Skip to main content

Advertisement

Log in

A Targeted Multiple Antigenic Peptide Vaccine Augments the Immune Response to Self TGF-β1 and Suppresses Ongoing Hepatic Fibrosis

  • Original Article
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Transforming growth factor (TGF)-β1 expression is induced upon liver injury, and plays a critical role in hepatic fibrosis. Antibodies against TGF-β1 represent a novel approach in the treatment of hepatic fibrosis. However, TGF-β1 is not a suitable antigen due to immunological tolerance. In the current study, we synthesized a multiple antigenic peptide (MAP) vaccine against the dominant B-cell epitope of TGF-β1. The immunogenicity and potential therapeutic effects of this vaccine were examined using a rat model of hepatic fibrosis. Dominant B-cell epitopes of TGF-β1 were identified using bioinformatic program. An MAP vaccine corresponding to the 90–98 amino acid domain of TGF-β1 and containing four dendritic arms was synthesized using a 9-fluorenylmethoxycarbonyl solid phase method. Hepatic fibrosis which was induced in male Sprague-Dawley rats received a high-fat diet and ethanol (1.8 g/kg). Starting from the third week, rats were exposed to 40 % carbon tetrachloride (CCl4; 150 μl/100 g body weight twice weekly, initially 200 μl/100 g) treatment for a duration of 8 weeks. Rats received the MAP vaccine (100 μg) or Freund’s adjuvant at weeks 1, 3, 5. A group of rats receiving the fibrosis-inducing regimen alone and a group of healthy rats (receiving an olive oil vehicle alone) were included as controls. At the conclusion of the experiment, serum titre of TGF-β1 antibody was measured using ELISA and a standard liver functional test panel was examined. The extent of hepatic fibrosis was determined by measuring hydroxyproline content in the liver as well as hematoxylin–eosin (HE) and van Gieson (VG) staining. The expression of TGF-β1 and alpha-smooth muscle actin (α-SMA) was examined using immunohistochemistry, and presented as positive staining cells. The MAP purity was >90 % upon reverse phase high-performance liquid chromatography, with apparent molecular weight at 4.77 kDa. Serum TGF-β1 antibody titre was 1:256. The fibrosis-inducing treatment produced significant liver damage, as reflected by increases in liver functional test, HE and VG staining. The MAP vaccine attenuated such damage, as reflected by decreased alanine aminotransferase, aspartate aminotransferase, total bilirubin, and hepatic hydroxyproline (116.78 ± 23.76 vs. 282.71 ± 136.94 IU/L; 319.78 ± 82.48 vs. 495.29 ± 137.13 IU/L; 2.02 ± 0.27 vs. 4.01 ± 0.52 μmol/L; 263.67 ± 41.18 vs. 439.14 ± 43.29 μg/g vs. in model rats, respectively; p < 0.01), as well as fibrosis extent by HE and VG staining. The MAP vaccine reduced TGF-β1 and α-SMA expression in rats (0.325 ± 0.059 vs. 0.507 ± 0.044 IOD/area; 0.318 ± 0.058 vs. 0.489 ± 0.029 IOD/area vs. model rats, respectively; p < 0.05). The TGF-β1 MAP vaccine could generate sufficient antibody that suppresses the development of hepatic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berger CM, Knutson KL, Salazar LG et al (2004) Peptide-based vaccines, handbook of cancer vaccines. Humana Press Inc, Totowa

    Google Scholar 

  • Bonafoux D, Lee WC (2009) Strategies for TGF-beta modulation: a review of recent patents. Expert Opin Ther Pat 19:1759–1769

    Article  CAS  PubMed  Google Scholar 

  • Branton MH, Kopp JB (1999) TGF-beta and fibrosis. Microbes Infect 1:1349–1365

    Article  CAS  PubMed  Google Scholar 

  • Cassidy Brady KK, Taylor W, Patkar A et al (2012) Carrier protein outsourcing. BioProcess Int 10:50–55

    Google Scholar 

  • Chackerian B, Lowy DR, Schiller JT (2001) Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction of protective autoantibodies. J Clin Invest 108:415–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng K, Yang N, Mahato RI (2009) TGF-beta1 gene silencing for treating liver fibrosis. Mol Pharm 6:772–779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciesielski MJ, Kazim AL, Barth RF et al (2005) Cellular antitumor immune response to a branched lysine multiple antigenic peptide containing epitopes of a common tumor-specific antigen in a rat glioma model. Cancer Immunol Immunother 54:107–119

    Article  CAS  PubMed  Google Scholar 

  • Delavallee L, Le Buanec H, Bessis N et al (2008) Early and long-lasting protection from arthritis in tumour necrosis factor alpha (TNFalpha) transgenic mice vaccinated against TNFalpha. Ann Rheum Dis 67:1332–1338

    Article  CAS  PubMed  Google Scholar 

  • Dong MX, Jia Y, Zhang YB et al (2009) Emodin protects rat liver from CCl(4)-induced fibrogenesis via inhibition of hepatic stellate cells activation. World J Gastroenterol 15:4753–4762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards CA, O’Brien WD Jr (1980) Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin Chim Acta 104:161–167

    Article  CAS  PubMed  Google Scholar 

  • Flanders KC, Roberts AB, Ling N et al (1988) Antibodies to peptide determinants in transforming growth factor beta and their applications. Biochemistry 27:739–746

    Article  CAS  PubMed  Google Scholar 

  • Gressner AM, Weiskirchen R, Breitkopf K et al (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7:d793–d807

    Article  CAS  PubMed  Google Scholar 

  • Gressner OA, Rizk MS, Kovalenko E et al (2008) Changing the pathogenetic roadmap of liver fibrosis? Where did it start; where will it go? J Gastroenterol Hepatol 23(7 Pt 1):1024–1035

    Article  CAS  PubMed  Google Scholar 

  • Grütter C, Wilkinson T, Turner R et al (2008) A cytokine-neutralizing antibody as a structural mimetic of 2 receptor interactions. Proc Natl Acad Sci USA 105:20251–20256

    Article  PubMed Central  PubMed  Google Scholar 

  • Guan Q, Ma Y, Hillman CL et al (2009) Development of recombinant vaccines against IL-12/IL-23 p40 and in vivo evaluation of their effects in the downregulation of intestinal inflammation in murine colitis. Vaccine 27:7096–7104

    Article  CAS  PubMed  Google Scholar 

  • Guo YH, Hao ZM, Luo JY et al (2006) Detecting the activity of antibodies induced by recombinant TGFbeta1 vaccine. Zhonghua Gan Zang Bing Za Zhi 14:183–186

    CAS  PubMed  Google Scholar 

  • Häkkinen HM, Franssila K, Kulonen E (1975) Effect of long-term administration of ethanol to the rat: lipids, collagen and other proteins, and Mallory bodies in the liver. Scand J Clin Lab Invest 35:753–765

    Article  PubMed  Google Scholar 

  • James OF, Day CP (1998) Non-alcoholic steatohepatitis (NASH): a disease of emerging identity and importance. J Hepatol 29:495–501

    Article  CAS  PubMed  Google Scholar 

  • Kisseleva T, Brenner DA (2006) Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol 21(Suppl 3):S84–S87

    Article  CAS  PubMed  Google Scholar 

  • Kopf M, Bachmann MF, Marsland BJ (2010) Averting inflammation by targeting the cytokine environment. Nat Rev Drug Discov 9:703–718

    Article  CAS  PubMed  Google Scholar 

  • Leroux-Roels G (2010) Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 28(Suppl 3):C25–C36

    Article  PubMed  Google Scholar 

  • Li S, Peng L, Zhao W et al (2011) Synthetic peptides containing B- and T-cell epitope of dengue virus-2 E domain III provoked B- and T-cell responses. Vaccine 29:3695–3702

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hu H, Yin JQ (2006) Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int 26:8–22

    Article  PubMed  Google Scholar 

  • Neninger Vinageras E, de la Torre A, Osorio Rodriguez M et al (2008) Phase II randomized controlled trial of an epidermal growth factor vaccine in advanced non-small-cell lung cancer. J Clin Oncol 26:1452–1458

    Article  PubMed  Google Scholar 

  • Paramasivam Saravanan SS, Kumar D (2009) Synthesis of highly immunogenic multiple antigenic peptides for epitopes of viral antigen to use in ELISA. Int J Peptide Res Ther 15:313–321

    Article  Google Scholar 

  • Pinzani M, Rombouts K (2004) Liver fibrosis: from the bench to clinical targets. Dig Liver Dis 36:231–242

    Article  CAS  PubMed  Google Scholar 

  • Pohlers D, Brenmoehl J, Loffler I et al (2009) TGF-beta and fibrosis in different organs - molecular pathway imprints. Biochim Biophys Acta 1792:746–756

    Article  CAS  PubMed  Google Scholar 

  • Shek FW, Benyon RC (2004) How can transforming growth factor beta be targeted usefully to combat liver fibrosis? Eur J Gastroenterol Hepatol 16:123–126

    Article  CAS  PubMed  Google Scholar 

  • Sonderegger I, Rohn TA, Kurrer MO et al (2006) Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. Eur J Immunol 36:2849–2856

    Article  CAS  PubMed  Google Scholar 

  • Song YH, Zhou XM, Xue XN et al (2005) Effect of ribozyme against transforming growth factor beta1 on biological character of activated HSCs. IUBMB Life 57:31–39

    Article  CAS  PubMed  Google Scholar 

  • Spohn G, Keller I, Beck M et al (2008) Active immunization with IL-1 displayed on virus-like particles protects from autoimmune arthritis. Eur J Immunol 38:877–887

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wu D, Xu T et al (2009) SEPPA: a computational server for spatial epitope prediction of protein antigens. Nucleic Acids Res 37(Web Server issue):W612–W616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szabo H, Fiorino G, Spinelli A et al (2010) Review article: anti-fibrotic agents for the treatment of Crohn’s disease - lessons learnt from other diseases. Aliment Pharmacol Ther 31:189–201

    Article  CAS  PubMed  Google Scholar 

  • Tam JP (1988) Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci USA 85:5409–5413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tam JP (1996) Recent advances in multiple antigen peptides. J Immunol Methods 196:17–32

    Article  CAS  PubMed  Google Scholar 

  • Tandon A, Tovey JC, Sharma A et al (2010) Role of transforming growth factor beta in corneal function, biology and pathology. Curr Mol Med 10:565–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tu CT, Guo JS, Wang M et al (2007) Antifibrotic activity of rofecoxib in vivo is associated with reduced portal hypertension in rats with carbon tetrachloride-induced liver injury. J Gastroenterol Hepatol 22:877–884

    Article  CAS  PubMed  Google Scholar 

  • Ueno H, Sakamoto T, Nakamura T et al (2000) A soluble transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Hum Gene Ther 11:33–42

    Article  CAS  PubMed  Google Scholar 

  • Wang TT, Tan GS, Hai R et al (2010) Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc Natl Acad Sci USA 107:18979–18984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willemin G, Roger C, Bauduret A et al (2013) Major histocompatibility class II pathway is not required for the development of nonalcoholic fatty liver disease in mice. Int J Endocrinol 2013:972962

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolff RA, Ryomoto M, Stark VE et al (2005) Antisense to transforming growth factor-beta1 messenger RNA reduces vein graft intimal hyperplasia and monocyte chemotactic protein 1. J Vasc Surg 41:498–508

    Article  PubMed  Google Scholar 

  • Wu DF, Cederbaum AI (2009) Oxidative stress and alcoholic liver disease. Semin Liver Dis 29:141–154

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30:245–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu W, Wang LW, Shi JZ et al (2009) Effects of RNA interference targeting transforming growth factor-beta 1 on immune hepatic fibrosis induced by Concanavalin A in mice. Hepatobiliary Pancreat Dis Int 8:300–308

    CAS  PubMed  Google Scholar 

  • Yata Y, Gotwals P, Koteliansky V et al (2002) Dose-dependent inhibition of hepatic fibrosis in mice by a TGF-beta soluble receptor: implications for antifibrotic therapy. Hepatology 35:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang H, Yu H (2007) Thioacetamide-induced cirrhosis in selenium-adequate mice displays rapid and persistent abnormity of hepatic selenoenzymes which are mute to selenium supplementation. Toxicol Appl Pharmacol 224:81–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the staff members of the Medical Experimental Animal Center, School of Medicine, Xi’an Jiaotong University and the Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangsuo Dang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 127 kb)

Supplementary material 2 (TIFF 130 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, W., Jia, X. et al. A Targeted Multiple Antigenic Peptide Vaccine Augments the Immune Response to Self TGF-β1 and Suppresses Ongoing Hepatic Fibrosis. Arch. Immunol. Ther. Exp. 63, 305–315 (2015). https://doi.org/10.1007/s00005-015-0333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-015-0333-2

Keywords

Navigation