Skip to main content

Advertisement

Log in

Platelets and innate immunity

  • Multi-author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Although platelets are best known as primary mediators of hemostasis, this function intimately associates them with inflammatory processes, and it has been increasingly recognized that platelets play an active role in both innate and adaptive immunity. For example, platelet adhesive interactions with leukocytes and endothelial cells via P-selectin can lead to several pro-inflammatory events, including leukocyte rolling and activation, production of cytokine cascades, and recruitment of the leukocytes to sites of tissue damage. Superimposed on this, platelets express immunologically-related molecules such as CD40L and Toll-like receptors that have been shown to functionally modulate innate immunity. Furthermore, platelets themselves can interact with microorganisms, and several viruses have been shown to cross-react immunologically with platelet antigens. This review discusses the central role that platelets play in inflammation, linking them with varied pathological conditions, such as atherosclerosis, sepsis, and immune thrombocytopenic purpura, and suggests that platelets also act as primary mediators of our innate defences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  2. Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272:50–53

    Article  PubMed  CAS  Google Scholar 

  3. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  PubMed  CAS  Google Scholar 

  4. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–6

    PubMed  CAS  Google Scholar 

  5. Janeway CA Jr (1992) The immune system evolved to discriminate infectious non-self from non-infectious self. Immunol Today 13:11–15

    Article  PubMed  CAS  Google Scholar 

  6. Medzitov R, Janeway CA Jr (2000) Innate immunity. N Engl J Med 343:338–346

    Article  Google Scholar 

  7. Medzitov R, Janeway CA Jr (2003) The innate immune system. In: Paul WE (ed) Fundamental immunology, 5th edn. Lippincott/Williams and Wilkins, Philadelphia

  8. Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–298

    Article  PubMed  CAS  Google Scholar 

  9. Matzinger P (1994) Tolerance, danger and the extended family. Annu Rev Immunol 12:991–1045

    PubMed  CAS  Google Scholar 

  10. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–214

    Article  PubMed  CAS  Google Scholar 

  11. Raulet DH (2003) Natural killer cells. In: Paul WE (ed) Fundamental immunology, 5th edn. Lippincott/Williams and Wilkins, Philadelphia

  12. Le Page C, Génin P, Baines MG, Hiscott J (2000) Interferon activation and innate immunity. Rev Immunogenet 2:374–392

    PubMed  CAS  Google Scholar 

  13. Elzey BD, Tian J, Jensen RJ, Swanson AK, Lees JR, Lentz SR, Stein CS, Nieswandt B, Wang Y, Davidson BL, Ratliff TL (2003) Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 19:9–19

    Article  PubMed  CAS  Google Scholar 

  14. Aslam R, Freedman J, Semple JW (2004) Murine platelets express Toll-like receptor 2: a potential regulator of innate and adaptive immunity. Platelets 15:267

    Google Scholar 

  15. Shiraki R, Inoue N, Kawasaki S, Takei A, Kadotani M, Ohnishi Y, Ejiri J, Kobayashi S, Hirata K, Kawashima S, Yokoyama M (2004) Expression of Toll-like receptors on human platelets. Thromb Res 113:379–385

    Article  PubMed  CAS  Google Scholar 

  16. Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB (2004) Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103:2096–2104

    Article  PubMed  CAS  Google Scholar 

  17. Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O (2005) Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 88:196–198

    Article  CAS  Google Scholar 

  18. Ward JR, Bingle L, Judge HM, Brown SB, Storey RF, Whyte MK, Dower SK, Buttle DJ, Sabroe I (2005) Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor. Thromb Haemost 94:831–838

    PubMed  Google Scholar 

  19. Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P (2005) Platelets express functional Toll-like receptor-4. Blood 106:2417–2423

    Article  PubMed  CAS  Google Scholar 

  20. Aslam R, Speck ER, Kim M, Crow AR, Bang KW, Nestel FP, Ni H, Lazarus AH, Freedman J, Semple JW (2006) Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo. Blood 107:637–641

    Article  PubMed  CAS  Google Scholar 

  21. Patrignani P, Di Febbo C, Tacconelli S, Moretta V, Baccante G, Sciulli MG, Ricciotti E, Capone ML, Antonucci I, Guglielmi MD, Stuppia L, Porreca E (2006) Reduced thromboxane biosynthesis in carriers of Toll-Like receptor 4 polymorphisms in vivo. Blood 107:3572–3574

    Article  PubMed  CAS  Google Scholar 

  22. Ståhl AL, Svensson M, Mörgelin M, Svanborg C, Tarr PI, Mooney JC, Watkins SL, Johnson R, Karpman D (2006) Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets via TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood 108:167–176

    Article  PubMed  CAS  Google Scholar 

  23. Jayachandran M, Brunn GJ, Karnicki K, Miller RS, Owen WG, Miller VM (2007) In vivo effects of lipopolysaccharide and TLR4 on platelet production and activity: implications for thrombotic risk. J Appl Physiol 102:429–433

    Article  PubMed  CAS  Google Scholar 

  24. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13:463–469

    Article  PubMed  CAS  Google Scholar 

  25. Semple JW, Aslam R, Kim M, Speck ER, Freedman J (2007) Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG opsonized platelets. Blood 109:4803–4805

    Article  PubMed  CAS  Google Scholar 

  26. von Hundelshausen P, Weber C (2007) Platelets as immune cells. Bridging inflammation and cardiovascular disease. Circ Res 100:27–40

    Article  CAS  Google Scholar 

  27. Cognasse F, Semple JW, Garraud O (2007) Platelets as potential immunomodulators: is there a role for platelet toll like receptors? Curr Immunol Rev 3:109–115

    Article  CAS  Google Scholar 

  28. Tremblay T, Aubin E, Lemieux R, Bazin R (2007) Picogram doses of lipopolysaccharide exacerbate antibody-mediated thrombocytopenia and reduce the therapeutic efficacy of intravenous immunoglobulin in mice. Br J Haematol 139:297–302

    Article  PubMed  CAS  Google Scholar 

  29. Scott T, Owens MD (2007) Thrombocytes respond to lipopolysaccharide through Toll-like receptor 4, MAP kinase and NFK beta. Mol Immunol 45:1001–1008

    Article  PubMed  CAS  Google Scholar 

  30. Ma AC, Kubes P (2008) Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 6:415–420

    Article  PubMed  CAS  Google Scholar 

  31. Kuckleburg CJ, Tiwari R, Czuprynski CJ (2008) Endothelial cell apoptosis induced by bacteria-activated platelets requires caspase-8 and -9 and generation of reactive oxygen species. Thromb Haemost 99:363–372

    PubMed  CAS  Google Scholar 

  32. Kuckleburg CJ, McClenahan DJ, Czuprynski CJ (2008) Platelet activation by Histophilus somni and its lipooligosaccharide induces endothelial cell proinflammatory responses and platelet internalization. Shock 29:189–196

    PubMed  CAS  Google Scholar 

  33. Hose JE, Martin GG, Gerard AS (1990) A decapod hemocyte classification scheme integrating morphology, cytochemistry, and function. Biol Bull 178:33–45

    Article  Google Scholar 

  34. Götz P, Boman HG (1985) Insect immunity. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology. Biochemistry and pharmacology. Pergamon, Oxford, pp 453–485

    Google Scholar 

  35. Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643

    Article  PubMed  CAS  Google Scholar 

  36. Nappi AJ, Vass E (1993) Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Res 6:117–126

    Article  PubMed  CAS  Google Scholar 

  37. Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF (1985) A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 101:880–886

    Article  PubMed  CAS  Google Scholar 

  38. Bonfanti R, Furie BC, Furie B, Wagner DD (1989) PADGEM (GMP140) is a component of Weibel–Palade bodies of human endothelial cells. Blood 73:1109–1112

    PubMed  CAS  Google Scholar 

  39. Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA (1996) Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 88:146–157

    PubMed  CAS  Google Scholar 

  40. Kuijper PH, Gallardo Torres HI, van der Linden JA, Lammers JW, Sixma JJ, Koenderman L, Zwaginga JJ (1996) Platelet-dependent primary hemostasis promotes selectin- and integrin-mediated neutrophil adhesion to damaged endothelium under flow conditions. Blood 87:3271–3281

    PubMed  CAS  Google Scholar 

  41. Dole VS, Bergmeier W, Patten IS, Hirahashi J, Mayadas TN, Wagner DD (2007) PSGL-1 regulates platelet P-selectin-mediated endothelial activation and shedding of P-selectin from activated platelets. Thromb Haemost 98:806–812

    PubMed  CAS  Google Scholar 

  42. Gawaz M, Neumann FJ, Dickfeld T, Koch W, Laugwitz KL, Adelsberger H, Langenbrink K, Page S, Neumeier D, Schomig A, Brand K (1998) Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells. Circulation 98:1164–1171

    PubMed  CAS  Google Scholar 

  43. von Hundelshausen P, Weber KS, Huo Y, Proudfoot AE, Nelson PJ, Ley K, Weber C (2001) RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103:1772–1777

    Google Scholar 

  44. Frenette PS, Mayadas TN, Rayburn H, Hynes RO, Wagner DD (1996) Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell 84:563–574

    Article  PubMed  CAS  Google Scholar 

  45. Bullard DC, Kunkel EJ, Kubo H, Hicks MJ, Lorenzo I, Doyle NA, Doerschuk CM, Ley K, Beaudet AL (1996) Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice. J Exp Med 5:2329–2336

    Article  Google Scholar 

  46. Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD (1993) Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 74:541–554

    Article  PubMed  CAS  Google Scholar 

  47. Berndt MC, Karunakaran D, Gardiner EE, Andrews RK (2007) Programmed autologous cleavage of platelet receptors. J Thromb Haemost 5(Suppl 1):212–219

    Article  PubMed  CAS  Google Scholar 

  48. Merten M, Thiagarajan P (2000) P-selectin expression on platelets determines size and stability of platelet aggregates. Circulation 102:1931–1936

    PubMed  CAS  Google Scholar 

  49. Romo GM, Dong JF, Schade AJ, Gardiner EE, Kansas GS, Li CQ, McIntire LV, Berndt MC, Lopez JA (1999) The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 190:803–814

    Article  PubMed  CAS  Google Scholar 

  50. Yang H, Reheman A, Chen P, Zhu G, Hynes RO, Freedman J, Wagner DD, Ni H (2006) Fibrinogen and von Willebrand factor-independent platelet aggregation in vitro and in vivo. J Thromb Haemost 4:2230–2237

    Article  PubMed  CAS  Google Scholar 

  51. Ni H, Denis CV, Subbarao S, Degen JL, Sato TN, Hynes RO, Wagner DD (2000) Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 106:385–392

    Article  PubMed  CAS  Google Scholar 

  52. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  53. Dong ZM, Brown AA, Wagner DD (2000) Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation 101:2290–2295

    PubMed  CAS  Google Scholar 

  54. Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL (2000) P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 191:189–194

    Article  PubMed  CAS  Google Scholar 

  55. Burger PC, Wagner DD (2003) Platelet P-selectin facilitates atherosclerotic lesion development. Blood 101:2661–2666

    Article  PubMed  CAS  Google Scholar 

  56. Larsen E, Celi A, Gilbert GE, Furie BC, Erban JK, Bonfanti R, Wagner DD, Furie B (1989) PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59:305–312

    Article  PubMed  CAS  Google Scholar 

  57. Ramos CL, Huo Y, Jung U, Ghosh S, Manka DR, Sarembock IJ, Ley K (1998) Direct demonstration of P-selectin- and VCAM-1 dependent mono-nuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-deficient mice. Circ Res 84:1237–1244

    Google Scholar 

  58. Weber C, Springer TA (1997) Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor. J Clin Invest 100:2085–2093

    Article  PubMed  CAS  Google Scholar 

  59. Lindemann S, Tolley ND, Dixon DA, McIntyre TM, Prescott SM, Zimmerman GA, Weyrich AS (2001) Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 154:485–490

    Article  PubMed  CAS  Google Scholar 

  60. Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391:591–594

    Article  PubMed  CAS  Google Scholar 

  61. Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K (2003) Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 9:61–67

    Article  PubMed  CAS  Google Scholar 

  62. Andre P, Nannizzi-Alaimo L, Prasad SK, Phillips DR (2002) Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 106:896–899

    Article  PubMed  Google Scholar 

  63. Ross R (1985) Platelets, platelet-derived growth factor, growth control, their interactions with the vascular wall. J Cardiovasc Pharmacol 7(Suppl 3):S186–S190

    Article  PubMed  Google Scholar 

  64. Yamashita S, Hirano K, Kuwasako T, Janabi M, Toyama Y, Ishigami M, Sakai N (2007) Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients. Mol Cell Biochem 299:19–22

    Article  PubMed  CAS  Google Scholar 

  65. Kuchibhotla S, Vanegas D, Kennedy DJ, Guy E, Nimako G, Morton RE, Febbraio M (2008) Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc Res 78:185–196

    Article  PubMed  CAS  Google Scholar 

  66. Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115:3378–3384

    Article  PubMed  CAS  Google Scholar 

  67. Langer HF, Gawaz M (2008) Platelet-vessel wall interactions in atherosclerotic disease. Thromb Haemost 99:480–486

    PubMed  CAS  Google Scholar 

  68. Davi G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357:2482–2494

    Article  PubMed  CAS  Google Scholar 

  69. Wagner DD, Burger PC (2003) Platelets in inflammation and thrombosis. Arterioscler Thromb Vasc Biol 23:2131–2137

    Article  PubMed  CAS  Google Scholar 

  70. Baughman RP, Lower EE, Flessa HC, Tollerud DJ (1993) Thrombocytopenia in the intensive care unit. Chest 104:1243–1247

    Article  PubMed  CAS  Google Scholar 

  71. Gawaz M, Dickfeld T, Bogner C, Fateh-Moghadam S, Neumann FJ (1997) Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med 23:379–385

    Article  PubMed  CAS  Google Scholar 

  72. Russwurm S, Vickers J, Meier-Hellmann A, Spangenberg P, Bredle D, Reinhart K, Lösche W (2002) Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock 17:263–268

    Article  PubMed  Google Scholar 

  73. Gawaz M, Fateh-Moghadam S, Pilz G, Gurland HJ, Werdan K (1995) Platelet activation and interaction with leukocytes in patients with sepsis or multiple organ failure. Eur J Clin Invest 25:843–851

    Article  PubMed  CAS  Google Scholar 

  74. Gawaz M, Fateh-Moghadam S, Pilz G, Gurland HJ, Werdan K (1995) Severity of multiple organ failure (MOF) but not sepsis correlates with irreversible platelet degranulation. Infection 23:16–23

    Article  PubMed  CAS  Google Scholar 

  75. Jacoby RC, Owings JT, Holmes J, Battistella FD, Gosselin RC, Paglieroni TG (2001) Platelet activation and function after trauma. J Trauma 51:639–647

    Article  PubMed  CAS  Google Scholar 

  76. Ogura H, Kawasaki T, Tanaka H, Koh T, Tanaka R, Ozeki Y, Hosotsubo H, Kuwagata Y, Shimazu T, Sugimoto H (2001) Activated platelets enhance microparticle formation and platelet-leukocyte interaction in severe trauma and sepsis. J Trauma 50:801–809

    Article  PubMed  CAS  Google Scholar 

  77. Vincent J-L, Yagushi A, Pradier O (2002) Platelet function in sepsis. Crit Care Med 30(Suppl 5):S313–S317

    Article  PubMed  CAS  Google Scholar 

  78. Boldt J, Menges T, Wöllbruck M, Sonneborn S, Hempelmann G (1994) Platelet function in critically ill patients. Chest 106:899–903

    Article  PubMed  CAS  Google Scholar 

  79. Matera C, Falzarano C, Berrino L, Rossi F (1992) Effects of tetanus toxin, Salmonella typhimurium porin, and bacterial lipopolysaccharides on platelet aggregation. J Med 23:327–338

    PubMed  CAS  Google Scholar 

  80. Isogai E, Kitagawa H, Isogai H, Matsuzawa T, Shimizu T, Yanagihara Y, Kitami K (1992) Effect of leptospiral lipopolysaccharide on rabbit platelets. Int J Med Microbiol 271:186–196

    Google Scholar 

  81. Saba HI, Saba SR, Morelli G, Hartmann RC (1984) Endotoxin-mediated inhibition of human platelet aggregation. Thromb Res 34:19–33

    Article  PubMed  CAS  Google Scholar 

  82. Sheu JR, Hsiao G, Lee C, Chang W, Lee L, Su C, Lin C (2000) Antiplatelet activity of Staphylococcus aureus lipoteichoic acid is mediated through a cyclic AMP pathway. Thromb Res 99:249–258

    Article  PubMed  CAS  Google Scholar 

  83. Youssefian T, Drouin A, Masse JM, Guichard J, Cramer EM (2002) Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 99:4021–4029

    Article  PubMed  CAS  Google Scholar 

  84. Zucker-Franklin D, Seremetis S, Zheng ZY (1990) Internalization of human immunodef-iciency virus type I and other retroviruses by megakaryocytes and platelets. Blood 75:1920–1923

    PubMed  CAS  Google Scholar 

  85. White JG, Clawson CC (1981) Effects of large latex particle uptake of the surface connected canalicular system of blood platelets: a freeze-fracture and cytochemical study. Ultrastruct Pathol 2:277–287

    Article  PubMed  CAS  Google Scholar 

  86. White JG, Clawson CC (1982) Effects of small latex particle uptake on the surface connected canalicular system of blood platelets: a freeze-fracture and cytochemical study. Diagn Histopathol 2:3–10

    Google Scholar 

  87. White JG (2005) Platelets are covercytes, not phagocytes: uptake of bacteria involves channels of the open canalicular system. Platelets 16:121–131

    Article  PubMed  CAS  Google Scholar 

  88. Koo SP, Bayer AS, Sahl HG, Proctor RA, Yeaman MR (1996) Staphylocidal action of thrombin-induced platelet microbicidal protein is not solely dependent on transmembrane potential. Infect Immun 64:1070–1074

    PubMed  CAS  Google Scholar 

  89. Klinger MH, Wilhelm D, Bubel S, Sticherling M, Schroder JM, Kuhnel W (1995) Immunocytochemical localization of the chemokines RANTES and MIP-1 alpha within human platelets and their release during storage. Int Arch Allergy Immunol 107:541–546

    Article  PubMed  CAS  Google Scholar 

  90. Lewis JC, Maldonado JE, Mann KG (1946) Phagocytosis in human platelets: localization of acid phosphatase-positive phagosomes following latex uptake. Blood 47:833–840

    Google Scholar 

  91. Welbourn CR, Young Y (1992) Endotoxin, septic shock and acute lung injury: neutrophils, macrophages and inflammatory mediators. Br J Surg 79:998–1003

    Article  PubMed  CAS  Google Scholar 

  92. McClenahan DJ, Evanson OA, Walcheck BK, Weiss DJ (2000) Association among filamentous actin content, CD11b expression, and membrane deformability in stimulated and unstimulated bovine neutrophils. Am J Vet Res 61:380–386

    Article  PubMed  CAS  Google Scholar 

  93. Zarbock A, Polanowska-Grabowska R, Ley K (2007) Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 21:99–111

    Article  PubMed  CAS  Google Scholar 

  94. Peters MJ, Heyderman RS, Hatch DJ, Klein NJ (1997) Investigation of plateletneutrophil interactions in whole blood by flow cytometry. J Immunol Methods 209:125–135

    Article  PubMed  CAS  Google Scholar 

  95. Mavrommatis AC, Theodoridis T, Orfanidou A, Roussos C, Christopoulou-Kokkinou V, Zakynthinos S (2000) Coagulation system and platelets are fully activated in uncomplicated sepsis. Crit Care Med 28:451–457

    Article  PubMed  CAS  Google Scholar 

  96. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182

    Article  PubMed  CAS  Google Scholar 

  97. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  PubMed  CAS  Google Scholar 

  98. Hollenbaugh D, Mischel-Petty N, Edwards CP, Simon JC, Denfeld RW, Kiener PA, Aruffo A (1995) Expression of functional CD40 by vascular endothelial cells. J Exp Med 182:32–40

    Article  Google Scholar 

  99. Henn V, Steinbach S, Büchner K, Presek P, Kroczek RA (2001) The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 98:1047–1054

    Article  PubMed  CAS  Google Scholar 

  100. Prasad KSS, André P, He M, Bao M, Manganello J, Phillips DR (2003) Soluble CD40 ligand induces β3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci USA 100:12367–12371

    Article  PubMed  CAS  Google Scholar 

  101. Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ (2003) CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 92:1041–1048

    Article  PubMed  CAS  Google Scholar 

  102. Hammwöhner M, Ittenson A, Dierkes J, Bukowska A, Klein HU, Lendeckel U, Goette A (2007) Platelet expression of CD40/CD40 ligand and its relation to inflammatory markers and adhesion molecules in patients with atrial fibrillation. Exp Biol Med 232:581–589

    Google Scholar 

  103. Anand SX, Viles-Gonzalez JF, Badimon JJ (2003) Membrane-associated CD40L and sCD40L in atherothrombotic disease. Thromb Haemost 90:377–384

    PubMed  CAS  Google Scholar 

  104. Slupsky JR, Kalbas M, Willuweit A (1998) Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thromb Haemost 80:1008–1014

    PubMed  CAS  Google Scholar 

  105. Zhou L, Stordeur P, de Lavareille A (1998) CD40 engagement on endothelial cells promotes tissue factor-dependent proco-agulant activity. Thromb Haemost 79:1025–1028

    PubMed  CAS  Google Scholar 

  106. Grewal IS, Flavell RA (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16:111–135

    Article  PubMed  CAS  Google Scholar 

  107. Wartiovaara U, Salven P, Mikkola H, Lassila R, Kaukonen J, Joukov V, Orpana A, Ristimaki A, Heikinheimo M, Joensuu H (1998) Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost 80:171–175

    PubMed  CAS  Google Scholar 

  108. Webb NJ, Bottomley MJ, Watson CJ (1998) Vascular endothelial growth factor (VEGF) is released from platelets during blood clotting: implications for measurement of circulating VEGF levels in clinical disease. Clin Sci 94:395–404

    PubMed  CAS  Google Scholar 

  109. Choudhury A, Freeston B, Patel J, Lip GYH (2007) Relationship of soluble CD40 ligand to vascular endothelial growth factor, angiopoietins, and tissue factor in atrial fibrillation. Chest 132:1913–1919

    Article  PubMed  CAS  Google Scholar 

  110. Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL (2008) Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 111:5028–5036. doi:10.1182/blood-2007-06-097410

    Article  PubMed  CAS  Google Scholar 

  111. Diacovo TG, Puri KD, Warnock RA, Springer TA, von Andrian UH (1996) Platelet-mediated lymphocyte delivery to high endothelial venules. Science 273:252–255

    Article  PubMed  CAS  Google Scholar 

  112. Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB (1983) Transforming growth factor-β in human platelets: identification of a major storage site, purification, and characterization. J Biol Chem 258:7155–7160

    PubMed  CAS  Google Scholar 

  113. Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111:1227–1233

    Article  PubMed  CAS  Google Scholar 

  114. White GC, Rompietti R (2007) Platelet secretion: indiscriminately spewed forth or highly orchestrated? J Thromb Haemost 5:2006–2008

    Article  PubMed  CAS  Google Scholar 

  115. Austrup F, Vestweber D, Borges E, Lohning M, Brauer R, Herz U, Renz H, Hallmann R, Scheffold A, Radbruch A, Hamann A (1997) P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature 385:81–83

    Article  PubMed  CAS  Google Scholar 

  116. Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164:4991–4995

    PubMed  CAS  Google Scholar 

  117. Bouchon A, Facchetti F, Weigand MA, Colonna M (2001) TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410:1103–1107

    Article  PubMed  CAS  Google Scholar 

  118. Klesney-Tait J, Turnbull IR, Colonna M (2006) The TREM receptor family and signal integration. Nat Immunol 7:1266–1273

    Article  PubMed  CAS  Google Scholar 

  119. Fortin CF, Lesur O, Fulop T Jr (2007) Effects of TREM-1 activation in human neutrophils: activation of signaling pathways, recruitment into lipid rafts and association with TLR4. Int Immunol 19:41–50

    Article  PubMed  CAS  Google Scholar 

  120. Radsak MP, Salih HR, Rammensee HG, Schild H (2004) Triggering receptor expressed on myeloid cells-1 in neutrophil inflammatory responses: differential regulation of activation and survival. J Immunol 172:4956–4963

    PubMed  CAS  Google Scholar 

  121. Haselmayer P, Grosse-Hovest L, von Landenberg P, Schild H, Radsak MP (2007) TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 110:1029–1035

    Article  PubMed  CAS  Google Scholar 

  122. Cines DB, Blanchette VS (2002) Immune thrombocytopenic purpura. N Engl J Med 346:995–1008

    Article  PubMed  Google Scholar 

  123. Blanchette V (2002) Childhood chronic immune thrombocytopenic purpura (ITP). Blood Rev 16:23–26

    Article  PubMed  CAS  Google Scholar 

  124. Wright JF, Blanchette V, Wang H, Arya N, Petric M, Semple JW, Freedman J (1996) Characterization of platelet-reactive antibodies in children with varicella-associated acute immune thrombocytopenic purpura (ITP). Br J Haematol 95:145–152

    Article  PubMed  CAS  Google Scholar 

  125. Chia WK, Blanchette VS, Mody M, Wright JF, Freedman J (1998) Characterization of HIV-1-specific antibodies and HIV-1-crossreactive antibodies to platelets in HIV-1-infected haemophiliac patients Br. J Haematol 103:1365–2141

    Article  Google Scholar 

  126. Li Z, Nardi MA, Karpatkin S (2005) Role of molecular mimicry to HIV-1 peptides in HIV-1–related immunologic thrombocytopenia. Blood 106:572–576

    Article  PubMed  CAS  Google Scholar 

  127. Musaji A, Cormont F, Thirion G, Cambiaso CL, Coutelier J-P (2004) Exacerbation of autoantibody-mediated thrombocytopenic purpura by infection with mouse viruses. Blood 104:2102–2106

    Article  PubMed  CAS  Google Scholar 

  128. Emilia G, Longo G, Luppi M, Gandini G, Morselli M, Ferrara L, Amarri S, Cagossi K, Torelli G (2001) Helicobacter pylori eradication can induce platelet recovery in idiopathic thrombocytopenic purpura. Blood 97:812–814

    Article  PubMed  CAS  Google Scholar 

  129. Gasbarrini A, Franceschi F, Tartaglione R, Landolfi R, Pola P, Gasbarrini G (1998) Regression of autoimmune thrombocytopenia after eradication of Helicobacter pylori. Lancet 352:878–879

    Article  PubMed  CAS  Google Scholar 

  130. Stasi R, Rossi Z, Stipa E, Amadori S, Newland AC, Provan D (2005) Helicobacter pylori eradication in the management of patients with idiopathic thrombocytopenic purpura. Am J Med 118:420–421

    Article  Google Scholar 

  131. Jarque I, Andreu R, Llopis I, De la Rubia J, Gomis F, Senent L, Jiménez C, Martín G, Martínez JA, Sanz GF, Ponce J, Sanz MA (2001) Absence of platelet response after eradication of Helicobacter pylori infection in patients with chronic idiopathic thrombocytopenic purpura. Br J Haematol 115:1002–1003

    Article  PubMed  CAS  Google Scholar 

  132. Bang A, Speck ER, Blanchette VS, Freedman J, Semple JW (1996) Recipient humoral immunity against allogeneic leukoreduced platelets is inhibited by aminoguanidine, a selective inhibitor of inducible nitric oxide synthase (iNOS). Blood 88:2959–2966

    PubMed  CAS  Google Scholar 

  133. Bang KWA, Speck ER, Blanchette VS, Freedman J, Semple JW (2000) Unique processing pathways within recipient antigen presenting cells determine IgG immune responsiveness against donor platelet MHC antigens. Blood 95:1735–1742

    PubMed  CAS  Google Scholar 

  134. Semple JW, Freedman J (2002) Recipient antigen processing pathways of allogeneic platelet antigens: essential mediators of immunity. Transfusion 42:958–961

    Article  PubMed  CAS  Google Scholar 

  135. Sayeh E, Sterling K, Speck ER, Freedman J, Semple JW (2004) IgG anti-platelet immunity is dependent on an early innate natural killer cell-derived interferon-γ response that is regulated by CD8 + T cells. Blood 103:2705–2709

    Article  PubMed  CAS  Google Scholar 

  136. Sayeh E, Aslam R, Speck ER, Letien H, Lazarus AH, Freedman J, Semple JW (2004) Immune responsiveness against allogeneic platelet transfusions is determined by the recipient’s MHC class II phenotype. Transfusion 44:1572–1578

    Article  PubMed  CAS  Google Scholar 

  137. Semple JW, Speck ER, Fabron A Jr, Aslam R, Kim M, Freedman J (2008) A novel immunosuppressive pathway involving peroxynitrate-mediated nitration of platelet antigens within antigen presenting cells. Transfusion 48:1917–1924

    Article  PubMed  CAS  Google Scholar 

  138. Aslan M, Ryan TM, Townes TM, Coward L, Kirk MC, Barnes S (2003) Nitric oxide-dependent generation of reactive species in sickle cell disease. Actin tyrosine nitration induces defective cytoskeletal polymerization. J Biol Chem 278:4194–4204

    Article  PubMed  CAS  Google Scholar 

  139. Eiserich JP, Estévez AG, Bamberg TV (1999) Microtubule dysfunction by posttranslational nitrotyrosination of α-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Nat Acad Sci USA 96:6365–6370

    Article  PubMed  CAS  Google Scholar 

  140. Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O’Rourke B, Lowenstein JM, Pevsner J, Wagner DD, Lowenstein CJ (2003) Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115:139–150

    Article  PubMed  CAS  Google Scholar 

  141. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  PubMed  CAS  Google Scholar 

  142. Bogdan C (1998) The multiplex function of nitric oxide in (auto)immunity. J Exp Med 187:1361–1365

    Article  PubMed  CAS  Google Scholar 

  143. Coleman JW (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 1:1397–1406

    Article  PubMed  CAS  Google Scholar 

  144. Popovsky MA, Abel MD, Moore SB (1983) Transfusion-related acute lung injury associated with passive transfer of antileukocyte antibodies. Am Rev Respir Dis 128:185–189

    PubMed  CAS  Google Scholar 

  145. Popovsky MA, Moore SB (1985) Diagnostic and pathogenetic considerations in transfusion-related acute lung injury. Transfusion 25:573–577

    Article  PubMed  CAS  Google Scholar 

  146. Jawa RS, Anillo S, Kulaylat MN (2008) Transfusion-related acute lung injury. J Intensive Care Med 23:109–121

    Article  PubMed  Google Scholar 

  147. Looney MR, Gropper MA, Matthay MA (2004) Transfusion-related acute lung injury: a review. Chest 126:249–258

    Article  PubMed  Google Scholar 

  148. Toy P, Gajic O (2004) Transfusion-related acute lung injury. Anesth Analg 99:1623–1624

    Article  PubMed  Google Scholar 

  149. Bux J (2004) Transfusion-related acute lung injury: a neglected but life-threatening transfusion reaction. Infusionsther Transfusionsmed 29:271–276

    Google Scholar 

  150. Khan SY, Kelher MR, Heal JM, Blumberg N, Boshkov LK, Phipps R, Gettings KF, McLaughlin NJ, Silliman CS (2006) Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood 108:2455–2462

    Article  PubMed  CAS  Google Scholar 

  151. Cognasse F, Lafarge S, Chavarin P, Acquart S, Garraud O (2007) Lipopolysaccharide induces sCD40L release through human platelets TLR4, but not TLR2 and TLR9. Intensive Care Med 33:382–384

    Article  PubMed  Google Scholar 

  152. Damås JK, Jensenius M, Ueland T, Otterdal K, Yndestad A, Frøland SS, Rolain JM, Myrvang B, Raoult D, Aukrust P (2006) Increased levels of soluble CD40L in African tick bite fever: possible involvement of TLRs in the pathogenic interaction between Rickettsia africae, endothelial cells, and platelets. J Immunol 177:2699–2706

    PubMed  Google Scholar 

  153. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Delezay O, Pozzetto B, McNicol A, Garraud O (2008) Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 141:84–91

    Article  PubMed  CAS  Google Scholar 

  154. Blair P, Rex S, Vitseva O, Beaulieu L, Tanriverdi K, Chakrabarti S, Hayashi C, Genco CA, Iafrati M, Freedman JE (2009) Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 104:346–354

    Article  PubMed  CAS  Google Scholar 

  155. Zhang G, Han J, Welch EJm, Yem RD, Voyno-Yasenetskaya TA, Malik AB, Du X, Li Z (2009) Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 182:7997–8004

    Article  PubMed  CAS  Google Scholar 

  156. Cognasse F, Hamzeh-Cognasse H, Garraud O (2008) Platelets “Toll-like receptor” engagement stimulates the release of immunomodulating molecules. Transfusion Clin Biol 15:139–147

    Article  CAS  Google Scholar 

  157. Miller VM, Jayachandran M, Hashimoto K, Heit JA, Owen WG (2008) Estrogen, inflammation, and platelet phenotype. Gend Med 5(Suppl A):S91–S102

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Semple.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semple, J.W., Freedman, J. Platelets and innate immunity. Cell. Mol. Life Sci. 67, 499–511 (2010). https://doi.org/10.1007/s00018-009-0205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0205-1

Keywords

Navigation