Skip to main content

Advertisement

Log in

Tachykinin-1 receptor antagonism suppresses substance-P- and compound 48/80-induced mast cell activation from rat mast cells expressing functional mas-related GPCR B3

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Mice and rats are important animal models for mast cell (MC) study. However, rat Mas-related-GPCR-B3 receptor (MRGPRB3) has been less studied than its mouse counterpart. Therefore, we aimed to characterize rat MRGPRB3.

Methods

Mrgprb3 mRNA expression was assessed in peritoneal cells (RPCs) and peritoneal MCs (RPMCs) of wild-type rats, RPCs of MC-deficient rats, and RBL-2H3 cells by reverse-transcriptase polymerase chain reaction (RT-PCR). RPMCs, MRGPRX2-transfected and non-transfected RBL-2H3 cells were activated by 15–30 min incubation with DNP-BSA, substance-P (SP), or compound-48/80. L732138 or CP96344 was used as a tachykinin/neurokinin-1-receptor antagonist. Histamine release from MCs was measured by HPLC fluorometry.

Results

Mrgprb3 mRNA expression was found in all cells, with the highest level in wild-type RPCs. All cells responded to DNP-BSA, but only MRGPRX2-transfected-RBL-2H3 cells and RPMCs responded to all activators. L732138 (0.1–10 μM) and CP96344 (1–100 μM) suppressed SP (10 μM)-induced RPMC activation. L732138 inhibition was dose independent, whereas CP96344 inhibition occurred in a dose-dependent manner. Additionally, only CP96344 suppressed SP (100 μM)- and compound-48/80 (10 μg/mL)-induced RPMC activation.

Conclusions

RPMCs expressing functional MRGPRB3 response upon MRGPRX2 ligands to regulated MC-mediated activities. It`s provide novel insights for future pseudo-allergic studies in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tatemoto K, Nozaki Y, Tsuda R, Konno S, Tomura K, Furuno M, Ogasawara H, Edamura K, Takagi H, Iwamura H, Noguchi M, Naito T. Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem Biophys Res Commun. 2006;349:1322–8.

    Article  CAS  Google Scholar 

  2. Mousli M, Bueb JL, Bronner C, Rouot B, Landry Y. G Protein activation: a receptor-independent mode of action for cationic amphiphilic neuropeptides and venom peptides. Trends Pharmacol Sci. 1990;11(9):358–62.

    Article  CAS  Google Scholar 

  3. Chahdi A, Fraundorfer PF, Beaven MA. Compound 48/80 activates mast cell phospholipase D via heterotrimeric GTP-binding proteins. J Pharmacol Exp Ther. 2000;292(1):122–30.

    PubMed  CAS  Google Scholar 

  4. Palomaki VA, Laitinen JT. The basic secretagogue compound 48/80 activates G proteins indirectly via stimulation of phospholipase d-lysophosphatidic acid receptor axis and 5-HT1A receptors in rat brain sections. Br J Pharmacol. 2006;147(6):596–606.

    Article  CAS  Google Scholar 

  5. Thurmond RL, Gelfand EW, Dunford PJ. The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Disc. 2008;7(1):41–53.

    Article  CAS  Google Scholar 

  6. Ohsawa Y, Hirasawa N. The role of histamine H1 and H4 receptors in atopic dermatitis: from basic research to clinical study. Allergol Int. 2014;63:533–42.

    Article  CAS  Google Scholar 

  7. Azimi E, Reddy VB, Shade K-TC, Anthony RM, Talbot S, Pereira PJS, Lerner EA. Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI Insight. 2016;1(16):e89362.

  8. Dong X, Han S-K, Zylka MJ, Simon MI, Anderson DJ. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell. 2001;106:619–32.

    Article  CAS  Google Scholar 

  9. Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A, Ru F, Guan Y, Weng H-J, Geng Y, Undem BJ, Kollarik M, Chen Z-F, Anderson DJ, Dong X. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell. 2009;139:1353–65.

    Article  Google Scholar 

  10. Robas N, Mead E, Fidock M. MrgX2 is a high potency cortistatin receptor expressed in dorsal root ganglion. J Biol Chem. 2003;278(45):44400–4.

    Article  CAS  Google Scholar 

  11. Kamohara M, Matsuo A, Takasaki J, Kohda M, Matsumoto M, Matsumoto S, Soga T, Hiyama H, Kobori M, Katou M. Identification of MrgX2 as a human G-protein-coupled receptor for proadrenomedullin N-terminal peptides. Biochem Biophys Res Commun. 2005;330:1146–52.

    Article  CAS  Google Scholar 

  12. Nothacker H-P, Wang Z, Zeng H, Mahata SK, O’Connor DT, Civelli O. Proadrenomedullin N-terminal peptide and cortistatin activation of MrgX2 receptor is based on a common structural motif. Eur J Pharmacol. 2005;519:191–3.

    Article  CAS  Google Scholar 

  13. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, Dong X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519(7542):237–41.

    Article  CAS  Google Scholar 

  14. Zhang T, Che D, Liu R, Han S, Wang N, Zhang Y, Pundir P, Cao J, Lv Y, Yang L, Wang J, Ding M, Dong X, He L. Typical antimicrobials induced mast cell degranulation and anaphylactoid reactions via MrgprX2 and its murine homologue Mrgprb2. Eur J Immunol. 2017;47(11):1949–58.

    Article  CAS  Google Scholar 

  15. Pennefather JN, Lecci A, Candenas ML, Patak E, Pinto FM, Maggi CA. Tachykinins and tachykinin receptors: a growing family. Life Sci. 2004;74:1445–633.

    Article  CAS  Google Scholar 

  16. Fridmanis D, Roga A, Klovins J. ACTH receptor (MC2R) specificity: what do we know about underlying molecular mechanisms? Front Endocrinol. 2017;8:13.

    Article  Google Scholar 

  17. Tusnady GE, Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol. 1998;283:489–506.

    Article  CAS  Google Scholar 

  18. Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics. 2001;17:849–50.

    Article  CAS  Google Scholar 

  19. Omasits U, Ahrens CH, Muller S, Wollscheid B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014;30(6):884–6.

    Article  CAS  Google Scholar 

  20. Skrabanek L, Campagne F, Weinstein H. Building protein diagrams on the web with the residue-based diagram editor RbDe. Nucleic Acids Res. 2003;31:3856–8.

    Article  CAS  Google Scholar 

  21. Kiyoi T, Liu S, Sahid MNA, Shudou M, Ogasawara M, Mogi M, Maeyama K. Morphological and functional analysis of beige (Chediak–Higashi syndrome) mouse mat cells with giant granules. Int Immunopharmacol. 2019;69:202–12.

    Article  CAS  Google Scholar 

  22. Yamatodani A, Fukuda H, Iwaeda T, Watanabe T, Wada H. HPLC determination of plasma and brain histamine without previous purification of biological samples: cation exchange chromatography coupled with post-column derivatization fluorometry. J Chromatogr. 1985;344:115–23.

    Article  CAS  Google Scholar 

  23. Aun MV, Bonamichi-Santos R, Arantes-Costa FM, Kalil J, Giavina-Bianchi P. Animal models of asthma: utility and limitations. J Asthma Allergy. 2017;10:293–301.

    Article  CAS  Google Scholar 

  24. Reber LL, Marichal T, Galli SJ. New models for analyzing mast cell function in vivo. Trends Immunol. 2012;33(12):613–25.

    Article  CAS  Google Scholar 

  25. Lei Y, Gregory JA, Nilsson GP, Adner M. Insights into mast cell functions in asthma using mouse models. Pulm Pharmacol Ther. 2013;26(5):532–9.

    Article  CAS  Google Scholar 

  26. Kucharewicz I, Bodzenta-Lukaszyk A, Buczko W. Experimental asthma in rats. Pharmacol Rep. 2008;60(6):783–8.

    PubMed  CAS  Google Scholar 

  27. Oka T, Kalesnikoff J, Starkl P, Tsai M, Galli SJ. Evidence questioning cromolyn’s effectiveness and selectivity as a “mast cell stabilizer” in mice. Lab Invest. 2012;92(10):1472–82.

    Article  CAS  Google Scholar 

  28. Arizono N, Kasugai T, Yamada M, Okada M, Morimoto M, Tei H, Newlands GF, Miller HR, Kitamura Y. Infection of Nippostrongylus brasiliensis induces development of mucosal-type but not connective tissue-type mast cells in genetically mast cell-deficient Ws/Ws rats. Blood. 1993;81(10):2572–8.

    Article  CAS  Google Scholar 

  29. Barsumian EL, Isersky C, Petrino MG, Siraganian RP. IgE-induced histamine release from rat basophilic leukemia cell lines: isolation of releasing and non-releasing clones. Eur J Immunol. 1981;11:317–23.

    Article  CAS  Google Scholar 

  30. Passante E, Frankish N. The RBL-2H3 cell line: its provenance and suitability as a model for the mast cell. Inflamm Res. 2009;58:737–45.

    Article  CAS  Google Scholar 

  31. Lai J-P, Lai S, Tuluc F, Tansky MF, Kilpatrick LE, Leeman SE, Douglas SD. Differences in the length of the carboxyl terminus mediate functional properties of neurokinin-1 receptor. Proc Natl Acad Sci USA. 2008;105(34):12605–10.

    Article  Google Scholar 

  32. Snider RM, Longo KP, Drozda SE, Lowe JA III, Leeman SE. Effect of CP-96345, a nonpeptide substance P receptor antagonist, on salivation in rats. Proc Natl Acad Sci USA. 1991;88:10042–4.

    Article  CAS  Google Scholar 

  33. Griesbacher T, Donnerer J, Legat FJ, Lembeck F. CP-96345, a non-peptide antagonist of substance P: II. Actions on substance P-induced hypotension and bronchoconstriction, and on depressor reflexes in mammals. Naunyn-Schmiedeberg’s Arch Pharmacol. 1992;346:323–7.

  34. Yashpal K, Radhakrishnan V, Coderres TJ, Henry JL. CP-96345, but not its stereoisomer, CP-96344, blocks the nociceptive responses to intrathecally administered substance P and to noxious thermal and chemical stimuli in the rat. Neuroscience. 1993;52(4):1039–47.

    Article  CAS  Google Scholar 

  35. Jacob S, Deyo DJ, Cox RA, Jacob RK, Herndon DN, Traber DL, Hawkins HK. Substance P antagonist CP-96345 blocks lung vascular leakage and inflammation more effectively than its stereoisomer CP-96344 in a mouse model of smoke inhalation and burn injury. Toxical Mech Meth. 2010;20(4):197–203.

    Article  CAS  Google Scholar 

  36. Leffler A, Ahlstedt I, Engberg S, Svensson A, Billger M, Oberg L, Bjursell MK, Lindstrom E, von Mentzer B. Characterization of species-related differences in the pharmacology of tachykinin NK receptors 1, 2 and 3. Biochem Pharmacol. 2009;77(9):1522–30.

    Article  CAS  Google Scholar 

  37. Calcieri MA, Macleod AM, Underwood D, Shiao LL, Ber E, Sadowski S, Yu H, Merchant KJ, Swain CJ, Strader CD, Fong TM. Characterization of the interaction of N-acyl-l-tryptophan benzyl ester neurokinin antagonists with the human neurokinin-1 receptor. J Biol Chem. 1994;269(9):6587–91.

    Google Scholar 

Download references

Acknowledgements

Thanks to Ms. Takemasa Erika and Dr. Takeshi Kiyoi for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MNAS, KM; methodology: MNAS, KM; investigation: MNAS, SL; writing—original draft: MNAS; writing—review and editing: MNAS, KM; supervision: KM, MM.

Corresponding author

Correspondence to Muhammad N. A. Sahid.

Ethics declarations

Conflict of interest

We do not have conflict of interest to disclose.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 65 kb)

Supplementary file2 (DOCX 66 kb)

11_2020_1319_MOESM3_ESM.pdf

Supplementary Fig. 1 Prediction of transmembrane region of MRGPR family analyzed by HMMTP version 2.0 (http://www.enzim.hu/hmmtop/). (A) Mouse MRGPRB2 protein (NCBI Accession: EDL22965), (B) human MRGPRX2 protein (NCBI Accession: ACG60653), (C) rat MRGPRB3 protein (NCBI Accession: XP_001077174.2). Upper case (O): indicating outer tail region; lower case (o): outer loop or outer tail that close to the cell membrane; upper case (H): transmembrane region; upper case (I): intracellular tail region; and lower case (i): intracellular loop or intracellular tail that close to the cell membrane (PDF 1958 kb)

11_2020_1319_MOESM4_ESM.pdf

Supplementary Fig. 2 Prediction of transmembrane region of MRGPR family analyzed by Protter version 1.0 (http://wlab.ethz.ch/protter/). (A) Mouse MRGPRB2 protein (Uniprot ID: Q3KNA1), (B) human MRGPRX2 protein (Uniprot ID: Q96LB1), and (C) rat MRGPRB3 protein (Uniprot ID: F1LLV4) (PDF 126 kb)

11_2020_1319_MOESM5_ESM.pdf

Supplementary Fig. 3 Prediction of transmembrane region of MRGPR family analyzed by RbDe (http://icb.med.cornell.edu/services/rbde/diagrams). (A) Mouse MRGPRB2 protein (Uniprot ID: Q3KNA1), (B) human MRGPRX2 protein (Uniprot ID: Q96LB1), and (C) rat MRGPRB3 protein (Uniprot ID: F1LLV4) (PDF 2399 kb)

11_2020_1319_MOESM6_ESM.pdf

Supplementary Fig. 4 Histamine release induced by compound-48/80 and SP. Substance-P dose-dependently (1-1000 µM) increased histamine release in RPMCs (a). High concentration compound-48/80 (100 µg/mL) induced histamine release in RBL-2H3 cells (b). Data are expressed as mean + S.E.M. from triplicate experiments. (#) Indicates significant difference vs lower dose group, p < 0.0001 (PDF 38 kb)

11_2020_1319_MOESM7_ESM.pdf

Supplementary Fig. 5 High concentration of L732138 and CP96344 increases histamine release from RPMCs. Low concentration of TACR1 antagonist L732138 (up to 10 µM) did not induce histamine release from RPMCs (a). Low concentration of TACR1 antagonist CP96344 (up to 100 µM) did not induce histamine release from RPMCs (b). Data are expressed as mean + S.E.M. from triplicate experiments. (#) Indicates significant difference vs lower dose group with p < 0.0001, (##) p < 0.001 (PDF 34 kb)

11_2020_1319_MOESM8_ESM.pdf

Supplementary Fig. 6 Ciprofloxacin induces histamine release from RPMCs. Ciprofloxacin-induced histamine release followed the method for MC activation by compound 48/80, as described in the Methods section. Data are expressed as mean + S.E.M. from triplicate experiments. (#) Indicates significant difference vs dose group, p < 0.0001 (PDF 25 kb)

11_2020_1319_MOESM9_ESM.pdf

Supplementary Fig. 7 Structure of tachykinin receptor 1 (TACR1) antagonists L732138 (a) and CP96344 (b). Box with dashed line highlights the structure mimicking tetrahydroisoquinoline (THIQ) (PDF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahid, M.N.A., Liu, S., Mogi, M. et al. Tachykinin-1 receptor antagonism suppresses substance-P- and compound 48/80-induced mast cell activation from rat mast cells expressing functional mas-related GPCR B3. Inflamm. Res. 69, 289–298 (2020). https://doi.org/10.1007/s00011-020-01319-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01319-z

Keywords

Navigation