Skip to main content

Advertisement

Log in

The Rh protein family: gene evolution, membrane biology, and disease association

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The Rh (Rhesus) genes encode a family of conserved proteins that share a structural fold of 12 transmembrane helices with members of the major facilitator superfamily. Interest in this family has arisen from the discovery of Rh factor’s involvement in hemolytic disease in the fetus and newborn, and of its homologs widely expressed in epithelial tissues. The Rh factor and Rh-associated glycoprotein (RhAG), with epithelial cousins RhBG and RhCG, form four subgroups conferring upon vertebrates a genealogical commonality. The past decade has heralded significant advances in understanding the phylogenetics, allelic diversity, crystal structure, and biological function of Rh proteins. This review describes recent progress on this family and the molecular insights gleaned from its gene evolution, membrane biology, and disease association. The focus is on its long evolutionary history and surprising structural conservation from prokaryotes to humans, pointing to the importance of its functional role, related to but distinct from ammonium transport proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Landsteiner K (1900) Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zentbl Bakt Orig 27:357–362

    Google Scholar 

  2. Landsteiner K (1901) Ueber Agglutinationserscheinungen normalen menschlichen Blutes. Wien Klin Wochenschr 14:1132–1134

    Google Scholar 

  3. Levine P, Stetson RE (1939) An unusual case of intragroup agglutination. J Am Med Assoc 113:126–127

    Google Scholar 

  4. Landsteiner K, Weiner AS (1940) An agglutinable factor in human blood recognized by immune sera for Rhesus blood. Proc Soc Exp Biol Med 43:223

    CAS  Google Scholar 

  5. Klein HG, Anstee DJ (2005) Mollison’s blood transfusion in clinical medicine. Blackwell, Oxford

    Google Scholar 

  6. Blumenfeld OO, Patnaik SK (2004) Allelic genes of blood group antigens: a source of human mutations and cSNPs documented in the Blood Group Antigen Gene Mutation Database. Hum Mutat 23:8–16

    CAS  PubMed  Google Scholar 

  7. Watkins WM (1966) Blood-group substances. Science 152:172–181

    CAS  PubMed  Google Scholar 

  8. Yamamoto F, Clausen H, White T, Marken J, Hakomori S (1990) Molecular genetic basis of the histo-blood group ABO system. Nature 345:229–233

    CAS  PubMed  Google Scholar 

  9. Moore S, Woodrow CF, McClelland DB (1982) Isolation of membrane components associated with human red cell antigens Rh(D), (c), (E) and Fy. Nature 295:529–531

    CAS  PubMed  Google Scholar 

  10. Gahmberg CG (1982) Molecular identification of the human Rho (D) antigen. FEBS Lett 140:93–97

    CAS  PubMed  Google Scholar 

  11. Huang C-H, Liu PZ, Cheng JG (2000) Molecular biology and genetics of the Rh blood group system. Semin Hematol 37:150–165

    CAS  PubMed  Google Scholar 

  12. Le Van Kim C, Colin Y, Cartron JP (2006) Rh proteins: key structural and functional components of the red cell membrane. Blood Rev 20:93–110

    CAS  Google Scholar 

  13. Race RR, Sanger R (1975) Blood groups in man. Blackwell, Oxford

  14. Clark CA, Donohoe WTA, Durkin C, et al (1966) Prevention of Rh-haemolytic disease: results of the clinical trial: a combined study from centres in England and Baltimore. Br Med J 2:907–914

    Google Scholar 

  15. Pollack W, Gorman JG, Freda VJ, Ascari WQ, Allen AE, Baker WJ (1968) Results of clinical trials of RhoGAM in women. Transfusion 8:151–153

    CAS  PubMed  Google Scholar 

  16. Moore S, Green C (1987) The identification of specific Rhesus-polypeptide-blood-group-ABH-active-glycoprotein complexes in the human red-cell membrane. Biochem J 244:735–741

    CAS  PubMed  Google Scholar 

  17. Saboori AM, Smith BL, Agre P (1988) Polymorphism in the Mr 32,000 Rh protein purified from Rh(D)-positive and -negative erythrocytes. Proc Natl Acad Sci USA 85:4042–4045

    CAS  PubMed  Google Scholar 

  18. Bloy C, Blanchard D, Dahr W, Beyreuther K, Salmon C, Cartron JP (1988) Determination of the N-terminal sequence of human red cell Rh(D) polypeptide and demonstration that the Rh(D), (c), and (E) antigens are carried by distinct polypeptide chains. Blood 72:661–666

    CAS  PubMed  Google Scholar 

  19. Avent ND, Ridgwell K, Mawby WJ, Tanner MJ, Anstee DJ, Kumpel B (1988) Protein-sequence studies on Rh-related polypeptides suggest the presence of at least two groups of proteins which associate in the human red-cell membrane. Biochem J 256:1043–1046

    CAS  PubMed  Google Scholar 

  20. Avent ND, Ridgwell K, Tanner MJ, Anstee DJ (1990) cDNA cloning of a 30 kDa erythrocyte membrane protein associated with Rh (Rhesus)-blood-group-antigen expression. Biochem J 271:821–825

    CAS  PubMed  Google Scholar 

  21. Cherif-Zahar B, Bloy C, Le Van Kim C, Blanchard D, Bailly P, Hermand P, Salmon C, Cartron JP, Colin Y (1990) Molecular cloning and protein structure of a human blood group Rh polypeptide. Proc Natl Acad Sci USA 87:6243–6247

    CAS  PubMed  Google Scholar 

  22. Le Van Kim C, Mouro I, Cherif-Zahar B, Raynal V, Cherrier C, Cartron JP, Colin Y (1992) Molecular cloning and primary structure of the human blood group RhD polypeptide. Proc Natl Acad Sci USA 89:10925–10929

    CAS  PubMed  Google Scholar 

  23. Arce MA, Thompson ES, Wagner S, Coyne KE, Ferdman BA, Lublin DM (1993) Molecular cloning of RhD cDNA derived from a gene present in RhD-positive, but not RhD-negative individuals. Blood 82:651–655

    CAS  PubMed  Google Scholar 

  24. Ridgwell K, Spurr NK, Laguda B, MacGeoch C, Avent ND, Tanner MJ (1992) Isolation of cDNA clones for a 50 kDa glycoprotein of the human erythrocyte membrane associated with Rh (rhesus) blood-group antigen expression. Biochem J 287(Pt 1):223–228

    CAS  PubMed  Google Scholar 

  25. Mouro I, Colin Y, Cherif-Zahar B, Cartron JP, Le Van Kim C (1993) Molecular genetic basis of the human Rhesus blood group system. Nat Genet 5:62–65

    CAS  PubMed  Google Scholar 

  26. Huang C-H (1997) Molecular insights into the Rh protein family and associated antigens. Curr Opin Hematol 4:94–103

    Article  CAS  PubMed  Google Scholar 

  27. Avent ND, Reid ME (2000) The Rh blood group system: a review. Blood 95:375–387

    CAS  PubMed  Google Scholar 

  28. Wagner FF, Flegel WA (2004) Review: the molecular basis of the Rh blood group phenotypes. Immunohematology 20:23–36

    CAS  PubMed  Google Scholar 

  29. Avent ND, Madgett TE, Lee ZE, Head DJ, Maddocks DG, Skinner LH (2006) Molecular biology of Rh proteins and relevance to molecular medicine. Expert Rev Mol Med 8:1–20

    PubMed  Google Scholar 

  30. Westhoff CM (2007) The structure and function of the Rh antigen complex. Semin Hematol 44:42–50

    CAS  PubMed  Google Scholar 

  31. Cherif-Zahar B, Raynal V, Gane P, Mattei MG, Bailly P, Gibbs B, Colin Y, Cartron JP (1996) Candidate gene acting as a suppressor of the RH locus in most cases of Rh-deficiency. Nat Genet 12:168–173

    CAS  PubMed  Google Scholar 

  32. Huang C-H (1998) The human Rh50 glycoprotein gene. Structural organization and associated splicing defect resulting in Rh(null) disease. J Biol Chem 273:2207–2213

    CAS  PubMed  Google Scholar 

  33. Huang C-H, Liu Z, Cheng G, Chen Y (1998) Rh50 glycoprotein gene and Rh-null disease: a silent splice donor is trans to a Gly279 --> Glu missense mutation in the conserved transmembrane segment. Blood 92:1776–1784

    CAS  PubMed  Google Scholar 

  34. Hyland CA, Cherif-Zahar B, Cowley N, Raynal V, Parkes J, Saul A, Cartron JP (1998) A novel single missense mutation identified along the RH50 gene in a composite heterozygous Rhnull blood donor of the regulator type. Blood 91:1458–1463

    CAS  PubMed  Google Scholar 

  35. Cherif-Zahar B, Matassi G, Raynal V, Gane P, Delaunay J, Arrizabalaga B, Cartron JP (1998) Rh-deficiency of the regulator type caused by splicing mutations in the human RH50 gene. Blood 92:2535–2540

    CAS  PubMed  Google Scholar 

  36. Huang C-H, Cheng GJ, Reid ME, Chen Y (1999) Rhmod syndrome: a family study of the translation-initiator mutation in the Rh50 glycoprotein gene. Am J Hum Genet 64:108–117

    CAS  PubMed  Google Scholar 

  37. Huang C-H, Cheng G, Liu Z, Chen Y, Reid ME, Halverson G, Okubo Y (1999) Molecular basis for Rh(null) syndrome: identification of three new missense mutations in the Rh50 glycoprotein gene. Am J Hematol 62:25–32

    CAS  PubMed  Google Scholar 

  38. Busch W, Saier MH Jr (2002) The transporter classification (TC) system. Crit Rev Biochem Mol Biol 37:287–337

    CAS  PubMed  Google Scholar 

  39. Agre P, Cartron JP (1991) Molecular biology of the Rh antigens. Blood 78:551–563

    CAS  PubMed  Google Scholar 

  40. Anstee DJ, Tanner MJ (1993) Biochemical aspects of the blood group Rh (rhesus) antigens. Baillieres Clin Haematol 6:401–422

    CAS  PubMed  Google Scholar 

  41. Liu Z, Chen Y, Mo R, Hui C, Cheng JF, Mohandas N, Huang C-H (2000) Characterization of human RhCG and mouse Rhcg as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testis. J Biol Chem 275:25641–25651

    CAS  PubMed  Google Scholar 

  42. Liu Z, Peng J, Mo R, Hui C, Huang C-H (2001) Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J Biol Chem 276:1424–1433

    CAS  PubMed  Google Scholar 

  43. Huang C-H, Liu PZ (2001) New insights into the Rh superfamily of genes and proteins in erythroid cells and nonerythroid tissues. Blood Cells Mol Dis 27:90–101

    CAS  PubMed  Google Scholar 

  44. Soupene E, King N, Feild E, Liu P, Niyogi KK, Huang C-H, Kustu S (2002) Rhesus expression in a green alga is regulated by CO2. Proc Natl Acad Sci USA 99:7769–7773

    CAS  PubMed  Google Scholar 

  45. Soupene E, Inwood W, Kustu S (2004) Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proc Natl Acad Sci USA 101:7787–7792

    CAS  PubMed  Google Scholar 

  46. Kustu S, Inwood W (2006) Biological gas channels for NH3 and CO2: evidence that Rh (Rhesus) proteins are CO2 channels. Transfus Clin Biol 13:103–110

    CAS  PubMed  Google Scholar 

  47. Ji Q, Hashmi S, Liu Z, Zhang J, Chen Y, Huang C-H (2006) CeRh1 (rhr-1) is a dominant Rhesus gene essential for embryonic development and hypodermal function in Caenorhabditis elegans. Proc Natl Acad Sci USA 103:5881–5886

    CAS  PubMed  Google Scholar 

  48. Sharabi K, Hurwitz A, Simon AJ, Beitel GJ, Morimoto RI, Rechavi G, Sznajder JI, Gruenbaum Y (2009) Elevated CO2 levels affect development, motility, and fertility and extend life span in Caenorhabditis elegans. Proc Natl Acad Sci USA 106:4024–4029

    CAS  PubMed  Google Scholar 

  49. Biver S, Belge H, Bourgeois S, Van Vooren P, Nowik M, Scohy S, Houillier P, Szpirer J, Szpirer C, Wagner CA, Devuyst O, Marini AM (2008) A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456:339–343

    CAS  PubMed  Google Scholar 

  50. Huang C-H, Peng J (2005) Evolutionary conservation and diversification of Rh family genes and proteins. Proc Natl Acad Sci USA 102:15512–15517

    CAS  PubMed  Google Scholar 

  51. Peng J, Huang C-H (2006) Rh proteins versus Amt proteins: an organismal and phylogenetic perspective on CO2 and NH3 gas channels. Transfus Clin Biol 13:85–94

    CAS  PubMed  Google Scholar 

  52. Huang C-H (2008) Molecular origin and variability of the Rh gene family: an overview of evolution, genetics and function (The 13th Congress of the European Haematology Association, Copenhagen, Denmark). Haematologica 2:149–157

    Google Scholar 

  53. Ramos JL (2003) Lessons from the genome of a lithoautotroph: making biomass from almost nothing. J Bacteriol 185:2690–2691

    CAS  PubMed  Google Scholar 

  54. Norton JM, Klotz MG, Stein LY, Arp DJ, Bottomley PJ, Chain PS, Hauser LJ, Land ML, Larimer FW, Shin MW, Starkenburg SR (2008) Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol 74:3559–3572

    CAS  PubMed  Google Scholar 

  55. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794

    PubMed  Google Scholar 

  56. Lindsay MR, Webb RI, Strous M, Jetten MS, Butler MK, Forde RJ, Fuerst JA (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175:413–429

    CAS  PubMed  Google Scholar 

  57. Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Annu Rev Microbiol 59:299–328

    CAS  PubMed  Google Scholar 

  58. Drake HL, Gossner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128

    CAS  PubMed  Google Scholar 

  59. Widdel F, Pfennig N (1981) Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans. Arch Microbiol 129:401–402

    CAS  PubMed  Google Scholar 

  60. Holmes DE, O’Neil RA, Vrionis HA, N’Guessan L, A, Ortiz-Bernad I, Larrahondo MJ, Adams LA, Ward JA, Nicoll JS, Nevin KP, Chavan MA, Johnson JP, Long PE, Lovley DR (2007) Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. ISME J 1:663–677

  61. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed  Google Scholar 

  62. Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  63. King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    CAS  PubMed  Google Scholar 

  64. Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin IT, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    CAS  PubMed  Google Scholar 

  65. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    CAS  PubMed  Google Scholar 

  66. Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity 94:280–294

    CAS  PubMed  Google Scholar 

  67. Seack J, Pancer Z, Muller IM, Muller WE (1997) Molecular cloning and primary structure of a Rhesus (Rh)-like protein from the marine sponge Geodia cydonium. Immunogenet 46:493–498

    CAS  Google Scholar 

  68. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960

    CAS  PubMed  Google Scholar 

  69. Leys S, Nichols SA, Adams EDM (2009) Epithelia and integration in sponges. Integr Comp Biol 49:167–177

    Google Scholar 

  70. Schierwater B, de Jong D, Desalle R (2009) Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol 41:370–379

    CAS  PubMed  Google Scholar 

  71. Kitano T, Sumiyama K, Shiroishi T, Saitou N (1998) Conserved evolution of the Rh50 gene compared to its homologous Rh blood group gene. Biochem Biophys Res Commun 249:78–85

    CAS  PubMed  Google Scholar 

  72. Matassi G, Cherif-Zahar B, Pesole G, Raynal V, Cartron JP (1999) The members of the RH gene family (RH50 and RH30) followed different evolutionary pathways. J Mol Evol 48:151–159

    CAS  PubMed  Google Scholar 

  73. Huang C-H, Liu Z, Apoil PA, Blancher A (2000) Sequence, organization, and evolution of Rh50 glycoprotein genes in nonhuman primates. J Mol Evol 51:76–87

    CAS  PubMed  Google Scholar 

  74. Kitano T, Saitou N (2000) Evolutionary history of the Rh blood group-related genes in vertebrates. Immunogenet 51:856–862

    CAS  Google Scholar 

  75. Marini AM, Urrestarazu A, Beauwens R, Andre B (1997) The Rh (rhesus) blood group polypeptides are related to NH4 + transporters. Trends Biochem Sci 22:460–461

    CAS  PubMed  Google Scholar 

  76. Li X, Jayachandran S, Nguyen HH, Chan MK (2007) Structure of the Nitrosomonas europaea Rh protein. Proc Natl Acad Sci USA 104:19279–19284

    CAS  PubMed  Google Scholar 

  77. Lupo D, Li XD, Durand A, Tomizaki T, Cherif-Zahar B, Matassi G, Merrick M, Winkler FK (2007) The 1.3-A resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins. Proc Natl Acad Sci USA 104:19303–19308

    CAS  PubMed  Google Scholar 

  78. Gruswitz F, Chaudhary S, Ho JD, Pezeshki B, Ho C-M, Stroud R (2009) Crystal structure of the human Rhesus glycoprotein RhCG, PDB|3HD6|A

  79. Burton NM, Anstee DJ (2008) Structure, function and significance of Rh proteins in red cells. Curr Opin Hematol 15:625–630

    CAS  PubMed  Google Scholar 

  80. Conroy MJ, Bullough PA, Merrick M, Avent ND (2005) Modelling the human rhesus proteins: implications for structure and function. Br J Haematol 131:543–551

    CAS  PubMed  Google Scholar 

  81. Inwood WB, Hall JA, Kim KS, Fong R, Kustu S (2009) Genetic evidence for an essential oscillation of transmembrane spanning segment 5 in the Escherichia coli ammonium channel AmtB. Genetics. doi:10.1534/genetics.109.109579

  82. Avent ND, Butcher SK, Liu W, Mawby WJ, Mallinson G, Parsons SF, Anstee DJ, Tanner MJ (1992) Localization of the C termini of the Rh (rhesus) polypeptides to the cytoplasmic face of the human erythrocyte membrane. J Biol Chem 267:15134–15139

    CAS  PubMed  Google Scholar 

  83. Eyers SA, Ridgwell K, Mawby WJ, Tanner MJ (1994) Topology and organization of human Rh (rhesus) blood group-related polypeptides. J Biol Chem 269:6417–6423

    CAS  PubMed  Google Scholar 

  84. von Wirén N, Merrick M (2004) Regulation and function of ammonium carriers in bacteria, fungi and plants. Topics Curr Genet 9:95–120

    Google Scholar 

  85. Khademi S, O’Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305:1587–1594

    CAS  PubMed  Google Scholar 

  86. Zheng L, Kostrewa D, Berneche S, Winkler FK, Li XD (2004) The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci USA 101:17090–17095

    CAS  PubMed  Google Scholar 

  87. Andrade SL, Dickmanns A, Ficner R, Einsle O (2005) Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc Natl Acad Sci USA 102:14994–14999

    CAS  PubMed  Google Scholar 

  88. Weidinger K, Neuhauser B, Gilch S, Ludewig U, Meyer O, Schmidt I (2007) Functional and physiological evidence for a rhesus-type ammonia transporter in Nitrosomonas europaea. FEMS Microbiol Lett 273:260–267

    CAS  PubMed  Google Scholar 

  89. Cherif-Zahar B, Durand A, Schmidt I, Hamdaoui N, Matic I, Merrick M, Matassi G (2007) Evolution and functional characterization of the RH50 gene from the ammonia-oxidizing bacterium Nitrosomonas europaea. J Bacteriol 189:9090–9100

    CAS  PubMed  Google Scholar 

  90. Khademi S, Stroud RM (2006) The Amt/MEP/Rh family: structure of AmtB and the mechanism of ammonia gas conduction. Physiology (Bethesda) 21:419–429

    CAS  Google Scholar 

  91. Javelle A, Lupo D, Li XD, Merrick M, Chami M, Ripoche P, Winkler FK (2007) Structural and mechanistic aspects of Amt/Rh proteins. J Struct Biol 158:472–481

    CAS  PubMed  Google Scholar 

  92. Fong RN, Kim KS, Yoshihara C, Inwood WB, Kustu S (2007) The W148L substitution in the Escherichia coli ammonium channel AmtB increases flux and indicates that the substrate is an ion. Proc Natl Acad Sci USA 104:18706–18711

    CAS  PubMed  Google Scholar 

  93. Callebaut I, Dulin F, Bertrand O, Ripoche P, Mouro I, Colin Y, Mornon JP, Cartron JP (2006) Hydrophobic cluster analysis and modeling of the human Rh protein three-dimensional structures. Transfus Clin Biol 13:70–84

    CAS  PubMed  Google Scholar 

  94. Merrick M, Javelle A, Durand A, Severi E, Thornton J, Avent ND, Conroy MJ, Bullough PA (2006) The Escherichia coli AmtB protein as a model system for understanding ammonium transport by Amt and Rh proteins. Transfus Clin Biol 13:97–102

    CAS  PubMed  Google Scholar 

  95. Javelle A, Lupo D, Zheng L, Li XD, Winkler FK, Merrick M (2006) An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance. J Biol Chem 281:39492–39498

    CAS  PubMed  Google Scholar 

  96. Chamberlain AK, Faham S, Yohannan S, Bowie JU (2003) Construction of helix-bundle membrane proteins. Adv Protein Chem 63:19–46

    CAS  PubMed  Google Scholar 

  97. Javelle A, Lupo D, Ripoche P, Fulford T, Merrick M, Winkler FK (2008) Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB. Proc Natl Acad Sci USA 105:5040–5045

    CAS  PubMed  Google Scholar 

  98. Conroy MJ, Jamieson SJ, Blakey D, Kaufmann T, Engel A, Fotiadis D, Merrick M, Bullough PA (2004) Electron and atomic force microscopy of the trimeric ammonium transporter AmtB. EMBO Rep 5:1153–1158

    CAS  PubMed  Google Scholar 

  99. Gruswitz F, O’Connell J, Stroud RM (2007) Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. Proc Natl Acad Sci USA 104:42–47

    CAS  PubMed  Google Scholar 

  100. Huergo LF, Chubatsu LS, Souza EM, Pedrosa FO, Steffens MB, Merrick M (2006) Interactions between PII proteins and the nitrogenase regulatory enzymes DraT and DraG in Azospirillum brasilense. FEBS Lett 580:5232–5236

    CAS  PubMed  Google Scholar 

  101. Chan MK (2009) Personal communication

  102. Marini AM, Matassi G, Raynal V, Andre B, Cartron JP, Cherif-Zahar B (2000) The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 26:341–344

    CAS  PubMed  Google Scholar 

  103. Westhoff CM, Ferreri-Jacobia M, Mak DO, Foskett JK (2002) Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter. J Biol Chem 277:12499–12502

    CAS  PubMed  Google Scholar 

  104. Hemker MB, Cheroutre G, van Zwieten R, Maaskant-van Wijk PA, Roos D, Loos JA, van der Schoot CE, von dem Borne AE (2003) The Rh complex exports ammonium from human red blood cells. Br J Haematol 122:333–340

    CAS  PubMed  Google Scholar 

  105. Ripoche P, Bertrand O, Gane P, Birkenmeier C, Colin Y, Cartron JP (2004) Human Rhesus-associated glycoprotein mediates facilitated transport of NH3 into red blood cells. Proc Natl Acad Sci USA 101:17222–17227

    CAS  PubMed  Google Scholar 

  106. Benjelloun F, Bakouh N, Fritsch J, Hulin P, Lipecka J, Edelman A, Planelles G, Thomas SR, Cherif-Zahar B (2005) Expression of the human erythroid Rh glycoprotein (RhAG) enhances both NH3 and NH4 + transport in HeLa cells. Pflugers Arch 450:155–167

    CAS  PubMed  Google Scholar 

  107. Ludewig U (2004) Electroneutral ammonium transport by basolateral rhesus B glycoprotein. J Physiol (London) 559:751–759

    CAS  Google Scholar 

  108. Bakouh N, Benjelloun F, Hulin P, Brouillard F, Edelman A, Cherif-Zahar B, Planelles G (2004) NH3 is involved in the NH4 + transport induced by the functional expression of the human Rh C glycoprotein. J Biol Chem 279:15975–15983

    CAS  PubMed  Google Scholar 

  109. Nakhoul NL, Dejong H, Abdulnour-Nakhoul SM, Boulpaep EL, Hering-Smith K, Hamm LL (2005) Characteristics of renal Rhbg as an NH4 + transporter. Am J Physiol Renal Physiol 288:F170–F181

    CAS  PubMed  Google Scholar 

  110. Zidi-Yahiaoui N, Mouro-Chanteloup I, D’Ambrosio AM, Lopez C, Gane P, Le van Kim C, Cartron JP, Colin Y, Ripoche P (2005) Human Rhesus B and Rhesus C glycoproteins: properties of facilitated ammonium transport in recombinant kidney cells. Biochem J 391:33–40

    CAS  PubMed  Google Scholar 

  111. Mak DO, Dang B, Weiner ID, Foskett JK, Westhoff CM (2006) Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am J Physiol Renal Physiol 290:F297–F305

    CAS  PubMed  Google Scholar 

  112. Mayer M, Schaaf G, Mouro I, Lopez C, Colin Y, Neumann P, Cartron JP, Ludewig U (2006) Different transport mechanisms in plant and human AMT/Rh-type ammonium transporters. J Gen Physiol 127:133–144

    CAS  PubMed  Google Scholar 

  113. Ludewig U (2006) Ion transport versus gas conduction: function of AMT/Rh-type proteins. Transfus Clin Biol 13:111–116

    CAS  PubMed  Google Scholar 

  114. Zidi-Yahiaoui N, Callebaut I, Genetet S, Le Van Kim C, Cartron JP, Colin Y, Ripoche P, Mouro-Chanteloup I (2009) Functional analysis of human RhCG: comparison with E. coli ammonium transporter reveals similarities in the pore and differences in the vestibule. Am J Physiol Cell Physiol 297:C537–C547

    CAS  PubMed  Google Scholar 

  115. Endeward V, Cartron JP, Ripoche P, Gros G (2006) Red cell membrane CO2 permeability in normal human blood and in blood deficient in various blood groups, and effect of DIDS. Transfus Clin Biol 13:123–127

    CAS  PubMed  Google Scholar 

  116. Endeward V, Cartron JP, Ripoche P, Gros G (2008) RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J 22:64–73

    CAS  PubMed  Google Scholar 

  117. Cherif-Zahar B, Le Van Kim C, Rouillac C, Raynal V, Cartron JP, Colin Y (1994) Organization of the gene (RHCE) encoding the human blood group RhCcEe antigens and characterization of the promoter region. Genomics 19:68–74

    CAS  PubMed  Google Scholar 

  118. Liu Z, Huang C-H (1999) The mouse Rhl1 and Rhag genes: sequence, organization, expression, and chromosomal mapping. Biochem Genet 37:119–138

    CAS  PubMed  Google Scholar 

  119. Iwamoto S, Suganuma H, Kamesaki T, Omi T, Okuda H, Kajii E (2000) Cloning and characterization of erythroid-specific DNase I-hypersensitive site in human rhesus-associated glycoprotein gene. J Biol Chem 275:27324–27331

    CAS  PubMed  Google Scholar 

  120. Mouro-Chanteloup I, D’Ambrosio AM, Gane P, Le Van Kim C, Raynal V, Dhermy D, Cartron JP, Colin Y (2002) Cell-surface expression of RhD blood group polypeptide is posttranscriptionally regulated by the RhAG glycoprotein. Blood 100:1038–1047

    CAS  PubMed  Google Scholar 

  121. Chen BS, Xu ZX, Xu X, Cai Y, Han YL, Wang J, Xia SH, Hu H, Wei F, Wu M, Wang MR (2002) RhCG is downregulated in oesophageal squamous cell carcinomas, but expressed in multiple squamous epithelia. Eur J Cancer 38:1927–1936

    CAS  PubMed  Google Scholar 

  122. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    CAS  PubMed  Google Scholar 

  123. Son CG, Bilke S, Davis S, Greer BT, Wei JS, Whiteford CC, Chen QR, Cenacchi N, Khan J (2005) Database of mRNA gene expression profiles of multiple human organs. Genome Res 15:443–450

    CAS  PubMed  Google Scholar 

  124. Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH (2005) Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA 102:14338–14343

    CAS  PubMed  Google Scholar 

  125. Yoshihara C, Inoue K, Schichnes D, Ruzin S, Inwood W, Kustu S (2008) An Rh1-GFP fusion protein is in the cytoplasmic membrane of a white mutant strain of Chlamydomonas reinhardtii. Mol Plant 1:1007–1020

    CAS  PubMed  Google Scholar 

  126. Benghezal M, Gotthardt D, Cornillon S, Cosson P (2001) Localization of the Rh50-like protein to the contractile vacuole in Dictyostelium. Immunogenet 52:284–288

    CAS  Google Scholar 

  127. Kessin RH (2001) Dictyostelium: evolution, cell biology, and the development of multicellularity. Cambridge University Press, Cambridge, New York

    Google Scholar 

  128. Mercanti V, Blanc C, Lefkir Y, Cosson P, Letourneur F (2006) Acidic clusters target transmembrane proteins to the contractile vacuole in Dictyostelium cells. J Cell Sci 119:837–845

    CAS  PubMed  Google Scholar 

  129. Salomao M, Zhang X, Yang Y, Lee S, Hartwig JH, Chasis JA, Mohandas N, An X (2008) Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc Natl Acad Sci USA 105:8026–8031

    CAS  PubMed  Google Scholar 

  130. Nicolas V, Le Van Kim C, Gane P, Birkenmeier C, Cartron JP, Colin Y, Mouro-Chanteloup I (2003) Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J Biol Chem 278:25526–25533

    CAS  PubMed  Google Scholar 

  131. Bruce LJ, Beckmann R, Ribeiro ML, Peters LL, Chasis JA, Delaunay J, Mohandas N, Anstee DJ, Tanner MJ (2003) A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood 101:4180–4188

    CAS  PubMed  Google Scholar 

  132. Lopez C, Metral S, Eladari D, Drevensek S, Gane P, Chambrey R, Bennett V, Cartron JP, Le Van Kim C, Colin Y (2005) The ammonium transporter RhBG: requirement of a tyrosine-based signal and ankyrin-G for basolateral targeting and membrane anchorage in polarized kidney epithelial cells. J Biol Chem 280:8221–8228

    CAS  PubMed  Google Scholar 

  133. Weiner ID, Miller RT, Verlander JW (2003) Localization of the ammonium transporters, Rh B glycoprotein and Rh C glycoprotein, in the mouse liver. Gastroenterology 124:1432–1440

    CAS  PubMed  Google Scholar 

  134. Handlogten ME, Hong SP, Zhang L, Vander AW, Steinbaum ML, Campbell-Thompson M, Weiner ID (2005) Expression of the ammonia transporter proteins Rh B glycoprotein and Rh C glycoprotein in the intestinal tract. Am J Physiol Gastrointest Liver Physiol 288:G1036–G1047

    CAS  PubMed  Google Scholar 

  135. Kaunitz J (2009) Personal communication

  136. Han KH, Croker BP, Clapp WL, Werner D, Sahni M, Kim J, Kim HY, Handlogten ME, Weiner ID (2006) Expression of the ammonia transporter, Rh C glycoprotein, in normal and neoplastic human kidney. J Am Soc Nephrol 17:2670–2679

    CAS  PubMed  Google Scholar 

  137. Quentin F, Eladari D, Cheval L, Lopez C, Goossens D, Colin Y, Cartron JP, Paillard M, Chambrey R (2003) RhBG and RhCG, the putative ammonia transporters, are expressed in the same cells in the distal nephron. J Am Soc Nephrol 14:545–554

    CAS  PubMed  Google Scholar 

  138. Brown AC, Hallouane D, Mawby WJ, Karet FE, Saleem MA, Howie AJ, Toye AM (2009) RhCG is the major putative ammonia transporter expressed in the human kidney, and RhBG is not expressed at detectable levels. Am J Physiol Renal Physiol 296:F1279–F1290

    CAS  PubMed  Google Scholar 

  139. Seshadri RM, Klein JD, Kozlowski S, Sands JM, Kim YH, Han KH, Handlogten ME, Verlander JW, Weiner ID (2006) Renal expression of the ammonia transporters, Rhbg and Rhcg, in response to chronic metabolic acidosis. Am J Physiol Renal Physiol 290:F397–F408

    CAS  PubMed  Google Scholar 

  140. Cheval L, Duong Van Huyen JP, Bruneval P, Verbavatz JM, Elalouf JM, Doucet A (2004) Plasticity of mouse renal collecting duct in response to potassium depletion. Physiol Genomics 19:61–73

    CAS  PubMed  Google Scholar 

  141. Avent ND (2009) Large-scale blood group genotyping: clinical implications. Br J Haematol 144:3–13

    CAS  PubMed  Google Scholar 

  142. Anstee DJ (2009) Red cell genotyping and the future of pretransfusion testing. Blood 114:248–256

    CAS  PubMed  Google Scholar 

  143. Illanes S, Soothill P (2008) Current aspects of the clinical management of haemolytic disease of the newborn and fetus (The 13th Congress of the European Haematology Association, Copenhagen, Denmark). Haematologica 2:175–178

    Google Scholar 

  144. Huang C-H, Chen Y, Reid ME, Seidl C (1998) Rhnull disease: the amorph type results from a novel double mutation in RhCe gene on D-negative background. Blood 92:664–671

    CAS  PubMed  Google Scholar 

  145. Cherif-Zahar B, Matassi G, Raynal V, Gane P, Mempel W, Perez C, Cartron JP (1998) Molecular defects of the RHCE gene in Rh-deficient individuals of the amorph type. Blood 92:639–646

    CAS  PubMed  Google Scholar 

  146. Tilley L, Green C, Poole J, Gaskell A, Ridgwell K, Burton NM, Uchikawa M, Tsuneyama H, Ogasawara K, Akkok CA, Daniels G (2009) A new blood group system, RHAG: three antigens resulting from amino acid substitutions in the Rh-associated glycoprotein. Vox Sang. doi:10.1111/j.1423-0410.2009.01243.x

  147. Bruce LJ, Guizouarn H, Burton NM, Gabillat N, Poole J, Flatt JF, Brady RL, Borgese F, Delaunay J, Stewart GW (2009) The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid substitutions in the Rh-associated glycoprotein. Blood 113:1350–1357

    CAS  PubMed  Google Scholar 

  148. Bruce LJ (2009) Hereditary stomatocytosis and cation-leaky red cells–recent developments. Blood Cells Mol Dis 42:216–222

    CAS  PubMed  Google Scholar 

  149. Johansson FK, Brodd J, Eklof C, Ferletta M, Hesselager G, Tiger CF, Uhrbom L, Westermark B (2004) Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging. Proc Natl Acad Sci USA 101:11334–11337

    CAS  PubMed  Google Scholar 

  150. Chambrey R, Goossens D, Bourgeois S, Picard N, Bloch-Faure M, Leviel F, Geoffroy V, Cambillau M, Colin Y, Paillard M, Houillier P, Cartron JP, Eladari D (2005) Genetic ablation of Rhbg in the mouse does not impair renal ammonium excretion. Am J Physiol Renal Physiol 289:F1281–F1290

    CAS  PubMed  Google Scholar 

  151. Verma R, Holmans P, Knowles JA, Grover D, Evgrafov OV, Crowe RR, Scheftner WA, Weissman MM, DePaulo JR Jr, Potash JB, Levinson DF (2008) Linkage disequilibrium mapping of a chromosome 15q25–26 major depression linkage region and sequencing of NTRK3. Biol Psychiatry 63:1185–1189

    CAS  PubMed  Google Scholar 

  152. Norberg A, Forsgren L, Holmberg D, Holmberg M (2006) Exclusion of the juvenile myoclonic epilepsy gene EFHC1 as the cause of migraine on chromosome 6, but association to two rare polymorphisms in MEP1A and RHAG. Neurosci Lett 396:137–142

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ work was supported by NIH grants HL54459, HD62704, and HL66274, and funds from the New York Blood Center. We are grateful to Drs. Olga Blumenfeld for helpful comments, Jason Peng for the expanded analysis of Rh and Amt in Fig. 3b, and Michael Chan and Xin Li for Fig. 5. We thank Drs. Sydney Kustu, Michael Chan, and Jonathan Kaunitz for preprints and personal communications. We also want to express our gratitude to Dr. Mohandas Narla for support and interest in the Rh topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Han Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CH., Ye, M. The Rh protein family: gene evolution, membrane biology, and disease association. Cell. Mol. Life Sci. 67, 1203–1218 (2010). https://doi.org/10.1007/s00018-009-0217-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0217-x

Keywords

Navigation