (2010) Receptor conversion in distant breast cancer metastases. Breast Cancer Res 12:R75

    PubMed Central  PubMed  Google Scholar 

  • Hollestelle A, Elstrodt F et al (2010) Four human breast cancer cell lines with biallelic inactivating alpha-catenin gene mutations. Breast Cancer Res Treat 122:125–133

    CAS  PubMed  Google Scholar 

  • Hong S, Troyanovsky RB et al (2010) Spontaneous assembly and active disassembly balance adherens junction homeostasis. Proc Natl Acad Sci USA 107:3528–3533

    CAS  PubMed  Google Scholar 

  • Huang CH, Mandelker D et al (2008) Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Cell Cycle 7:1151–1156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hussain M, Cunnick GH (2011) Management of lobular carcinoma in situ and atypical lobular hyperplasia of the breast–a review. Eur J Surg Oncol 37:279–289

    CAS  PubMed  Google Scholar 

  • Hutter RV, Snyder RE et al (1969) Clinical and pathologic correlation with mammographic findings in lobular carcinoma in situ. Cancer 23:826–839

    CAS  PubMed  Google Scholar 

  • Hwang ES, Nyante SJ et al (2004) Clonality of lobular carcinoma in situ and synchronous invasive lobular carcinoma. Cancer 100:2562–2572

    PubMed  Google Scholar 

  • Iorfida M, Maiorano E et al (2012) Invasive lobular breast cancer: subtypes and outcome. Breast Cancer Res Treat 133:713–723

    CAS  PubMed  Google Scholar 

  • Jonsson BA, Bergh A et al (2002) Germline mutations in E-cadherin do not explain association of hereditary prostate cancer, gastric cancer and breast cancer. Int J Cancer 98:838–843

    CAS  PubMed  Google Scholar 

  • Kalinsky K, Heguy A et al (2011) PIK3CA mutations rarely demonstrate genotypic intratumoral heterogeneity and are selected for in breast cancer progression. Breast Cancer Res Treat 129:635–643

    PubMed  Google Scholar 

  • Kaurah P, MacMillan A et al (2007) Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. JAMA 297:2360–2372

    CAS  PubMed  Google Scholar 

  • Kizaka-Kondoh S, Inoue M et al (2003) Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 94:1021–1028

    CAS  PubMed  Google Scholar 

  • Krecke KN, Gisvold JJ (1993) Invasive lobular carcinoma of the breast: mammographic findings and extent of disease at diagnosis in 184 patients. Am J Roentgenol 161:957–960

    CAS  Google Scholar 

  • Kurose K, Gilley K et al (2002) Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32:355–357

    CAS  PubMed  Google Scholar 

  • Le TL, Yap AS et al (1999) Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J Cell Biol 146:219–232

    CAS  PubMed  Google Scholar 

  • Leary RJ, Kinde I et al (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2:20ra14

    Google Scholar 

  • Li CI, Daling JR (2007) Changes in breast cancer incidence rates in the United States by histologic subtype and race/ethnicity, 1995 to 2004. Cancer Epidemiol Biomarkers Prev 16:2773–2780

    PubMed  Google Scholar 

  • Li CI, Anderson BO et al (2002a) Changing incidence of lobular carcinoma in situ of the breast. Breast Cancer Res Treat 75:259–268

    PubMed  Google Scholar 

  • Li CI, Daling JR et al (2005) Age-specific incidence rates of in situ breast carcinomas by histologic type, 1980 to 2001. Cancer Epidemiol Biomarkers Prev 14:1008–1011

    PubMed  Google Scholar 

  • Li CI, Malone KE et al (2006) Risk of invasive breast carcinoma among women diagnosed with ductal carcinoma in situ and lobular carcinoma in situ, 1988-2001. Cancer 106:2104–2112

    PubMed  Google Scholar 

  • Li G, Robinson GW et al (2002b) Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 129:4159–4170

    CAS  PubMed  Google Scholar 

  • Liberman L (2000) Clinical management issues in percutaneous core breast biopsy. Radiol Clin North Am 38:791–807

    CAS  PubMed  Google Scholar 

  • Liberman L, Sama M et al (1999) Lobular carcinoma in situ at percutaneous breast biopsy: surgical biopsy findings. Am J Roentgenol 173:291–299

    CAS  Google Scholar 

  • Ligon LA, Karki S et al (2001) Dynein binds to beta-catenin and may tether microtubules at adherens junctions. Nat Cell Biol 3:913–917

    CAS  PubMed  Google Scholar 

  • Londero V, Zuiani C et al (2008) Lobular neoplasia: core needle breast biopsy underestimation of malignancy in relation to radiologic and pathologic features. Breast 17:623–630

    PubMed  Google Scholar 

  • Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    CAS  PubMed  Google Scholar 

  • Mahtani RL, Vogel CL (2008) Pleomorphic lobular carcinoma of the breast: four long-term responders to trastuzumab–coincidence or hint? J Clin Oncol 26:5823–5824

    PubMed  Google Scholar 

  • Maiden SL, Hardin J (2011) The secret life of alpha-catenin: moonlighting in morphogenesis. J Cell Biol 195:543–552

    CAS  PubMed  Google Scholar 

  • Masciari S, Larsson N et al (2007) Germline E-cadherin mutations in familial lobular breast cancer. J Med Genet 44:726–731

    CAS  PubMed  Google Scholar 

  • Mastracci TL, Shadeo A et al (2006) Genomic alterations in lobular neoplasia: a microarray comparative genomic hybridization signature for early neoplastic proliferation in the breast. Genes Chromosomes Cancer 45:1007–1017

    CAS  PubMed  Google Scholar 

  • Mate TP, Carter D et al (1986) A clinical and histopathologic analysis of the results of conservation surgery and radiation therapy in stage I and II breast carcinoma. Cancer 58:1995–2002

    CAS  PubMed  Google Scholar 

  • McAuliffe PF, Meric-Bernstam F et al (2010) Deciphering the role of PI3 K/Akt/mTOR pathway in breast cancer biology and pathogenesis. Clin Breast Cancer 10(Suppl 3):S59–S65

    PubMed  Google Scholar 

  • McBride DJ, Orpana AK et al (2010) Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer 49:1062–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meng W, Mushika Y et al (2008) Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell–cell contacts. Cell 135:948–959

    CAS  PubMed  Google Scholar 

  • Mercapide J, Zhang SY et al (2002) CCND1- and ERBB2-gene deregulation and PTEN mutation analyses in invasive lobular carcinoma of the breast. Mol Carcinog 35:6–12

    CAS  PubMed  Google Scholar 

  • Middleton LP, Palacios DM et al (2000) Pleomorphic lobular carcinoma: morphology, immunohistochemistry, and molecular analysis. Am J Surg Pathol 24:1650–1656

    CAS  PubMed  Google Scholar 

  • Miyashita Y, Ozawa M (2007) A dileucine motif in its cytoplasmic domain directs beta-catenin-uncoupled E-cadherin to the lysosome. J Cell Sci 120(Pt 24):4395–4406

    CAS  PubMed  Google Scholar 

  • Monhollen L, Morrison C et al (2012) Pleomorphic lobular carcinoma: a distinctive clinical and molecular breast cancer type. Histopathology 61:365–377

    PubMed  Google Scholar 

  • Morandi L, Marucci G et al (2006) Genetic similarities and differences between lobular in situ neoplasia (LN) and invasive lobular carcinoma of the breast. Virchows Arch 449:14–23

    PubMed  Google Scholar 

  • Nagata Y, Lan KH et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6:117–127

    CAS  PubMed  Google Scholar 

  • NCCN (2010) Clinical Practice Guidelines in Oncology, Breast Cancer Version 1.2013. NCCN, The National Comprehensive Cancer Network

  • Nemoto T, Castillo N et al (1998) Lobular carcinoma in situ with microinvasion. J Surg Oncol 67:41–46

    CAS  PubMed  Google Scholar 

  • Nik-Zainal S, Van Loo P et al (2012) The life history of 21 breast cancers. Cell 149:994–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishizaki T, Chew K et al (1997) Genetic alterations in lobular breast cancer by comparative genomic hybridization. Int J Cancer 74:513–517

    CAS  PubMed  Google Scholar 

  • Oliveira C, Bordin MC et al (2002) Screening E-cadherin in gastric cancer families reveals germline mutations only in hereditary diffuse gastric cancer kindred. Hum Mutat 19:510–517

    CAS  PubMed  Google Scholar 

  • Olivier M, Langerod A et al (2006) The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12:1157–1167

    CAS  PubMed  Google Scholar 

  • Orsetti B, Nugoli M et al (2006) Genetic profiling of chromosome 1 in breast cancer: mapping of regions of gains and losses and identification of candidate genes on 1q. Br J Cancer 95:1439–1447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orvieto E, Maiorano E et al (2008) Clinicopathologic characteristics of invasive lobular carcinoma of the breast: results of an analysis of 530 cases from a single institution. Cancer 113:1511–1520

    PubMed  Google Scholar 

  • Ottesen GL, Graversen HP et al (1993) Lobular carcinoma in situ of the female breast. Short-term results of a prospective nationwide study. The Danish Breast Cancer Cooperative Group. Am J Surg Pathol 17:14–21

    CAS  PubMed  Google Scholar 

  • Page DL, Jensen RA et al (2000) Historical and epidemiologic background of human premalignant breast disease. J Mammary Gland Biol Neoplasia 5:341–349

    CAS  PubMed  Google Scholar 

  • Palacios J, Benito N et al (1995) Anomalous expression of P-cadherin in breast carcinoma. Correlation with E-cadherin expression and pathological features. Am J Pathol 146:605–612

    CAS  PubMed  Google Scholar 

  • Palacios J, Sarrio D et al (2003) Frequent E-cadherin gene inactivation by loss of heterozygosity in pleomorphic lobular carcinoma of the breast. Mod Pathol 16:674–678

    PubMed  Google Scholar 

  • Perou CM, Sorlie T et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    CAS  PubMed  Google Scholar 

  • Pestalozzi BC, Zahrieh D et al (2008) Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J Clin Oncol 26:3006–3014

    PubMed  Google Scholar 

  • Pharoah PD, Guilford P et al (2001) Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 121:1348–1353

    CAS  PubMed  Google Scholar 

  • Pope TL Jr, Fechner RE et al (1988) Lobular carcinoma in situ of the breast: mammographic features. Radiology 168:63–66

    PubMed  Google Scholar 

  • Powers RW, O’Brien PH et al (1980) Lobular carcinoma in situ. J Surg Oncol 13:269–273

    CAS  PubMed  Google Scholar 

  • Rakha EA, El-Sayed ME et al (2008) Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. Eur J Cancer 44:73–83

    PubMed  Google Scholar 

  • Rakha EA, Patel A et al (2010) Clinical and biological significance of E-cadherin protein expression in invasive lobular carcinoma of the breast. Am J Surg Pathol 34:1472–1479

    PubMed  Google Scholar 

  • Ratheesh A, Gomez GA et al (2012) Centralspindlin and alpha-catenin regulate Rho signalling at the epithelial zonula adherens. Nat Cell Biol 14:818–828

    CAS  PubMed  Google Scholar 

  • Reis-Filho JS, Simpson PT et al (2005) Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity. J Pathol 207:1–13

    CAS  PubMed  Google Scholar 

  • Renshaw AA, Cartagena N et al (2002) Lobular neoplasia in breast core needle biopsy specimens is not associated with an increased risk of ductal carcinoma in situ or invasive carcinoma. Am J Clin Pathol 117:797–799

    PubMed  Google Scholar 

  • Richard F, Pacyna-Gengelbach M et al (2000) Patterns of chromosomal imbalances in invasive breast cancer. Int J Cancer 89:305–310

    CAS  PubMed  Google Scholar 

  • Rosen PP, Lesser ML et al (1982) Epidemiology of breast carcinoma III: relationship of family history to tumor type. Cancer 50:171–179

    CAS  PubMed  Google Scholar 

  • Rosenfeld I, Tartter PI et al (2001) The significance of malignancies incidental to microcalcifications in breast spot localization biopsy specimens. Am J Surg 182:1–5

    CAS  PubMed  Google Scholar 

  • Rosenthal SI, Depowski PL et al (2002) Comparison of HER-2/neu oncogene amplification detected by fluorescence in situ hybridization in lobular and ductal breast cancer. Appl Immunohistochem Mol Morphol 10:40–46

    CAS  PubMed  Google Scholar 

  • Ross DS, Hoda SA (2011) Microinvasive (T1mic) lobular carcinoma of the breast: clinicopathologic profile of 16 cases. Am J Surg Pathol 35:750–756

    PubMed  Google Scholar 

  • Sapino A, Frigerio A et al (2000) Mammographically detected in situ lobular carcinomas of the breast. Virchows Arch 436:421–430

    CAS  PubMed  Google Scholar 

  • Sarrio D, Moreno-Bueno G et al (2003) Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer 106:208–215

    CAS  PubMed  Google Scholar 

  • Sarrio D, Perez-Mies B et al (2004) Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene 23:3272–3283

    CAS  PubMed  Google Scholar 

  • Sastre-Garau X, Jouve M et al (1996) Infiltrating lobular carcinoma of the breast. Clinicopathologic analysis of 975 cases with reference to data on conservative therapy and metastatic patterns. Cancer 77:113–120

    CAS  PubMed  Google Scholar 

  • Schackmann RC, van Amersfoort M et al (2011) Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. J Clin Invest 121:3176–3188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selinko VL, Middleton LP et al (2004) Role of sonography in diagnosing and staging invasive lobular carcinoma. J Clin Ultrasound 32:323–332

    PubMed  Google Scholar 

  • Shah SP, Morin RD et al (2009) Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461:809–813

    CAS  PubMed  Google Scholar 

  • Shao MM, Chan SK et al (2012) Keratin expression in breast cancers. Virchows Arch 461:313–322

    CAS  PubMed  Google Scholar 

  • Shin SJ, Rosen PP (2002) Excisional biopsy should be performed if lobular carcinoma in situ is seen on needle core biopsy. Arch Pathol Lab Med 126:697–701

    PubMed  Google Scholar 

  • Simpson PT, Reis-Filho JS et al (2008) Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol 215:231–244

    CAS  PubMed  Google Scholar 

  • Sneige N, Wang J et al (2002) Clinical, histopathologic, and biologic features of pleomorphic lobular (ductal-lobular) carcinoma in situ of the breast: a report of 24 cases. Mod Pathol 15:1044–1050

    PubMed  Google Scholar 

  • Sonnenfeld MR, Frenna TH et al (1991) Lobular carcinoma in situ: mammographic-pathologic correlation of results of needle-directed biopsy. Radiology 181:363–367

    CAS  PubMed  Google Scholar 

  • Sorlie T, Perou CM et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    CAS  PubMed  Google Scholar 

  • Soussi T (2007) p53 alterations in human cancer: more questions than answers. Oncogene 26:2145–2156

    CAS  PubMed  Google Scholar 

  • Sun H, Lesche R et al (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 96:6199–6204

    CAS  PubMed  Google Scholar 

  • Tirkkonen M, Tanner M et al (1998) Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer 21:177–184

    CAS  PubMed  Google Scholar 

  • Toikkanen S, Pylkkanen L et al (1997) Invasive lobular carcinoma of the breast has better short- and long-term survival than invasive ductal carcinoma. Br J Cancer 76:1234–1240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Troyanovsky RB, Klingelhofer J et al (2011) Alpha-Catenin contributes to the strength of E-cadherin-p120 interactions. Mol Biol Cell 22:4247–4255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tubiana-Hulin M, Stevens D et al (2006) Response to neoadjuvant chemotherapy in lobular and ductal breast carcinomas: a retrospective study on 860 patients from one institution. Ann Oncol 17:1228–1233

    CAS  PubMed  Google Scholar 

  • Urban JA (1967) Bilaterality of cancer of the breast. Biopsy of the opposite breast. Cancer 20:1867–1870

    CAS  PubMed  Google Scholar 

  • Utermark T, Rao T et al (2012) The p110alpha and p110beta isoforms of PI3 K play divergent roles in mammary gland development and tumorigenesis. Genes Dev 26:1573–1586

    CAS  PubMed  Google Scholar 

  • van Esser S, Stapper G et al (2009) Ultrasound-guided laser-induced thermal therapy for small palpable invasive breast carcinomas: a feasibility study. Ann Surg Oncol 16:2259–2263

    PubMed Central  PubMed  Google Scholar 

  • Verschuur-Maes AH, van Deurzen CH et al (2012) Columnar cell lesions on breast needle biopsies: is surgical excision necessary? A systematic review. Ann Surg 255:259–265

    PubMed  Google Scholar 

  • Vogel VG, Costantino JP et al (2006) Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295:2727–2741

    CAS  PubMed  Google Scholar 

  • Vogel VG, Costantino JP et al (2010) Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial: preventing breast cancer. Cancer Prev Res 3:696–706

    CAS  Google Scholar 

  • Vos CB, Cleton-Jansen AM et al (1997) E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer 76:1131–1133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weidner N, Semple JP (1992) Pleomorphic variant of invasive lobular carcinoma of the breast. Hum Pathol 23:1167–1171

    CAS  PubMed  Google Scholar 

  • Weigelt B, Geyer FC et al (2010) The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol 220:45–57

    CAS  PubMed  Google Scholar 

  • Wheeler JE, Enterline HT et al (1974) Lobular carcinoma in situ of the breast. Long-term followup. Cancer 34:554–563

    CAS  PubMed  Google Scholar 

  • WHO (2010) World Health Statistics 2010. World Health Organization, Geneva

  • Wood LD, Parsons DW et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    CAS  PubMed  Google Scholar 

  • Xie ZM, Li LS et al (2011) Germline mutations of the E-cadherin gene in families with inherited invasive lobular breast carcinoma but no diffuse gastric cancer. Cancer 117:3112–3117

    CAS  PubMed  Google Scholar 

  • Yamada S, Pokutta S et al (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yanagisawa M, Kaverina IN et al (2004) A novel interaction between kinesin and p120 modulates p120 localization and function. J Biol Chem 279:9512–9521

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick W. B. Derksen.

About this article

Cite this article

Vlug, E., Ercan, C., van der Wall, E. et al. Lobular Breast Cancer: Pathology, Biology, and Options for Clinical Intervention. Arch. Immunol. Ther. Exp. 62, 7–21 (2014). https://doi.org/10.1007/s00005-013-0251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-013-0251-0

Keywords

Navigation