Skip to main content

Advertisement

Log in

The effect of photodynamic therapy on tumor angiogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT), the activation of a photosensitive drug in tumor tissue with light of specific wavelength, has been used effectively to treat certain solid tumors. Though therapeutic responses are encouraging, PDT-mediated oxidative stress can act as an angiogenic switch that ultimately leads to neovascularization and tumor recurrence. This article explores the effect of PDT on angiogenesis in different tumor models. Overexpression of proangiogenic vascular endothelial growth factor, cyclooxygenase-2 and matrix metalloproteases has often been reported post-illumination. Recent clinical studies have demonstrated that inhibiting angiogenesis after chemotherapy and radiotherapy is an attractive and valuable approach to cancer treatment. In this review, we report the effective therapeutic strategy of combining angiogenesis inhibitors with PDT to control and treat tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Macdonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyr Phthalocyanines 5:105–129

    Article  CAS  Google Scholar 

  2. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  PubMed  CAS  Google Scholar 

  3. Moghissi K, Dixon K, Thorpe JA, Stringer M, Oxtoby C (2007) Photodynamic therapy (PDT) in early central lung cancer: a treatment option for patients ineligible for surgical resection. Thorax 62:391–395

    Article  PubMed  Google Scholar 

  4. Usuda J, Kato H, Okunaka T, Furukawa K, Tsutsui H, Yamada K, Suga Y, Honda H, Nagatsuka Y, Ohira T, Tsuboi M, Hirano T (2006) Photodynamic therapy (PDT) for lung cancers. J Thorac Oncol 1:489–493

    Article  PubMed  Google Scholar 

  5. Klein A, Babilas P, Karrer S, Landthaler M, Szeimies RM (2008) Photodynamic therapy in dermatology—an update 2008. J Dtsch Dermatol Ges 6:839–845

    PubMed  Google Scholar 

  6. Biel MA (2007) Photodynamic therapy treatment of early oral and laryngeal cancers. Photochem Photobiol 83:1063–1068

    Article  PubMed  CAS  Google Scholar 

  7. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  PubMed  CAS  Google Scholar 

  8. Gollnick SO, Evans SS, Baumann H, Owczarczak B, Maier P, Vaughan L, Wang WC, Unger E, Henderson BW (2003) Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer 88:1772–1779

    Article  PubMed  CAS  Google Scholar 

  9. Harrison L, Blackwell K (2004) Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist 9(Suppl 5):31–40

    Article  PubMed  Google Scholar 

  10. Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9(Suppl 5):4–9

    Article  PubMed  Google Scholar 

  11. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    PubMed  CAS  Google Scholar 

  12. Ferrario A, von Tiehl KF, Rucker N, Schwarz MA, Gill PS, Gomer CJ (2000) Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res 60:4066–4069

    PubMed  CAS  Google Scholar 

  13. Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157

    Article  PubMed  CAS  Google Scholar 

  14. Fingar VH, Wieman TJ, Haydon PS (1997) The effects of thrombocytopenia on vessel stasis and macromolecular leakage after photodynamic therapy using photofrin. Photochem Photobiol 66:513–517

    Article  PubMed  CAS  Google Scholar 

  15. Fingar VH, Wieman TJ, Karavolos PS, Doak KW, Ouellet R, van Lier JE (1993) The effects of photodynamic therapy using differently substituted zinc phthalocyanines on vessel constriction, vessel leakage and tumor response. Photochem Photobiol 58:251–258

    Article  PubMed  CAS  Google Scholar 

  16. McMahon KS, Wieman TJ, Moore PH, Fingar VH (1994) Effects of photodynamic therapy using mono-l-aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer Res 54:5374–5379

    PubMed  CAS  Google Scholar 

  17. Fingar VH, Wieman TJ, Wiehle SA, Cerrito PB (1992) The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion. Cancer Res 52:4914–4921

    PubMed  CAS  Google Scholar 

  18. Star WM, Marijnissen HP, van den Berg-Blok AE, Versteeg JA, Franken KA, Reinhold HS (1986) Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res 46:2532–2540

    PubMed  CAS  Google Scholar 

  19. Henderson BW, Waldow SM, Mang TS, Potter WR, Malone PB, Dougherty TJ (1985) Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy. Cancer Res 45:572–576

    PubMed  CAS  Google Scholar 

  20. Henderson BW, Fingar VH (1987) Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor. Cancer Res 47:3110–3114

    PubMed  CAS  Google Scholar 

  21. Fingar VH, Kik PK, Haydon PS, Cerrito PB, Tseng M, Abang E, Wieman TJ (1999) Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD). Br J Cancer 79:1702–1708

    Article  PubMed  CAS  Google Scholar 

  22. Dolmans DE, Kadambi A, Hill JS, Flores KR, Gerber JN, Walker JP, Borel Rinkes IH, Jain RK, Fukumura D (2002) Targeting tumor vasculature and cancer cells in orthotopic breast tumor by fractionated photosensitizer dosing photodynamic therapy. Cancer Res 62:4289–4294

    PubMed  CAS  Google Scholar 

  23. Dolmans DE, Kadambi A, Hill JS, Waters CA, Robinson BC, Walker JP, Fukumura D, Jain RK (2002) Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res 62:2151–2156

    PubMed  CAS  Google Scholar 

  24. Chaudhuri K, Keck RW, Selman SH (1987) Morphological changes of tumor microvasculature following hematoporphyrin derivative sensitized photodynamic therapy. Photochem Photobiol 46:823–827

    Article  PubMed  CAS  Google Scholar 

  25. Chen B, Pogue BW, Luna JM, Hardman RL, Hoopes PJ, Hasan T (2006) Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications. Clin Cancer Res 12:917–923

    Article  PubMed  CAS  Google Scholar 

  26. Kowanetz M, Ferrara N (2006) Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 12:5018–5022

    Article  PubMed  CAS  Google Scholar 

  27. Bhuvaneswari R, Gan YY, Yee KK, Soo KC, Olivo M (2007) Effect of hypericin-mediated photodynamic therapy on the expression of vascular endothelial growth factor in human nasopharyngeal carcinoma. Int J Mol Med 20:421–428

    PubMed  CAS  Google Scholar 

  28. Ferrario A, Gomer CJ (2006) Avastin enhances photodynamic therapy treatment of Kaposi’s sarcoma in a mouse tumor model. J Environ Pathol Toxicol Oncol 25:251–259

    PubMed  CAS  Google Scholar 

  29. Uehara M, Inokuchi T, Sano K, ZuoLin W (2001) Expression of vascular endothelial growth factor in mouse tumours subjected to photodynamic therapy. Eur J Cancer 37:2111–2115

    Article  PubMed  CAS  Google Scholar 

  30. Yee KK, Soo KC, Olivo M (2005) Anti-angiogenic effects of Hypericin-photodynamic therapy in combination with Celebrex in the treatment of human nasopharyngeal carcinoma. Int J Mol Med 16:993–1002

    PubMed  CAS  Google Scholar 

  31. Jiang F, Zhang X, Kalkanis SN, Zhang Z, Yang H, Katakowski M, Hong X, Zheng X, Zhu Z, Chopp M (2008) Combination therapy with antiangiogenic treatment and photodynamic therapy for the nude mouse bearing U87 glioblastoma. Photochem Photobiol 84:128–137

    PubMed  CAS  Google Scholar 

  32. Jiang F, Zhang ZG, Katakowski M, Robin AM, Faber M, Zhang F, Chopp M (2004) Angiogenesis induced by photodynamic therapy in normal rat brains. Photochem Photobiol 79:494–498

    Article  PubMed  CAS  Google Scholar 

  33. Zhang X, Jiang F, Zhang ZG, Kalkanis SN, Hong X, deCarvalho AC, Chen J, Yang H, Robin AM, Chopp M (2005) Low-dose photodynamic therapy increases endothelial cell proliferation and VEGF expression in nude mice brain. Lasers Med Sci 20:74–79

    Article  PubMed  Google Scholar 

  34. Zhang X, Jiang F, Kalkanis SN, Zhang Z, Hong X, Yang H, Chopp M (2007) Post-acute response of 9L gliosarcoma to Photofrin-mediated PDT in athymic nude mice. Lasers Med Sci 22:253–259

    Article  PubMed  Google Scholar 

  35. Solban N, Selbo PK, Sinha AK, Chang SK, Hasan T (2006) Mechanistic investigation and implications of photodynamic therapy induction of vascular endothelial growth factor in prostate cancer. Cancer Res 66:5633–5640

    Article  PubMed  CAS  Google Scholar 

  36. Kosharskyy B, Solban N, Chang SK, Rizvi I, Chang Y, Hasan T (2006) A mechanism-based combination therapy reduces local tumor growth and metastasis in an orthotopic model of prostate cancer. Cancer Res 66:10953–10958

    Article  PubMed  CAS  Google Scholar 

  37. Chang SK, Rizvi I, Solban N, Hasan T (2008) In vivo optical molecular imaging of vascular endothelial growth factor for monitoring cancer treatment. Clin Cancer Res 14:4146–4153

    Article  PubMed  CAS  Google Scholar 

  38. Bhuvaneswari R, Yuen GY, Chee SK, Olivo M (2007) Hypericin-mediated photodynamic therapy in combination with Avastin (bevacizumab) improves tumor response by downregulating angiogenic proteins. Photochem Photobiol Sci 6:1275–1283

    Article  PubMed  CAS  Google Scholar 

  39. Bhuvaneswari R, Gan YY, Lucky SS, Chin WW, Ali SM, Soo KC, Olivo M (2008) Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy. Mol Cancer 7:56

    Article  PubMed  Google Scholar 

  40. Zhou Q, Olivo M, Lye KY, Moore S, Sharma A, Chowbay B (2005) Enhancing the therapeutic responsiveness of photodynamic therapy with the antiangiogenic agents SU5416 and SU6668 in murine nasopharyngeal carcinoma models. Cancer Chemother Pharmacol 56:569–577

    Article  PubMed  CAS  Google Scholar 

  41. Ohtani K, Usuda J, Ichinose S, Ishizumi T, Hirata T, Inoue T, Maehara S, Imai K, Kubota M, Tsunoda Y, Yamada M, Tsutsui H, Yamada K, Kuroiwa Y, Furukawa K, Okunaka T, Kato H (2008) High expression of GADD-45alpha and VEGF induced tumor recurrence via upregulation of IL-2 after photodynamic therapy using NPe6. Int J Oncol 32:397–403

    PubMed  CAS  Google Scholar 

  42. Lisnjak IO, Kutsenok VV, Polyschuk LZ, Gorobets OB, Gamaleia NF (2005) Effect of photodynamic therapy on tumor angiogenesis and metastasis in mice bearing Lewis lung carcinoma. Exp Oncol 27:333–335

    PubMed  CAS  Google Scholar 

  43. Deininger MH, Weinschenk T, Morgalla MH, Meyermann R, Schluesener HJ (2002) Release of regulators of angiogenesis following Hypocrellin-A and -B photodynamic therapy of human brain tumor cells. Biochem Biophys Res Commun 298:520–530

    Article  PubMed  CAS  Google Scholar 

  44. Gately S (2000) The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 19:19–27

    Article  PubMed  CAS  Google Scholar 

  45. Gately S, Li WW (2004) Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 31:2–11

    Article  PubMed  CAS  Google Scholar 

  46. Ferrario A, Von Tiehl K, Wong S, Luna M, Gomer CJ (2002) Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response. Cancer Res 62:3956–3961

    PubMed  CAS  Google Scholar 

  47. Luna M, Wong S, Ferrario A, Gomer CJ (2008) Cyclooxygenase-2 expression induced by Photofrin photodynamic therapy involves the p38 MAPK pathway. Photochem Photobiol 84:509–514

    Article  PubMed  CAS  Google Scholar 

  48. Hendrickx N, Volanti C, Moens U, Seternes OM, de Witte P, Vandenheede JR, Piette J, Agostinis P (2003) Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J Biol Chem 278:52231–52239

    Article  PubMed  CAS  Google Scholar 

  49. Volanti C, Hendrickx N, Van Lint J, Matroule JY, Agostinis P, Piette J (2005) Distinct transduction mechanisms of cyclooxygenase 2 gene activation in tumour cells after photodynamic therapy. Oncogene 24:2981–2991

    Article  PubMed  CAS  Google Scholar 

  50. Curran S, Murray GI (1999) Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189:300–308

    Article  PubMed  CAS  Google Scholar 

  51. Ferrario A, Chantrain CF, von Tiehl K, Buckley S, Rucker N, Shalinsky DR, Shimada H, DeClerck YA, Gomer CJ (2004) The matrix metalloproteinase inhibitor prinomastat enhances photodynamic therapy responsiveness in a mouse tumor model. Cancer Res 64:2328–2332

    Article  PubMed  CAS  Google Scholar 

  52. Du HY, Olivo M, Mahendran R, Huang Q, Shen HM, Ong CN, Bay BH (2007) Hypericin photoactivation triggers down-regulation of matrix metalloproteinase-9 expression in well-differentiated human nasopharyngeal cancer cells. Cell Mol Life Sci 64:979–988

    Article  PubMed  CAS  Google Scholar 

  53. Du H, Olivo M, Mahendran R, Bay BH (2004) Modulation of Matrix metalloproteinase-1 in nasopharyngeal cancer cells by photoactivation of hypericin. Int J Oncol 24:657–662

    PubMed  CAS  Google Scholar 

  54. Filip A, Clichici S, Muresan A, Daicoviciu D, Tatomir C, Login C, Dreve S, Gherman C (2008) Effects of pdt with 5-aminolevulinic acid and chitosan on walker carcinosarcoma. Exp Oncol 30:212–219

    PubMed  CAS  Google Scholar 

  55. Chu ES, Wong TK, Yow CM (2008) Photodynamic effect in medulloblastoma: downregulation of matrix metalloproteinases and human telomerase reverse transcriptase expressions. Photochem Photobiol Sci 7:76–83

    Article  PubMed  CAS  Google Scholar 

  56. Seshadri M, Bellnier DA (2008) The vascular disrupting agent 5, 6-dimethylxanthenone-4-acetic acid improves the antitumor efficacy and shortens treatment time associated with photochlor-sensitized photodynamic therapy in vivo. Photochem Photobiol 85:50–56

    Article  PubMed  Google Scholar 

  57. Luna MC, Ferrario A, Wong S, Fisher AM, Gomer CJ (2000) Photodynamic therapy-mediated oxidative stress as a molecular switch for the temporal expression of genes ligated to the human heat shock promoter. Cancer Res 60:1637–1644

    PubMed  CAS  Google Scholar 

  58. Gollnick SO, Liu X, Owczarczak B, Musser DA, Henderson BW (1997) Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo. Cancer Res 57:3904–3909

    PubMed  CAS  Google Scholar 

  59. Du H, Bay BH, Mahendran R, Olivo M (2006) Hypericin-mediated photodynamic therapy elicits differential interleukin-6 response in nasopharyngeal cancer. Cancer Lett 235:202–208

    Article  PubMed  CAS  Google Scholar 

  60. Wong TW, Tracy E, Oseroff AR, Baumann H (2003) Photodynamic therapy mediates immediate loss of cellular responsiveness to cytokines and growth factors. Cancer Res 63:3812–3818

    PubMed  CAS  Google Scholar 

  61. Gollnick SO, Vaughan L, Henderson BW (2002) Generation of effective antitumor vaccines using photodynamic therapy. Cancer Res 62:1604–1608

    PubMed  CAS  Google Scholar 

  62. Bellnier DA, Gollnick SO, Camacho SH, Greco WR, Cheney RT (2003) Treatment with the tumor necrosis factor-alpha-inducing drug 5, 6-dimethylxanthenone-4-acetic acid enhances the antitumor activity of the photodynamic therapy of RIF-1 mouse tumors. Cancer Res 63:7584–7590

    PubMed  CAS  Google Scholar 

  63. Ji Z, Yang G, Shahzidi S, Tkacz-Stachowska K, Suo Z, Nesland JM, Peng Q (2006) Induction of hypoxia-inducible factor-1alpha overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy. Cancer Lett 244:182–189

    Article  PubMed  CAS  Google Scholar 

  64. Bozkulak O, Wong S, Luna M, Ferrario A, Rucker N, Gulsoy M, Gomer CJ (2007) Multiple components of photodynamic therapy can phosphorylate Akt. Photochem Photobiol 83:1029–1033

    Article  PubMed  CAS  Google Scholar 

  65. Wei LH, Baumann H, Tracy E, Wang Y, Hutson A, Rose-John S, Henderson BW (2007) Interleukin-6 trans signalling enhances photodynamic therapy by modulating cell cycling. Br J Cancer 97:1513–1522

    Article  PubMed  CAS  Google Scholar 

  66. Dimitroff CJ, Klohs W, Sharma A, Pera P, Driscoll D, Veith J, Steinkampf R, Schroeder M, Klutchko S, Sumlin A, Henderson B, Dougherty TJ, Bernacki RJ (1999) Anti-angiogenic activity of selected receptor tyrosine kinase inhibitors, PD166285 and PD173074: implications for combination treatment with photodynamic therapy. Invest New Drugs 17:121–135

    Article  PubMed  CAS  Google Scholar 

  67. Ferrario A, Fisher AM, Rucker N, Gomer CJ (2005) Celecoxib and NS-398 enhance photodynamic therapy by increasing in vitro apoptosis and decreasing in vivo inflammatory and angiogenic factors. Cancer Res 65:9473–9478

    Article  PubMed  CAS  Google Scholar 

  68. Makowski M, Grzela T, Niderla J, Lazarczyk M, Mroz P, Kopee M, Legat M, Strusinska K, Koziak K, Nowis D, Mrowka P, Wasik M, Jakobisiak M, Golab J (2003) Inhibition of cyclooxygenase-2 indirectly potentiates antitumor effects of photodynamic therapy in mice. Clin Cancer Res 9:5417–5422

    PubMed  CAS  Google Scholar 

  69. Akita Y, Kozaki K, Nakagawa A, Saito T, Ito S, Tamada Y, Fujiwara S, Nishikawa N, Uchida K, Yoshikawa K, Noguchi T, Miyaishi O, Shimozato K, Saga S, Matsumoto Y (2004) Cyclooxygenase-2 is a possible target of treatment approach in conjunction with photodynamic therapy for various disorders in skin and oral cavity. Br J Dermatol 151:472–480

    Article  PubMed  CAS  Google Scholar 

  70. Harvey EH, Webber J, Kessel D, Fromm D (2005) Killing tumor cells: the effect of photodynamic therapy using mono-l-aspartyl chlorine and NS-398. Am J Surg 189:302–305

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malini Olivo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhuvaneswari, R., Gan, Y.Y., Soo, K.C. et al. The effect of photodynamic therapy on tumor angiogenesis. Cell. Mol. Life Sci. 66, 2275–2283 (2009). https://doi.org/10.1007/s00018-009-0016-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0016-4

Keywords

Navigation