Skip to main content
Erschienen in: Inflammation Research 8/2011

01.08.2011 | Original Research Paper

G1 cell cycle arrest signaling in hepatic injury after intraperitoneal sepsis in rats

verfasst von: Quan-hui Yang, Da-wei Liu, Xiao-ting Wang, Rong-li Yang, Yan Shi, Yun Long, Hong-zhong Liu, Huai-wu He, Xiang Zhou, Bo Tang

Erschienen in: Inflammation Research | Ausgabe 8/2011

Einloggen, um Zugang zu erhalten

Abstract

Objective and design

Hepatocytes emerge from a quiescent state into a proliferative state to recover from septic injury. We hypothesize that hepatocyte cell cycle regulation after sepsis potentially contributes to the recovery of liver function.

Methods

An animal model of sepsis was induced by cecal ligation and puncture (CLP) in rats. At serial time points after CLP, hepatocyte expression of p21, P53, cyclin D1, cyclin E, CDK2, CDK4 and PCNA was determined by immunoblot analysis, and the DNA content of isolated hepatocytes was analyzed using flow cytometry.

Results

Sepsis-induced liver injury of rats was associated with G1 cell cycle arrest. Recovery of liver function was related to cell cycle progression 48 h after CLP. The upregulation of p53 and p21 correlated with G1 cell arrest 48 h after CLP. The upregulation of cyclin D1/CDK4 and cyclin E/CDK2 also correlated with the G1/S transition 48 h after CLP, resulting in PCNA expression.

Conclusions

The data suggests that G1 cell cycle arrest and p53, p21, CDKs, cyclins and PCNA expression may be involved in the injury/recovery of liver function after intraperitoneal sepsis.
Literatur
1.
Zurück zum Zitat Baue AE, Durham R, Faist E. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock. 1998;10:79–89.PubMedCrossRef Baue AE, Durham R, Faist E. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock. 1998;10:79–89.PubMedCrossRef
2.
Zurück zum Zitat Beal AL, Cerra FB. Multiple organ failure syndrome in the 1990s: systemic inflammatory response and organ dysfunction. JAMA. 1994;271:226–33.PubMedCrossRef Beal AL, Cerra FB. Multiple organ failure syndrome in the 1990s: systemic inflammatory response and organ dysfunction. JAMA. 1994;271:226–33.PubMedCrossRef
3.
4.
Zurück zum Zitat Dremsizov TT, Kellum JA, Angus DC. Incidence and definition of sepsis and associated organ dysfunction. Int J Artif Organs. 2004;27:352–9.PubMed Dremsizov TT, Kellum JA, Angus DC. Incidence and definition of sepsis and associated organ dysfunction. Int J Artif Organs. 2004;27:352–9.PubMed
5.
Zurück zum Zitat Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–54.PubMedCrossRef Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–54.PubMedCrossRef
6.
Zurück zum Zitat Andrejko KM, Deutschman CS. Altered hepatic gene expression in fecal peritonitis: changes in transcription of gluconeogenic, β-oxidative and ureagenic genes. Shock. 1997;7:164–7.PubMedCrossRef Andrejko KM, Deutschman CS. Altered hepatic gene expression in fecal peritonitis: changes in transcription of gluconeogenic, β-oxidative and ureagenic genes. Shock. 1997;7:164–7.PubMedCrossRef
7.
Zurück zum Zitat Deutschman CS, De Maio A, Clemens MG. Sepsis-induced attenuation of glucagon and 8-BrcAMP modulation of the phosphoenolpyruvate carboxykinase gene. Am J Physiol Regul Integr Comp Physiol. 1995;269:R584–91. Deutschman CS, De Maio A, Clemens MG. Sepsis-induced attenuation of glucagon and 8-BrcAMP modulation of the phosphoenolpyruvate carboxykinase gene. Am J Physiol Regul Integr Comp Physiol. 1995;269:R584–91.
8.
Zurück zum Zitat Lang CH, Bagby GJ, Spitzer JJ. Carbohydrate dynamics in the hypermetabolic septic rat. Metabolism. 1984;33:959–63.PubMedCrossRef Lang CH, Bagby GJ, Spitzer JJ. Carbohydrate dynamics in the hypermetabolic septic rat. Metabolism. 1984;33:959–63.PubMedCrossRef
9.
Zurück zum Zitat Ohtake Y, Clemens MG. Interrelationship between hepatic ureagenesis and gluconeogenesis in early sepsis. Am J Physiol Endocrinol Metab. 1991;260:E453–8. Ohtake Y, Clemens MG. Interrelationship between hepatic ureagenesis and gluconeogenesis in early sepsis. Am J Physiol Endocrinol Metab. 1991;260:E453–8.
10.
Zurück zum Zitat Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, et al. Liver failure and defective hepatocyte regeneration in interleukin-6 deficient mice. Science. 1996;274:1379–83.PubMedCrossRef Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, et al. Liver failure and defective hepatocyte regeneration in interleukin-6 deficient mice. Science. 1996;274:1379–83.PubMedCrossRef
11.
Zurück zum Zitat Zimmermann A. Regulation of liver regeneration. Nephrol Dial Transplant. 2004;19:6–10.CrossRef Zimmermann A. Regulation of liver regeneration. Nephrol Dial Transplant. 2004;19:6–10.CrossRef
12.
Zurück zum Zitat Haber BA, Mohn KL, Diamond RH, Taub R. Induction patterns of 70 genes during nine days after hepatectomy define the temporal course of liver regeneration. J Clin Invest. 1993;91:1319–26.PubMedCrossRef Haber BA, Mohn KL, Diamond RH, Taub R. Induction patterns of 70 genes during nine days after hepatectomy define the temporal course of liver regeneration. J Clin Invest. 1993;91:1319–26.PubMedCrossRef
13.
Zurück zum Zitat Kovalovich K, DeAngelis RA, Li W, Furth EE, Ciliberto G, Taub R. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatology. 2000;31:149–59.PubMedCrossRef Kovalovich K, DeAngelis RA, Li W, Furth EE, Ciliberto G, Taub R. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatology. 2000;31:149–59.PubMedCrossRef
15.
Zurück zum Zitat Michalopoulos GK, DeFrances M. Liver regeneration. Adv Biochem Eng Biotechnol. 2005;l95:101–34. Michalopoulos GK, DeFrances M. Liver regeneration. Adv Biochem Eng Biotechnol. 2005;l95:101–34.
16.
Zurück zum Zitat Riehle KJ, Dan YY, Campbell JS, Fausto N. New concepts in liver regeneration. J Gastroenterol Hepatol. 2011;26(Suppl 1):203–12.PubMedCrossRef Riehle KJ, Dan YY, Campbell JS, Fausto N. New concepts in liver regeneration. J Gastroenterol Hepatol. 2011;26(Suppl 1):203–12.PubMedCrossRef
17.
Zurück zum Zitat Thompson NL, Mead JE, Braun L, Goyette M, Shank PR, Fausto N. Sequential protooncogene expression during rat liver regeneration. Cancer Res. 1986;46:3111–7.PubMed Thompson NL, Mead JE, Braun L, Goyette M, Shank PR, Fausto N. Sequential protooncogene expression during rat liver regeneration. Cancer Res. 1986;46:3111–7.PubMed
18.
Zurück zum Zitat Bellamy CO, Clarke AR, Wyllie AH, Harrison DJ. p53 deficiency in liver reduces local control of survival and proliferation, but does not affect apoptosis after DNA damage. FASEB J. 1997;11:591–9.PubMed Bellamy CO, Clarke AR, Wyllie AH, Harrison DJ. p53 deficiency in liver reduces local control of survival and proliferation, but does not affect apoptosis after DNA damage. FASEB J. 1997;11:591–9.PubMed
20.
Zurück zum Zitat Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.PubMedCrossRef Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.PubMedCrossRef
21.
Zurück zum Zitat Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995;9:1149–63.PubMedCrossRef Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995;9:1149–63.PubMedCrossRef
22.
Zurück zum Zitat El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.PubMedCrossRef El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.PubMedCrossRef
23.
Zurück zum Zitat Yang QH, Liu DW, Long Y, Liu HZ, Chai WZ, Wang XT. Acute renal failure during sepsis: Potential role of cell cycle regulation. J Infect. 2009;58:459–64.PubMedCrossRef Yang QH, Liu DW, Long Y, Liu HZ, Chai WZ, Wang XT. Acute renal failure during sepsis: Potential role of cell cycle regulation. J Infect. 2009;58:459–64.PubMedCrossRef
24.
Zurück zum Zitat Chaudry IH, Wichterman KA, Baue AE. Effect of sepsis on tissue adenine nucleotide levels. Surgery. 1979;85:205–11.PubMed Chaudry IH, Wichterman KA, Baue AE. Effect of sepsis on tissue adenine nucleotide levels. Surgery. 1979;85:205–11.PubMed
25.
Zurück zum Zitat Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock: a review of laboratory models and a proposal. J Surg Res. 1980;29:189–201.PubMedCrossRef Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock: a review of laboratory models and a proposal. J Surg Res. 1980;29:189–201.PubMedCrossRef
26.
Zurück zum Zitat Hubbard WJ, Choudhry M, Schwacha MG, Kerby JD, Rue LW 3rd, Bland KI, et al. Cecal ligation and puncture. Shock. 2005;24(Suppl 1):52–7.PubMedCrossRef Hubbard WJ, Choudhry M, Schwacha MG, Kerby JD, Rue LW 3rd, Bland KI, et al. Cecal ligation and puncture. Shock. 2005;24(Suppl 1):52–7.PubMedCrossRef
27.
Zurück zum Zitat Fraker PJ, King LE, Lill-Elghanian D, Telford WG. Quantification of apoptotic events in pure and heterogeneous populations of cells using the flow cytometer. Methods Cell Biol. 1995;46:57–76.PubMedCrossRef Fraker PJ, King LE, Lill-Elghanian D, Telford WG. Quantification of apoptotic events in pure and heterogeneous populations of cells using the flow cytometer. Methods Cell Biol. 1995;46:57–76.PubMedCrossRef
28.
Zurück zum Zitat El-Deiry WS. p21/p53, cellular growth control and genomic integrity. Curr Top Microbiol Immunol. 1998;227:121–37.PubMed El-Deiry WS. p21/p53, cellular growth control and genomic integrity. Curr Top Microbiol Immunol. 1998;227:121–37.PubMed
29.
Zurück zum Zitat Deitch EA. Animal models of sepsis and shock: a review and lessons learned. Shock. 1998;9:1–11.PubMedCrossRef Deitch EA. Animal models of sepsis and shock: a review and lessons learned. Shock. 1998;9:1–11.PubMedCrossRef
30.
Zurück zum Zitat Fink MP, Heard SO. Laboratory models of sepsis and septic shock. J Surg Res. 1990;49:186–96.PubMedCrossRef Fink MP, Heard SO. Laboratory models of sepsis and septic shock. J Surg Res. 1990;49:186–96.PubMedCrossRef
31.
Zurück zum Zitat Riedemann NC, Guo RF, Ward PA. The enigma of sepsis. J Clin Invest. 2003;112:460–7.PubMed Riedemann NC, Guo RF, Ward PA. The enigma of sepsis. J Clin Invest. 2003;112:460–7.PubMed
32.
Zurück zum Zitat Regel G, Grotz M, Weltner T, Sturm JA, Tscherne H. Patterns of organ failure following severe trauma. World J Surg. 1996;20:422–9.PubMedCrossRef Regel G, Grotz M, Weltner T, Sturm JA, Tscherne H. Patterns of organ failure following severe trauma. World J Surg. 1996;20:422–9.PubMedCrossRef
33.
Zurück zum Zitat Weiss YG, Bellin L, Kim PK, Andrejko KM, Haaxma CA, Raj N, et al. Compensatory hepatic regeneration after mild, but not fulminant, intraperitoneal sepsis in rats. Am J Physiol Gastrointest Liver Physiol. 2001;280:G968–73. Weiss YG, Bellin L, Kim PK, Andrejko KM, Haaxma CA, Raj N, et al. Compensatory hepatic regeneration after mild, but not fulminant, intraperitoneal sepsis in rats. Am J Physiol Gastrointest Liver Physiol. 2001;280:G968–73.
34.
Zurück zum Zitat Arora V, Iversen PL. Antisense oligonucleotides targeted to the p53 gene modulate liver regeneration in vivo. Drug Metab Dispos. 2000;28:131–8.PubMed Arora V, Iversen PL. Antisense oligonucleotides targeted to the p53 gene modulate liver regeneration in vivo. Drug Metab Dispos. 2000;28:131–8.PubMed
35.
Zurück zum Zitat Polyak K, Waldman T, He TC, Kinzler KW, Vogelstein B. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev. 1996;10:1945–52.PubMedCrossRef Polyak K, Waldman T, He TC, Kinzler KW, Vogelstein B. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev. 1996;10:1945–52.PubMedCrossRef
36.
Zurück zum Zitat Attardi LD, Lowe SW, Brugarolas J, Jacks T. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 1996;15:3693–701.PubMed Attardi LD, Lowe SW, Brugarolas J, Jacks T. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 1996;15:3693–701.PubMed
37.
Zurück zum Zitat Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990;249:912–5.PubMedCrossRef Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990;249:912–5.PubMedCrossRef
38.
Zurück zum Zitat Mercer WE, Avignolo C, Baserga R. Role of the p53 protein in cell proliferation as studied by microinjection of monoclonal antibodies. Mol Cell Biol. 1984;4:276–81.PubMed Mercer WE, Avignolo C, Baserga R. Role of the p53 protein in cell proliferation as studied by microinjection of monoclonal antibodies. Mol Cell Biol. 1984;4:276–81.PubMed
39.
Zurück zum Zitat Rozga J. Hepatocyte proliferation in health and in liver failure. Med Sci Monit. 2002;8:RA32–8. Rozga J. Hepatocyte proliferation in health and in liver failure. Med Sci Monit. 2002;8:RA32–8.
40.
Zurück zum Zitat Connell-Crowley L, Elledge SJ, Harper JW. G1 cyclin dependent kinases are sufficient to initiate DNA synthesis in quiescent human fibroblasts. Curr Biol. 1998;8:65–8.PubMedCrossRef Connell-Crowley L, Elledge SJ, Harper JW. G1 cyclin dependent kinases are sufficient to initiate DNA synthesis in quiescent human fibroblasts. Curr Biol. 1998;8:65–8.PubMedCrossRef
41.
Zurück zum Zitat Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol. 1995;15:2612–24.PubMed Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol. 1995;15:2612–24.PubMed
42.
Zurück zum Zitat Tsai LH, Lees E, Faha B, Harlow E, Riabowol K. The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene. 1993;8:1593–602.PubMed Tsai LH, Lees E, Faha B, Harlow E, Riabowol K. The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene. 1993;8:1593–602.PubMed
43.
Zurück zum Zitat Ehrenfried JA, Ko TC, Thompson EA, Evers BM. Cell cycle-mediated regulation of hepatic regeneration. Surgery. 1997;122:927–35.PubMedCrossRef Ehrenfried JA, Ko TC, Thompson EA, Evers BM. Cell cycle-mediated regulation of hepatic regeneration. Surgery. 1997;122:927–35.PubMedCrossRef
44.
Zurück zum Zitat Albrecht JH, Rieland BM, Nelsen CJ, Ahonen CL. Regulation of G(1) cyclin-dependent kinases in the liver: role of nuclear localization and p27 sequestration. Am J Physiol. 1999;277:G1207–16. Albrecht JH, Rieland BM, Nelsen CJ, Ahonen CL. Regulation of G(1) cyclin-dependent kinases in the liver: role of nuclear localization and p27 sequestration. Am J Physiol. 1999;277:G1207–16.
45.
Zurück zum Zitat Jaumot M, Estanyol JM, Serratosa J, Agell N, Bachs O. Activation of Cdk4 and Cdk2 during rat liver regeneration is associated with intranuclear rearrangements of cyclin-Cdk complexes. Hepatology. 1999;29:385–95.PubMedCrossRef Jaumot M, Estanyol JM, Serratosa J, Agell N, Bachs O. Activation of Cdk4 and Cdk2 during rat liver regeneration is associated with intranuclear rearrangements of cyclin-Cdk complexes. Hepatology. 1999;29:385–95.PubMedCrossRef
46.
Zurück zum Zitat Hanse EA, Nelsen CJ, Goggin MM, Anttila CK, Mullany LK, Berthet C, Kaldis P, Crary GS, Kuriyama R, Albrecht JH. Cdk2 plays a critical role in hepatocyte cell cycle progression and survival in the setting of cyclin D1 expression in vivo. Cell Cycle. 2009;8(17):2802–9.PubMedCrossRef Hanse EA, Nelsen CJ, Goggin MM, Anttila CK, Mullany LK, Berthet C, Kaldis P, Crary GS, Kuriyama R, Albrecht JH. Cdk2 plays a critical role in hepatocyte cell cycle progression and survival in the setting of cyclin D1 expression in vivo. Cell Cycle. 2009;8(17):2802–9.PubMedCrossRef
47.
Zurück zum Zitat Foley J, Ton T, Maronpot R, Butterworth B, Goldsworthy TL. Comparison of proliferating cell nuclear antigen to tritiated thymidine as a marker of proliferating hepatocytes in rats. Environ Health Perspect. 1993;101(Suppl 5):199–206.PubMedCrossRef Foley J, Ton T, Maronpot R, Butterworth B, Goldsworthy TL. Comparison of proliferating cell nuclear antigen to tritiated thymidine as a marker of proliferating hepatocytes in rats. Environ Health Perspect. 1993;101(Suppl 5):199–206.PubMedCrossRef
48.
Zurück zum Zitat Assy N, Gong Y, Zhang M, Pettigrew NM, Pashniak D, Minuk GY. Use of proliferating cell nuclear antigen as a marker of liver regeneration after partial hepatectomy in rats. J Lab Clin Med. 1998;131:251–6.PubMedCrossRef Assy N, Gong Y, Zhang M, Pettigrew NM, Pashniak D, Minuk GY. Use of proliferating cell nuclear antigen as a marker of liver regeneration after partial hepatectomy in rats. J Lab Clin Med. 1998;131:251–6.PubMedCrossRef
Metadaten
Titel
G1 cell cycle arrest signaling in hepatic injury after intraperitoneal sepsis in rats
verfasst von
Quan-hui Yang
Da-wei Liu
Xiao-ting Wang
Rong-li Yang
Yan Shi
Yun Long
Hong-zhong Liu
Huai-wu He
Xiang Zhou
Bo Tang
Publikationsdatum
01.08.2011
Verlag
SP Birkhäuser Verlag Basel
Erschienen in
Inflammation Research / Ausgabe 8/2011
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-011-0334-5

Weitere Artikel der Ausgabe 8/2011

Inflammation Research 8/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.