Skip to main content
Erschienen in: Inflammation Research 5/2019

12.03.2019 | Original Research Paper

Fibroblast growth factor 21 deficiency aggravates obesity-induced hypothalamic inflammation and impairs thermogenic response

verfasst von: Luthfiyyah Mutsnaini, Chu-Sook Kim, Jiye Kim, Yeonsoo Joe, Hun Taeg Chung, Hye-Seon Choi, Eun Roh, Min-Seon Kim, Rina Yu

Erschienen in: Inflammation Research | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective and design

Hypothalamic inflammation is closely associated with metabolic dysregulation. Fibroblast growth factor 21 (FGF21) is known to be an important metabolic regulator with anti-inflammatory properties. In this study, we investigated the effects of FGF21 deficiency on obesity-induced hypothalamic inflammation and thermogenic responses.

Materials and methods

FGF21-deficient mice and/or wild-type (WT) mice were fed a high-fat diet (HFD) for 12 weeks.

Results

FGF21-deficient mice fed an HFD showed increased levels of inflammatory cytokines compared with WT obese control, and this was accompanied by upregulation of gliosis markers in the hypothalamus. Expression of heat-shock protein 72, a marker of neuronal damage, was increased in the FGF21-deficient obese mice, and the expression of hypothalamic neuronal markers involved in anti-thermogenic or thermogenic responses was altered. Moreover, the protein level of uncoupling protein 1 and other thermogenic genes were markedly reduced in the brown adipose tissue of the FGF21-deficient obese mice.

Conclusions

These findings suggest that FGF21 deficiency aggravates obesity-induced hypothalamic inflammation and neuronal injury, leading to alterations in hypothalamic neural circuits accompanied by a reduction of the thermogenic response.
Literatur
1.
Zurück zum Zitat Le Thuc O, Stobbe K, Cansell C, Nahon J-L, Blondeau N, Rovère C. Hypothalamic inflammation and energy balance disruptions: spotlight on chemokines. Front Endocrinol. 2017;8:197.CrossRef Le Thuc O, Stobbe K, Cansell C, Nahon J-L, Blondeau N, Rovère C. Hypothalamic inflammation and energy balance disruptions: spotlight on chemokines. Front Endocrinol. 2017;8:197.CrossRef
2.
Zurück zum Zitat Guillemot-Legris O, Muccioli GG. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 2017;40(4):237–53.CrossRefPubMed Guillemot-Legris O, Muccioli GG. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 2017;40(4):237–53.CrossRefPubMed
3.
Zurück zum Zitat Yang J, Kim C-S, Tu TH, Kim M-S, Goto T, Kawada T, et al. Quercetin protects obesity-induced hypothalamic inflammation by reducing microglia-mediated inflammatory responses via HO-1 induction. Nutrients. 2017;9(7):650.CrossRefPubMedCentral Yang J, Kim C-S, Tu TH, Kim M-S, Goto T, Kawada T, et al. Quercetin protects obesity-induced hypothalamic inflammation by reducing microglia-mediated inflammatory responses via HO-1 induction. Nutrients. 2017;9(7):650.CrossRefPubMedCentral
4.
Zurück zum Zitat Lee CH, Kim HJ, Lee Y-S, Kang GM, Lim HS, Lee S-h, et al. Hypothalamic macrophage inducible nitric oxide synthase mediates obesity-associated hypothalamic inflammation. Cell Rep. 2018;25(4):934–46.e5.CrossRefPubMedPubMedCentral Lee CH, Kim HJ, Lee Y-S, Kang GM, Lim HS, Lee S-h, et al. Hypothalamic macrophage inducible nitric oxide synthase mediates obesity-associated hypothalamic inflammation. Cell Rep. 2018;25(4):934–46.e5.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Arruda AP, Milanski M, Coope A, Torsoni AS, Ropelle E, Carvalho DP, et al. Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology. 2011;152(4):1314–26.CrossRefPubMed Arruda AP, Milanski M, Coope A, Torsoni AS, Ropelle E, Carvalho DP, et al. Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology. 2011;152(4):1314–26.CrossRefPubMed
6.
Zurück zum Zitat Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.CrossRefPubMedPubMedCentral Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Kim KH, Lee M-S. FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs. J Endocrinol. 2015;226(1):R1–16.CrossRefPubMed Kim KH, Lee M-S. FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs. J Endocrinol. 2015;226(1):R1–16.CrossRefPubMed
8.
Zurück zum Zitat Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Investig. 2005;115(6):1627.CrossRefPubMed Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Investig. 2005;115(6):1627.CrossRefPubMed
10.
Zurück zum Zitat Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ, Kliewer SA, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63(12):4057–63.CrossRefPubMedPubMedCentral Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ, Kliewer SA, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63(12):4057–63.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Staiger H, Keuper M, Berti L, Hrabě de Angelis M, Häring H-U. Fibroblast growth factor 21-metabolic role in mice and men. Endocr Rev. 2017;38(5):468–88.CrossRefPubMed Staiger H, Keuper M, Berti L, Hrabě de Angelis M, Häring H-U. Fibroblast growth factor 21-metabolic role in mice and men. Endocr Rev. 2017;38(5):468–88.CrossRefPubMed
12.
Zurück zum Zitat Jimenez V, Jambrina C, Casana E, Sacristan V, Muñoz S, Darriba S, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med. 2018;10(8):e8791.CrossRefPubMedPubMedCentral Jimenez V, Jambrina C, Casana E, Sacristan V, Muñoz S, Darriba S, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med. 2018;10(8):e8791.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Tan BK, Hallschmid M, Adya R, Kern W, Lehnert H, Randeva HS. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid. Diabetes. 2011;60(11):2758–62.CrossRefPubMedPubMedCentral Tan BK, Hallschmid M, Adya R, Kern W, Lehnert H, Randeva HS. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid. Diabetes. 2011;60(11):2758–62.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010;24(10):2050–64.CrossRefPubMedPubMedCentral Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010;24(10):2050–64.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Bookout AL, De Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013;19(9):1147–52.CrossRefPubMedPubMedCentral Bookout AL, De Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013;19(9):1147–52.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, et al. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J Cell Physiol. 2008;215(1):1–7.CrossRefPubMed Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, et al. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J Cell Physiol. 2008;215(1):1–7.CrossRefPubMed
18.
Zurück zum Zitat Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, et al. FGF21 attenuates high-fat diet-induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice. Mol Neurobiol. 2017;55(6):4702–17.CrossRefPubMedPubMedCentral Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, et al. FGF21 attenuates high-fat diet-induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice. Mol Neurobiol. 2017;55(6):4702–17.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Shi Y-C, Lau J, Lin Z, Zhang H, Zhai L, Sperk G, et al. Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab. 2013;17(2):236–48.CrossRefPubMed Shi Y-C, Lau J, Lin Z, Zhang H, Zhai L, Sperk G, et al. Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab. 2013;17(2):236–48.CrossRefPubMed
21.
Zurück zum Zitat Morton G, Cummings D, Baskin D, Barsh G, Schwartz M. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95.CrossRefPubMed Morton G, Cummings D, Baskin D, Barsh G, Schwartz M. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95.CrossRefPubMed
24.
Zurück zum Zitat Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43.CrossRefPubMed Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43.CrossRefPubMed
25.
Zurück zum Zitat Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57.CrossRefPubMed Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57.CrossRefPubMed
27.
Zurück zum Zitat Kwon YH, Kim J, Kim CS, Tu TH, Kim MS, Suk K, et al. Hypothalamic lipid-laden astrocytes induce microglia migration and activation. FEBS Lett. 2017;591(12):1742–51.CrossRefPubMed Kwon YH, Kim J, Kim CS, Tu TH, Kim MS, Suk K, et al. Hypothalamic lipid-laden astrocytes induce microglia migration and activation. FEBS Lett. 2017;591(12):1742–51.CrossRefPubMed
28.
Zurück zum Zitat Leng Y, Wang Z, Tsai L-K, Leeds P, Fessler EB, Wang J, et al. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol Psychiatry. 2015;20(2):215.CrossRefPubMed Leng Y, Wang Z, Tsai L-K, Leeds P, Fessler EB, Wang J, et al. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol Psychiatry. 2015;20(2):215.CrossRefPubMed
29.
Zurück zum Zitat Raji CA, Ho AJ, Parikshak NN, Becker JT, Lopez OL, Kuller LH, et al. Brain structure and obesity. Hum Brain Mapp. 2010;31(3):353–64.PubMedPubMedCentral Raji CA, Ho AJ, Parikshak NN, Becker JT, Lopez OL, Kuller LH, et al. Brain structure and obesity. Hum Brain Mapp. 2010;31(3):353–64.PubMedPubMedCentral
30.
Zurück zum Zitat Wang H, Wen B, Cheng J, Li H. Brain structural differences between normal and obese adults and their links with lack of perseverance, negative urgency, and sensation seeking. Sci Rep. 2017;7:40595.CrossRefPubMedPubMedCentral Wang H, Wen B, Cheng J, Li H. Brain structural differences between normal and obese adults and their links with lack of perseverance, negative urgency, and sensation seeking. Sci Rep. 2017;7:40595.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Butler AB, Hodos W. Evolution and adaptation of the brain, behavior, and intelligence. In: Butler AB, editor. Comparative vertebrate neuroanatomy: evolution and adaptation. 2nd ed. New Jersey: Wiley; 2005. p. 93–111.CrossRef Butler AB, Hodos W. Evolution and adaptation of the brain, behavior, and intelligence. In: Butler AB, editor. Comparative vertebrate neuroanatomy: evolution and adaptation. 2nd ed. New Jersey: Wiley; 2005. p. 93–111.CrossRef
32.
Zurück zum Zitat Chechi K, Carpentier AC, Richard D. Understanding the brown adipocyte as a contributor to energy homeostasis. Trends Endoctinol Metab. 2013;24(8):408–20.CrossRef Chechi K, Carpentier AC, Richard D. Understanding the brown adipocyte as a contributor to energy homeostasis. Trends Endoctinol Metab. 2013;24(8):408–20.CrossRef
33.
Zurück zum Zitat Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, et al. The brain and brown fat. Ann Med. 2015;47(2):150–68.CrossRefPubMed Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, et al. The brain and brown fat. Ann Med. 2015;47(2):150–68.CrossRefPubMed
34.
Zurück zum Zitat Yang X, Ruan H-B. Neuronal control of adaptive thermogenesis. Front Endocrinol. 2015;6:149.CrossRef Yang X, Ruan H-B. Neuronal control of adaptive thermogenesis. Front Endocrinol. 2015;6:149.CrossRef
35.
Zurück zum Zitat Zhang X, van den Pol AN. Thyrotropin-releasing hormone (TRH) inhibits melanin-concentrating hormone neurons: implications for TRH-mediated anorexic and arousal actions. J Neurosci. 2012;32(9):3032–43.CrossRefPubMedPubMedCentral Zhang X, van den Pol AN. Thyrotropin-releasing hormone (TRH) inhibits melanin-concentrating hormone neurons: implications for TRH-mediated anorexic and arousal actions. J Neurosci. 2012;32(9):3032–43.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Diniz GB, Bittencourt JC. The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front Syst Neurosci. 2017;11:32.CrossRefPubMedPubMedCentral Diniz GB, Bittencourt JC. The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front Syst Neurosci. 2017;11:32.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Dalvi P, Chalmers J, Luo V, Han D-Y, Wellhauser L, Liu Y, et al. High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons. Int J Obes. 2017;41(1):149–58.CrossRef Dalvi P, Chalmers J, Luo V, Han D-Y, Wellhauser L, Liu Y, et al. High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons. Int J Obes. 2017;41(1):149–58.CrossRef
38.
Zurück zum Zitat Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes. 2010;59(7):1817–24.CrossRefPubMedPubMedCentral Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes. 2010;59(7):1817–24.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81.CrossRefPubMedPubMedCentral Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81.CrossRefPubMedPubMedCentral
Metadaten
Titel
Fibroblast growth factor 21 deficiency aggravates obesity-induced hypothalamic inflammation and impairs thermogenic response
verfasst von
Luthfiyyah Mutsnaini
Chu-Sook Kim
Jiye Kim
Yeonsoo Joe
Hun Taeg Chung
Hye-Seon Choi
Eun Roh
Min-Seon Kim
Rina Yu
Publikationsdatum
12.03.2019
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 5/2019
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-019-01222-2

Weitere Artikel der Ausgabe 5/2019

Inflammation Research 5/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Innere Medizin

23.04.2024 | Parkinson-Krankheit | Podcast | Nachrichten

Parkinson-Therapie im Wandel – aktuelle Leitlinie im Fokus

Professorin Dr. Claudia Trenkwalder, Neurologin

22.04.2024 | DGIM 2024 | Kongressbericht | Nachrichten

Krebspatienten impfen: Was? Wen? Und wann nicht?

22.04.2024 | DGIM 2024 | Kongressbericht | Nachrichten

Nierenultraschall: Tipps vom Profi

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.