Skip to main content

Advertisement

Log in

The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Although considerable advances in our understanding of the mechanisms of phosphate homeostasis and skeleton mineralization have recently been made, little is known about the initial events involving the detection of changes in the phosphate serum concentrations and the subsequent downstream regulation cascade. Recent data has strengthened a long-established hypothesis that a phosphate-sensing mechanism may be present in various organs. Such a phosphate sensor would detect changes in serum or local phosphate concentration and would inform the body, the local environment, or the individual cell. This suggests that phosphate in itself could represent a signal regulating multiple factors necessary for diverse biological processes such as bone or vascular calcification. This review summarizes findings supporting the possibility that phosphate represents a signaling molecule, particularly in bone and cartilage, but also in other tissues. The involvement of various signaling pathways (ERK1/2), transcription factors (Fra-1, Runx2) and phosphate transporters (PiT1, PiT2) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

1α,25(OH)2D3 :

1α,25-dihydroxyvitamin D

ALP:

Alkaline phosphatase

Pi:

Inorganic phosphate

IGF-1:

Insulin growth factor-1

ESRD:

End-stage renal disease

FGF-23:

Fibroblast growth factor 23

HSMC:

Human aortic smooth muscle cell

MGP:

Matrix gla protein

PTH:

Parathyroid hormone

PFA:

Phosphonoformic acid

RANKL:

Receptor activator of nuclear factor kappa B (NF-κB) (RANK) ligand

VSMC:

Vascular smooth muscle cell

References

  1. Hansen NM, Felix R, Bisaz S, Fleisch H (1976) Aggregation of hydroxyapatite crystals. Biochim Biophys Acta 451:549–559

    CAS  PubMed  Google Scholar 

  2. Crook M, Swaminathan R (1996) Disorders of plasma phosphate and indications for its measurement. Ann Clin Biochem 33(Pt 5):376–396

    CAS  PubMed  Google Scholar 

  3. Kornberg A (1979) The enzymatic replication of DNA. CRC Crit Rev Biochem 7:23–43

    Article  CAS  PubMed  Google Scholar 

  4. Rothfield L, Finkelstein A (1968) Membrane biochemistry. Annu Rev Biochem 37:463–496

    Article  CAS  PubMed  Google Scholar 

  5. Lehninger AL, Wadkins CL (1962) Oxidative phosphorylation. Annu Rev Biochem 31:47–78

    Article  CAS  PubMed  Google Scholar 

  6. Hubbard SR, Till JH (2000) Protein tyrosine kinase structure and function. Annu Rev Biochem 69:373–398

    Article  CAS  PubMed  Google Scholar 

  7. Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–959

    Article  CAS  PubMed  Google Scholar 

  8. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  9. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  CAS  PubMed  Google Scholar 

  10. Bessman SP, Carpenter CL (1985) The creatine–creatine phosphate energy shuttle. Annu Rev Biochem 54:831–862

    Article  CAS  PubMed  Google Scholar 

  11. Prié D, Beck L, Friedlander G, Silve C (2004) Sodium-phosphate cotransporters, nephrolithiasis and bone demineralization. Curr Opin Nephrol Hypertens 13:675–681

    Article  PubMed  Google Scholar 

  12. Knochel JP, Barcenas C, Cotton JR, Fuller TJ, Haller R, Carter NW (1978) Hypophosphatemia and rhabdomyolysis. J Clin Invest 62:1240–1246

    Article  CAS  PubMed  Google Scholar 

  13. Knochel JP (1977) The pathophysiology and clinical characteristics of severe hypophosphatemia. Arch Intern Med 137:203–220

    Article  CAS  PubMed  Google Scholar 

  14. Berndt T, Kumar R (2009) Novel mechanisms in the regulation of phosphorus homeostasis. Physiology (Bethesda) 24:17–25

    CAS  Google Scholar 

  15. Hruska K, Slatopolsky E (1997) Disorders of phosphorus, calcium, and magnesium metabolism. In: Schrier R, Gottschalk C (eds) Diseases of the kidney. Little and Brown, Boston

    Google Scholar 

  16. Rutecki GW, Cugino A, Jarjoura D, Kilner JF, Whittier FC (1997) Nephrologists’ subjective attitudes towards end-of-life issues and the conduct of terminal care. Clin Nephrol 48:173–180

    CAS  PubMed  Google Scholar 

  17. Weisinger JR, Bellorin-Font E (1998) Magnesium and phosphorus. Lancet 352:391–396

    Article  CAS  PubMed  Google Scholar 

  18. Shiber JR, Mattu A (2002) Serum phosphate abnormalities in the emergency department. J Emerg Med 23:395–400

    Article  PubMed  Google Scholar 

  19. Hruska KA, Mathew S, Lund RJ, Memon I, Saab G (2009) The pathogenesis of vascular calcification in the chronic kidney disease mineral bone disorder: the links between bone and the vasculature. Semin Nephrol 29:156–165

    Article  CAS  PubMed  Google Scholar 

  20. Kanbay M, Goldsmith D, Akcay A, Covic A (2009) Phosphate - the silent stealthy cardiorenal culprit in all stages of chronic kidney disease: a systematic review. Blood Purif 27:220–230

    Article  CAS  PubMed  Google Scholar 

  21. Hruska KA, Mathew S, Lund R, Qiu P, Pratt R (2008) Hyperphosphatemia of chronic kidney disease. Kidney Int 74:148–157

    Article  CAS  PubMed  Google Scholar 

  22. Pettifor JM (2008) What’s new in hypophosphataemic rickets? Eur J Pediatr 167:493–499

    Article  CAS  PubMed  Google Scholar 

  23. Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409

    CAS  PubMed  Google Scholar 

  24. Tanaka Y, Deluca HF (1973) The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys 154:566–574

    Article  CAS  PubMed  Google Scholar 

  25. DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80:1689S–1696S

    CAS  PubMed  Google Scholar 

  26. Berndt TJ, Schiavi S, Kumar R (2005) “Phosphatonins” and the regulation of phosphorus homeostasis. Am J Physiol Renal Physiol 289:F1170–F1182

    Article  CAS  PubMed  Google Scholar 

  27. Berndt T, Knox F (1992) Renal regulation of phosphate excretion. In: Seldin D, Giebish G (eds) The kidney: physiology and pathophysiology. Raven Press, New York, pp 2511–2532

    Google Scholar 

  28. Chase LR, Aurbach GD (1967) Parathyroid function and the renal excretion of 3’5’-adenylic acid. Proc Natl Acad Sci USA 58:518–525

    Article  CAS  PubMed  Google Scholar 

  29. Muff R, Fischer JA, Biber J, Murer H (1992) Parathyroid hormone receptors in control of proximal tubule function. Annu Rev Physiol 54:67–79

    Article  CAS  PubMed  Google Scholar 

  30. Kiela PR, Ghishan FK (2009) Recent advances in the renal-skeletal-gut axis that controls phosphate homeostasis. Lab Invest 89:7–14

    Article  CAS  PubMed  Google Scholar 

  31. Strom TM, Jüppner H (2008) PHEX, FGF23, DMP1 and beyond. Curr Opin Nephrol Hypertens 17:357–362

    Article  CAS  PubMed  Google Scholar 

  32. Johnston J, Ramos-Valdes Y, Stanton LA, Ladhani S, Beier F, Dimattia GE (2010) Human stanniocalcin-1 or -2 expressed in mice reduces bone size and severely inhibits cranial intramembranous bone growth. Transgenic Res. doi:10.1007/s11248-010-9376-7

  33. Jüppner H (2007) Novel regulators of phosphate homeostasis and bone metabolism. Therapeutic apheresis and dialysis: official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis. Jpn Soc Dial Ther 11(Suppl 1):S3–S22

    Article  CAS  Google Scholar 

  34. Shaikh A, Berndt T, Kumar R (2008) Regulation of phosphate homeostasis by the phosphatonins and other novel mediators. Pediatr Nephrol 23:1203–1210

    Article  PubMed  Google Scholar 

  35. Renkema K, Alexander RT, Bindels R, Hoenderop J (2008) Calcium and phosphate homeostasis: concerted interplay of new regulators. Ann Med 40:82–91

    Article  CAS  PubMed  Google Scholar 

  36. Prie D, Friedlander G (2010) Genetic disorders of renal phosphate transport. N Engl J Med 362:2399–2409

    Article  CAS  PubMed  Google Scholar 

  37. Werner A, Kinne RK (2001) Evolution of the Na-P(i) cotransport systems. Am J Physiol Regul Integr Comp Physiol 280:R301–R312

    CAS  PubMed  Google Scholar 

  38. Beck L, Silve C (2001) Molecular aspects of phosphate homeostasis in mammals. Nephrologie 22:149–159

    CAS  PubMed  Google Scholar 

  39. Prie D, Urena Torres P, Friedlander G (2009) Latest findings in phosphate homeostasis. Kidney Int 75:882–889

    Article  CAS  PubMed  Google Scholar 

  40. Singer SJ (1990) The structure and insertion of integral proteins in membranes. Annu Rev Cell Biol 6:247–296

    Article  CAS  PubMed  Google Scholar 

  41. Chou KC, Elrod DW (1999) Prediction of membrane protein types and subcellular locations. Proteins 34:137–153

    Article  CAS  PubMed  Google Scholar 

  42. Chou KC, Cai YD (2005) Using GO-PseAA predictor to identify membrane proteins and their types. Biochem Biophys Res Commun 327:845–847

    Article  CAS  PubMed  Google Scholar 

  43. Werner A, Moore ML, Mantei N, Biber J, Semenza G, Murer H (1991) Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci USA 88:9608–9612

    Article  CAS  PubMed  Google Scholar 

  44. Busch AE, Schuster A, Waldegger S, Wagner CA, Zempel G, Broer S, Biber J, Murer H, Lang F (1996) Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc Natl Acad Sci USA 93:5347–5351

    Article  CAS  PubMed  Google Scholar 

  45. Yabuuchi H, Tamai I, Morita K, Kouda T, Miyamoto K, Takeda E, Tsuji A (1998) Hepatic sinusoidal membrane transport of anionic drugs mediated by anion transporter Npt1. J Pharmacol Exp Ther 286:1391–1396

    CAS  PubMed  Google Scholar 

  46. Uchino H, Tamai I, Yamashita K, Minemoto Y, Sai Y, Yabuuchi H, Miyamoto K, Takeda E, Tsuji A (2000) p-aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem Biophys Res Commun 270:254–259

    Article  CAS  PubMed  Google Scholar 

  47. Uchino H, Tamai I, Yabuuchi H, China K, Miyamoto K, Takeda E, Tsuji A (2000) Faropenem transport across the renal epithelial luminal membrane via inorganic phosphate transporter Npt1. Antimicrob Agents Chemother 44:574–577

    Article  CAS  PubMed  Google Scholar 

  48. Cheret C, Doyen A, Yaniv M, Pontoglio M (2002) Hepatocyte nuclear factor 1 alpha controls renal expression of the Npt1–Npt4 anionic transporter locus. J Mol Biol 322:929–941

    Article  CAS  PubMed  Google Scholar 

  49. Reimer RJ, Edwards RH (2004) Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch 447:629–635

    Article  CAS  PubMed  Google Scholar 

  50. Urano W, Taniguchi A, Anzai N, Inoue E, Kanai Y, Yamanaka M, Endou H, Kamatani N, Yamanaka H (2010) Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Ann Rheum Dis 69:1232–1234

    Article  CAS  PubMed  Google Scholar 

  51. Murer H, Hernando N, Forster I, Biber J (2003) Regulation of Na/Pi transporter in the proximal tubule. Annu Rev Physiol 65:531–542

    Article  CAS  PubMed  Google Scholar 

  52. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95:5372–5377

    Article  CAS  PubMed  Google Scholar 

  53. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 95:14564–14569

    Article  CAS  PubMed  Google Scholar 

  54. Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, Schiavi SC (2009) Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol 20:2348–2358

    Article  CAS  PubMed  Google Scholar 

  55. Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, Tomoe Y, Kuwahata M, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol 297:F671–F678

    Article  CAS  PubMed  Google Scholar 

  56. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672

    Article  CAS  PubMed  Google Scholar 

  57. Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol 20:104–113

    Article  CAS  PubMed  Google Scholar 

  58. Collins JF, Bai L, Ghishan FK (2004) The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors. Pflugers Arch 447:647–652

    Article  CAS  PubMed  Google Scholar 

  59. Miller DG, Edwards RH, Miller AD (1994) Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc Natl Acad Sci USA 91:78–82

    Article  CAS  PubMed  Google Scholar 

  60. Miller DG, Miller AD (1994) A family of retroviruses that utilize related phosphate transporters for cell entry. J Virol 68:8270–8276

    CAS  PubMed  Google Scholar 

  61. Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD (1994) Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 91:7071–7075

    Article  CAS  PubMed  Google Scholar 

  62. Virkki LV, Biber J, Murer H, Forster IC (2007) Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol 293:F643–F654

    Article  CAS  PubMed  Google Scholar 

  63. Giachelli CM (2009) The emerging role of phosphate in vascular calcification. Kidney Int 75:890–897

    Article  CAS  PubMed  Google Scholar 

  64. Li X, Giachelli CM (2007) Sodium-dependent phosphate cotransporters and vascular calcification. Curr Opin Nephrol Hypertens 16:325–328

    Article  PubMed  Google Scholar 

  65. Yoshiko Y, Candeliere GA, Maeda N, Aubin JE (2007) Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization. Mol Cell Biol 27:4465–4474

    Article  CAS  PubMed  Google Scholar 

  66. Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC (2009) The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol 296:F691–F699

    Article  CAS  PubMed  Google Scholar 

  67. Bellows CG, Heersche JN, Aubin JE (1992) Inorganic phosphate added exogenously or released from beta-glycerophosphate initiates mineralization of osteoid nodules in vitro. Bone Miner 17:15–29

    Article  CAS  PubMed  Google Scholar 

  68. Kumar R, Riggs B (1980) Pathologic bone physiology. In: Urist M (ed) Fundamental and clinical bone physiology. Lippincott, Philadelphia, pp 394–406

    Google Scholar 

  69. Conrads K, Yi M, Simpson K, Lucas D, Camalier C, Yu L, Veenstra T, Stephens R, Conrads T, Beck G (2005) A combined proteome and microarray investigation of inorganic phosphate-induced pre-osteoblast cells. Mol Cell Proteomics 4:1284–1296

    Article  CAS  PubMed  Google Scholar 

  70. Naviglio S, Spina A, Chiosi E, Fusco A, Illiano F, Pagano M, Romano M, Senatore G, Sorrentino A, Sorvillo L, Illiano G (2006) Inorganic phosphate inhibits growth of human osteosarcoma U2OS cells via adenylate cyclase/cAMP pathway. J Cell Biochem 98:1584–1596

    Article  CAS  PubMed  Google Scholar 

  71. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692

    Article  CAS  PubMed  Google Scholar 

  72. Conrads K, Yu L, Lucas D, Zhou M, Chan K, Simpson K, Schaefer C, Issaq H, Veenstra T, Beck G, Conrads T (2004) Quantitative proteomic analysis of inorganic phosphate-induced murine MC3T3-E1 osteoblast cells. Electrophoresis 25:1342–1352

    Article  CAS  PubMed  Google Scholar 

  73. Beck G, Moran E, Knecht N (2003) Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2. Exp Cell Res 288:288–300

    Article  CAS  PubMed  Google Scholar 

  74. Kanatani M, Sugimoto T, Kano J, Chihara K (2002) IGF-I mediates the stimulatory effect of high phosphate concentration on osteoblastic cell proliferation. J Cell Physiol 190:306–312

    Article  CAS  PubMed  Google Scholar 

  75. Baylink DJ, Finkelman RD, Mohan S (1993) Growth factors to stimulate bone formation. J Bone Miner Res 8(Suppl 2):S565–S572

    PubMed  Google Scholar 

  76. Sugimoto T, Kanatani M, Kano J, Kobayashi T, Yamaguchi T, Fukase M, Chihara K (1994) IGF-I mediates the stimulatory effect of high calcium concentration on osteoblastic cell proliferation. Am J Physiol 266:E709–E716

    CAS  PubMed  Google Scholar 

  77. Schmid C, Keller C, Schlapfer I, Veldman C, Zapf J (1998) Calcium and insulin-like growth factor I stimulation of sodium-dependent phosphate transport and proliferation of cultured rat osteoblasts. Biochem Biophys Res Commun 245:220–225

    Article  CAS  PubMed  Google Scholar 

  78. Beck GR Jr, Sullivan EC, Moran E, Zerler B (1998) Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. J Cell Biochem 68:269–280

    Article  CAS  PubMed  Google Scholar 

  79. Beck G, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 97:8352–8357

    Article  CAS  PubMed  Google Scholar 

  80. Adams CS, Mansfield K, Perlot RL, Shapiro IM (2001) Matrix regulation of skeletal cell apoptosis. Role of calcium and phosphate ions. J Biol Chem 276:20316–20322

    Article  CAS  PubMed  Google Scholar 

  81. Meleti Z, Shapiro IM, Adams CS (2000) Inorganic phosphate induces apoptosis of osteoblast-like cells in culture. Bone 27:359–366

    Article  CAS  PubMed  Google Scholar 

  82. Wittrant Y, Bourgine A, Khoshniat S, Alliot-Licht B, Masson M, Gatius M, Rouillon T, Weiss P, Beck L, Guicheux J (2009) Inorganic phosphate regulates Glvr-1 and -2 expression: role of calcium and ERK1/2. Biochem Biophys Res Commun 381:259–263

    Article  CAS  PubMed  Google Scholar 

  83. Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF, Wittrant Y, Masson M, Weiss P, Beck L, Magne D, Guicheux J (2009) Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 24:1856–1868

    Article  CAS  PubMed  Google Scholar 

  84. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  85. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179

    Article  CAS  PubMed  Google Scholar 

  86. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  87. Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS 3rd, Frankel WN, Lee SY, Choi Y (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272:25190–25194

    Article  CAS  PubMed  Google Scholar 

  88. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  CAS  PubMed  Google Scholar 

  89. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  90. Baylink D, Wergedal J, Stauffer M (1971) Formation, mineralization, and resorption of bone in hypophosphatemic rats. J Clin Invest 50:2519–2530

    Article  CAS  PubMed  Google Scholar 

  91. Bruin WJ, Baylink DJ, Wergedal JE (1975) Acute inhibition of mineralization and stimulation of bone resorption mediated by hypophosphatemia. Endocrinology 96:394–399

    Article  CAS  PubMed  Google Scholar 

  92. Thompson ER, Baylink DJ, Wergedal JE (1975) Increases in number and size of osteoclasts in response to calcium or phosphorus deficiency in the rat. Endocrinology 97:283–289

    Article  CAS  PubMed  Google Scholar 

  93. Yates AJ, Oreffo RO, Mayor K, Mundy GR (1991) Inhibition of bone resorption by inorganic phosphate is mediated by both reduced osteoclast formation and decreased activity of mature osteoclasts. J Bone Miner Res 6:473–478

    Article  CAS  PubMed  Google Scholar 

  94. Kanatani M, Sugimoto T, Kano J, Kanzawa M, Chihara K (2003) Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity. J Cell Physiol 196:180–189

    Article  CAS  PubMed  Google Scholar 

  95. Mozar A, Haren N, Chasseraud M, Louvet L, Maziere C, Wattel A, Mentaverri R, Morliere P, Kamel S, Brazier M, Maziere JC, Massy ZA (2008) High extracellular inorganic phosphate concentration inhibits RANK–RANKL signaling in osteoclast-like cells. J Cell Physiol 215:47–54

    Article  CAS  PubMed  Google Scholar 

  96. Bingham PJ, Raisz LG (1974) Bone growth in organ culture: effects of phosphate and other nutrients on bone and cartilage. Calcif Tissue Res 14:31–48

    Article  CAS  PubMed  Google Scholar 

  97. Kakuta S, Golub EE, Shapiro IM (1985) Morphochemical analysis of phosphorus pools in calcifying cartilage. Calcif Tissue Int 37:293–299

    Article  CAS  PubMed  Google Scholar 

  98. Wang D, Canaff L, Davidson D, Corluka A, Liu H, Hendy GN, Henderson JE (2001) Alterations in the sensing and transport of phosphate and calcium by differentiating chondrocytes. J Biol Chem 276:33995–34005

    Article  CAS  PubMed  Google Scholar 

  99. Fujita T, Meguro T, Izumo N, Yasutomi C, Fukuyama R, Nakamuta H, Koida M (2001) Phosphate stimulates differentiation and mineralization of the chondroprogenitor clone ATDC5. Jpn J Pharmacol 85:278–281

    Article  CAS  PubMed  Google Scholar 

  100. Magne D, Bluteau G, Faucheux C, Palmer G, Vignes-Colombeix C, Pilet P, Rouillon T, Caverzasio J, Weiss P, Daculsi G, Guicheux J (2003) Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification. J Bone Miner Res 18:1430–1442

    Article  CAS  PubMed  Google Scholar 

  101. Cecil DL, Rose DM, Terkeltaub R, Liu-Bryan R (2005) Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes. Arthritis Rheum 52:144–154

    Article  CAS  PubMed  Google Scholar 

  102. Magne D, Julien M, Vinatier C, Merhi-Soussi F, Weiss P, Guicheux J (2005) Cartilage formation in growth plate and arteries: from physiology to pathology. Bioessays 27:708–716

    Article  CAS  PubMed  Google Scholar 

  103. Anderson HC (2003) Matrix vesicles and calcification. Curr Rheumatol Rep 5:222–226

    Article  PubMed  Google Scholar 

  104. Alini M, Carey D, Hirata S, Grynpas MD, Pidoux I, Poole AR (1994) Cellular and matrix changes before and at the time of calcification in the growth plate studied in vitro: arrest of type X collagen synthesis and net loss of collagen when calcification is initiated. J Bone Miner Res 9:1077–1087

    Article  CAS  PubMed  Google Scholar 

  105. Mansfield K, Rajpurohit R, Shapiro IM (1999) Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes. J Cell Physiol 179:276–286

    Article  CAS  PubMed  Google Scholar 

  106. Mansfield K, Teixeira CC, Adams CS, Shapiro IM (2001) Phosphate ions mediate chondrocyte apoptosis through a plasma membrane transporter mechanism. Bone 28:1–8

    Article  CAS  PubMed  Google Scholar 

  107. Teixeira CC, Mansfield K, Hertkorn C, Ischiropoulos H, Shapiro IM (2001) Phosphate-induced chondrocyte apoptosis is linked to nitric oxide generation. Am J Physiol Cell Physiol 281:C833–C839

    CAS  PubMed  Google Scholar 

  108. Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637–9642

    Article  CAS  PubMed  Google Scholar 

  109. Mansfield K, Pucci B, Adams CS, Shapiro IM (2003) Induction of apoptosis in skeletal tissues: phosphate-mediated chick chondrocyte apoptosis is calcium dependent. Calcif Tissue Int 73:161–172

    Article  CAS  PubMed  Google Scholar 

  110. Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, Morii H, Giachelli CM (2000) Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 87:E10–E17

    CAS  PubMed  Google Scholar 

  111. Giachelli CM, Jono S, Shioi A, Nishizawa Y, Mori K, Morii H (2001) Vascular calcification and inorganic phosphate. Am J Kidney Dis 38:S34–S37

    Article  CAS  PubMed  Google Scholar 

  112. Li X, Yang HY, Giachelli CM (2006) Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ Res 98:905–912

    Article  CAS  PubMed  Google Scholar 

  113. Kido S, Miyamoto K, Mizobuchi H, Taketani Y, Ohkido I, Ogawa N, Kaneko Y, Harashima S, Takeda E (1999) Identification of regulatory sequences and binding proteins in the type II sodium/phosphate cotransporter NPT2 gene responsive to dietary phosphate. J Biol Chem 274:28256–28263

    Article  CAS  PubMed  Google Scholar 

  114. Biber J, Forgo J, Murer H (1988) Modulation of Na + -Pi cotransport in opossum kidney cells by extracellular phosphate. Am J Physiol 255:C155–C161

    CAS  PubMed  Google Scholar 

  115. Jin H, Hwang SK, Yu K, Anderson HK, Lee YS, Lee KH, Prats AC, Morello D, Beck GR Jr, Cho MH (2006) A high inorganic phosphate diet perturbs brain growth, alters Akt-ERK signaling, and results in changes in cap-dependent translation. Toxicol Sci 90:221–229

    Article  CAS  PubMed  Google Scholar 

  116. Jin H, Hwang SK, Kwon JT, Lee YS, An GH, Lee KH, Prats AC, Morello D, Beck GR Jr, Cho MH (2008) Low dietary inorganic phosphate affects the brain by controlling apoptosis, cell cycle and protein translation. J Nutr Biochem 19:16–25

    Article  CAS  PubMed  Google Scholar 

  117. Xu CX, Jin H, Lim HT, Kim JE, Shin JY, Lee ES, Chung YS, Lee YS, Beck G Jr, Lee KH, Cho MH (2008) High dietary inorganic phosphate enhances cap-dependent protein translation, cell-cycle progression, and angiogenesis in the livers of young mice. Am J Physiol Gastrointest Liver Physiol 295:G654–G663

    Article  CAS  PubMed  Google Scholar 

  118. Chang SH, Yu KN, Lee YS, An GH, Beck GR Jr, Colburn NH, Lee KH, Cho MH (2006) Elevated inorganic phosphate stimulates Akt-ERK1/2-Mnk1 signaling in human lung cells. Am J Respir Cell Mol Biol 35:528–539

    Article  CAS  PubMed  Google Scholar 

  119. Jin H, Chang SH, Xu CX, Shin JY, Chung YS, Park SJ, Lee YS, An GH, Lee KH, Cho MH (2007) High dietary inorganic phosphate affects lung through altering protein translation, cell cycle, and angiogenesis in developing mice. Toxicol Sci 100:215–223

    Article  CAS  PubMed  Google Scholar 

  120. Jin H, Xu CX, Lim HT, Park SJ, Shin JY, Chung YS, Park SC, Chang SH, Youn HJ, Lee KH, Lee YS, Ha YC, Chae CH, Beck GR Jr, Cho MH (2009) High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am J Respir Crit Care Med 179:59–68

    Article  CAS  PubMed  Google Scholar 

  121. Xu CX, Jin H, Chung YS, Shin JY, Hwang SK, Kwon JT, Park SJ, Lee ES, Minai-Tehrani A, Chang SH, Woo MA, Noh MS, An GH, Lee KH, Cho MH (2009) Low dietary inorganic phosphate affects the lung growth of developing mice. J Vet Sci 10:105–113

    Article  PubMed  Google Scholar 

  122. Glinn M, Ni B, Irwin RP, Kelley SW, Lin SZ, Paul SM (1998) Inorganic Pi increases neuronal survival in the acute early phase following excitotoxic/oxidative insults. J Neurochem 70:1850–1858

    Article  CAS  PubMed  Google Scholar 

  123. Slatopolsky E, Finch J, Denda M, Ritter C, Zhong M, Dusso A, MacDonald PN, Brown AJ (1996) Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest 97:2534–2540

    Article  CAS  PubMed  Google Scholar 

  124. Almaden Y, Canalejo A, Hernandez A, Ballesteros E, Garcia-Navarro S, Torres A, Rodriguez M (1996) Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res 11:970–976

    Article  CAS  PubMed  Google Scholar 

  125. Silver J, Kilav R, Naveh-Many T (2002) Mechanisms of secondary hyperparathyroidism. Am J Physiol Renal Physiol 283:F367–F376

    CAS  PubMed  Google Scholar 

  126. Beck G, Knecht N (2003) Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem 278:41921–41929

    Article  CAS  PubMed  Google Scholar 

  127. Fujita T, Izumo N, Fukuyama R, Meguro T, Yasutomi C, Nakamuta H, Koida M (2001) Incadronate and etidronate accelerate phosphate-primed mineralization of MC4 cells via ERK1/2-Cbfa1 signaling pathway in a Ras-independent manner: further involvement of mevalonate-pathway blockade for incadronate. Jpn J Pharmacol 86:86–96

    Article  CAS  PubMed  Google Scholar 

  128. Julien M, Magne D, Masson M, Rolli-Derkinderen M, Chassande O, Cario-Toumaniantz C, Cherel Y, Weiss P, Guicheux J (2007) Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology 148:530–537

    Article  CAS  PubMed  Google Scholar 

  129. Fujita T, Izumo N, Fukuyama R, Meguro T, Nakamuta H, Kohno T, Koida M (2001) Phosphate provides an extracellular signal that drives nuclear export of Runx2/Cbfa1 in bone cells. Biochem Biophys Res Commun 280:348–352

    Article  CAS  PubMed  Google Scholar 

  130. Vial E, Marshall CJ (2003) Elevated ERK-MAP kinase activity protects the FOS family member FRA-1 against proteasomal degradation in colon carcinoma cells. J Cell Sci 116:4957–4963

    Article  CAS  PubMed  Google Scholar 

  131. Casalino L, De Cesare D, Verde P (2003) Accumulation of Fra-1 in ras-transformed cells depends on both transcriptional autoregulation and MEK-dependent posttranslational stabilization. Mol Cell Biol 23:4401–4415

    Article  CAS  PubMed  Google Scholar 

  132. Busch AE, Wagner CA, Schuster A, Waldegger S, Biber J, Murer H, Lang F (1995) Properties of electrogenic Pi transport by a human renal brush border Na+/Pi transporter. J Am Soc Nephrol 6:1547–1551

    CAS  PubMed  Google Scholar 

  133. Szczepanska-Konkel M, Yusufi AN, VanScoy M, Webster SK, Dousa TP (1986) Phosphonocarboxylic acids as specific inhibitors of Na+-dependent transport of phosphate across renal brush border membrane. J Biol Chem 261:6375–6383

    CAS  PubMed  Google Scholar 

  134. Bai L, Collins JF, Ghishan FK (2000) Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine. Am J Physiol Cell Physiol 279:C1135–C1143

    CAS  PubMed  Google Scholar 

  135. Ravera S, Virkki LV, Murer H, Forster IC (2007) Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Physiol Cell Physiol 293:C606–C620

    Article  CAS  PubMed  Google Scholar 

  136. Villa-Bellosta R, Bogaert YE, Levi M, Sorribas V (2007) Characterization of phosphate transport in rat vascular smooth muscle cells: implications for vascular calcification. Arterioscler Thromb Vasc Biol 27:1030–1036

    Article  CAS  PubMed  Google Scholar 

  137. Villa-Bellosta R, Sorribas V (2009) Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium-phosphate deposition. Arterioscler Thromb Vasc Biol 29:761–766

    Article  CAS  PubMed  Google Scholar 

  138. Suzuki A, Ghayor C, Guicheux J, Magne D, Quillard S, Kakita A, Ono Y, Miura Y, Oiso Y, Itoh M, Caverzasio J (2006) Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells. J Bone Miner Res 21:674–683

    Article  CAS  PubMed  Google Scholar 

  139. Fleisch HA, Russell RG, Bisaz S, Muhlbauer RC, Williams DA (1970) The inhibitory effect of phosphonates on the formation of calcium phosphate crystals in vitro and on aortic and kidney calcification in vivo. Eur J Clin Invest 1:12–18

    Article  CAS  PubMed  Google Scholar 

  140. Beck L, Leroy C, Beck-cormier S, Forand A, Salaun C, Paris N, Bernier A, Urena-Torres P, Prié D, Ollero M, Coulombel L, Friedlander G (2010) The phosphate transporter PiT1 (Slc20a1) revealed as a new essential gene for mouse liver development. PLoS One 5:e9148

    Article  PubMed  CAS  Google Scholar 

  141. Festing MH, Speer MY, Yang HY, Giachelli CM (2009) Generation of mouse conditional and null alleles of the type III sodium-dependent phosphate cotransporter PiT-1. Genesis 47:858–863

    CAS  PubMed  Google Scholar 

  142. Kumar R (2009) Phosphate sensing. Curr Opin Nephrol Hypertens 18:281–284

    Article  CAS  PubMed  Google Scholar 

  143. Markovich D, Verri T, Sorribas V, Forgo J, Biber J, Murer H (1995) Regulation of opossum kidney (OK) cell Na/Pi cotransport by Pi deprivation involves mRNA stability. Pflugers Arch 430:459–463

    Article  CAS  PubMed  Google Scholar 

  144. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K (2004) Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287:F39–F47

    Article  CAS  PubMed  Google Scholar 

  145. Rizzoli R, Fleisch H, Bonjour JP (1977) Role of 1, 25-dihydroxyvitamin D3 on intestinal phosphate absorption in rats with a normal vitamin D supply. J Clin Invest 60:639–647

    Article  CAS  PubMed  Google Scholar 

  146. Goseki-Sone M, Yamada A, Hamatani R, Mizoi L, Iimura T, Ezawa I (2002) Phosphate depletion enhances bone morphogenetic protein-4 gene expression in a cultured mouse marrow stromal cell line ST2. Biochem Biophys Res Commun 299:395–399

    Article  CAS  PubMed  Google Scholar 

  147. Goseki-Sone M, Yamada A, Asahi K, Hirota A, Ezawa I, Iimura T (1999) Phosphate depletion enhances tissue-nonspecific alkaline phosphatase gene expression in a cultured mouse marrow stromal cell line ST2. Biochem Biophys Res Commun 265:24–28

    Article  CAS  PubMed  Google Scholar 

  148. Delmez JA, Slatopolsky E (1992) Hyperphosphatemia: its consequences and treatment in patients with chronic renal disease. Am J Kidney Dis 19:303–317

    CAS  PubMed  Google Scholar 

  149. Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M, Khamaysi Z, Behar D, Petronius D, Friedman V, Zelikovic I, Raimer S, Metzker A, Richard G, Sprecher E (2004) Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet 36:579–581

    Article  CAS  PubMed  Google Scholar 

  150. Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B (2005) An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 14:385–390

    Article  CAS  PubMed  Google Scholar 

  151. Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, Goetz R, Mohammadi M, White KE, Econs MJ (2007) A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 117:2684–2691

    Article  CAS  PubMed  Google Scholar 

  152. Chefetz I, Kohno K, Izumi H, Uitto J, Richard G, Sprecher E (2009) GALNT3, a gene associated with hyperphosphatemic familial tumoral calcinosis, is transcriptionally regulated by extracellular phosphate and modulates matrix metalloproteinase activity. Biochim Biophys Acta 1792:61–67

    CAS  PubMed  Google Scholar 

  153. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568

    CAS  PubMed  Google Scholar 

  154. Stubbs JR, Liu S, Tang W, Zhou J, Wang Y, Yao X, Quarles LD (2007) Role of hyperphosphatemia and 1, 25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J Am Soc Nephrol 18:2116–2124

    Article  CAS  PubMed  Google Scholar 

  155. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  156. Block GA (2000) Prevalence and clinical consequences of elevated Ca x P product in hemodialysis patients. Clin Nephrol 54:318–324

    CAS  PubMed  Google Scholar 

  157. Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G (2005) Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112:2627–2633

    Article  CAS  PubMed  Google Scholar 

  158. Foley RN (2009) Phosphate levels and cardiovascular disease in the general population. Clin J Am Soc Nephrol 4:1136–1139

    Article  CAS  PubMed  Google Scholar 

  159. Loghman-Adham M (1999) Phosphate binders for control of phosphate retention in chronic renal failure. Pediatr Nephrol 13:701–708

    Article  CAS  PubMed  Google Scholar 

  160. Russo D, Miranda I, Ruocco C, Battaglia Y, Buonanno E, Manzi S, Russo L, Scafarto A, Andreucci VE (2007) The progression of coronary artery calcification in predialysis patients on calcium carbonate or sevelamer. Kidney Int 72:1255–1261

    Article  CAS  PubMed  Google Scholar 

  161. Slatopolsky E, Bricker NS (1973) The role of phosphorus restriction in the prevention of secondary hyperparathyroidism in chronic renal disease. Kidney Int 4:141–145

    Article  CAS  PubMed  Google Scholar 

  162. Lopez-Hilker S, Dusso AS, Rapp NS, Martin KJ, Slatopolsky E (1990) Phosphorus restriction reverses hyperparathyroidism in uremia independent of changes in calcium and calcitriol. Am J Physiol 259:F432–F437

    CAS  PubMed  Google Scholar 

  163. Nielsen PK, Feldt-Rasmussen U, Olgaard K (1996) A direct effect in vitro of phosphate on PTH release from bovine parathyroid tissue slices but not from dispersed parathyroid cells. Nephrol Dial Transplant 11:1762–1768

    CAS  PubMed  Google Scholar 

  164. Silver J, Naveh-Many T (2009) Phosphate and the parathyroid. Kidney Int 75:898–905

    Google Scholar 

  165. Martin DR, Ritter CS, Slatopolsky E, Brown AJ (2005) Acute regulation of parathyroid hormone by dietary phosphate. Am J Physiol Endocrinol Metab 289:E729–E734

    Article  CAS  PubMed  Google Scholar 

  166. Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, Kumar R (2007) Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci USA 104:11085–11090

    Article  CAS  PubMed  Google Scholar 

  167. Lennane RJ, Carey RM, Goodwin TJ, Peart WS (1975) A comparison of natriuresis after oral and intravenous sodium loading in sodium-depleted man: evidence for a gastrointestinal or portal monitor of sodium intake. Clin Sci Mol Med 49:437–440

    CAS  PubMed  Google Scholar 

  168. Lennane RJ, Peart WS, Carey RM, Shaw J (1975) A comparison on natriuresis after oral and intravenous sodium loading in sodium-depleted rabbits: evidence for a gastrointestinal or portal monitor of sodium intake. Clin Sci Mol Med 49:433–436

    CAS  PubMed  Google Scholar 

  169. Lee FN, Oh G, McDonough AA, Youn JH (2007) Evidence for gut factor in K+ homeostasis. Am J Physiol Renal Physiol 293:F541–F547

    Article  CAS  PubMed  Google Scholar 

  170. Conigrave AD, Brown EM (2006) Taste receptors in the gastrointestinal tract. II. L-amino acid sensing by calcium-sensing receptors: implications for GI physiology. Am J Physiol Gastrointest Liver Physiol 291:G753–G761

    Article  CAS  PubMed  Google Scholar 

  171. Hsieh YJ, Wanner BL (2010) Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol 13:198–203

    Article  CAS  PubMed  Google Scholar 

  172. Lamarche MG, Wanner BL, Crepin S, Harel J (2008) The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 32:461–473

    Article  CAS  PubMed  Google Scholar 

  173. Mouillon JM, Persson BL (2006) New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae. FEMS Yeast Res 6:171–176

    Article  CAS  PubMed  Google Scholar 

  174. Giots F, Donaton MC, Thevelein JM (2003) Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 47:1163–1181

    Article  CAS  PubMed  Google Scholar 

  175. Popova Y, Thayumanavan P, Lonati E, Agrochao M, Thevelein JM (2010) Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natl Acad Sci USA 107:2890–2895

    Article  CAS  PubMed  Google Scholar 

  176. Carroll AS, O’Shea EK (2002) Pho85 and signaling environmental conditions. Trends Biochem Sci 27:87–93

    Article  CAS  PubMed  Google Scholar 

  177. Wilson WA, Roach PJ (2002) Nutrient-regulated protein kinases in budding yeast. Cell 111:155–158

    Article  CAS  PubMed  Google Scholar 

  178. Silver J (2001) Cycling with the parathyroid. J Clin Invest 107:1079–1080

    Article  CAS  PubMed  Google Scholar 

  179. Miyamoto K, Tatsumi S, Morita K, Takeda E (1998) Does the parathyroid ‘see’ phosphate? Nephrol Dial Transplant 13:2727–2729

    Article  CAS  PubMed  Google Scholar 

  180. Miyamoto K, Tatsumi S, Segawa H, Morita K, Nii T, Fujioka A, Kitano M, Inoue Y, Takeda E (1999) Regulation of PiT-1, a sodium-dependent phosphate co-transporter in rat parathyroid glands. Nephrol Dial Transplant 14(Suppl 1):73–75

    Article  CAS  PubMed  Google Scholar 

  181. Tatsumi S, Segawa H, Morita K, Haga H, Kouda T, Yamamoto H, Inoue Y, Nii T, Katai K, Taketani Y, Miyamoto KI, Takeda E (1998) Molecular cloning and hormonal regulation of PiT-1, a sodium-dependent phosphate cotransporter from rat parathyroid glands. Endocrinology 139:1692–1699

    Article  CAS  PubMed  Google Scholar 

  182. Salaun C, Marechal V, Heard JM (2004) Transport-deficient Pit2 phosphate transporters still modify cell surface oligomers structure in response to inorganic phosphate. J Mol Biol 340:39–47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Joanna Ashton-Chess for critical reading of the manuscript. This work was partially supported by grants from INSERM, ANR (PHYSIOPATH ANR-07-PHYSIO-017-01), La Fondation pour la Recherche Médicale (AAP “Vieillissement ostéoarticulaire”), BIOREGOS and Région des Pays de la Loire. Marion Julien received a fellowship from INSERM/Région des Pays de la Loire and La Fondation pour la Recherche Médicale, Solmaz Khoshniat from the French Ministry of Research and la Fondation pour la Recherche Médicale and Annabelle Bourgine from INSERM/Région des Pays de la Loire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Beck.

Additional information

J. Guicheux and L. Beck contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoshniat, S., Bourgine, A., Julien, M. et al. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell. Mol. Life Sci. 68, 205–218 (2011). https://doi.org/10.1007/s00018-010-0527-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0527-z

Keywords

Navigation