Skip to main content

Advertisement

Log in

γδ T-APCs: a novel tool for immunotherapy?

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The series of seminal articles in this book clearly illustrate the multi-functional nature of γδ T cells. Some of the functions correlate with the tissue tropism of distinct γδ T cell subsets whereas others appear to result from oligoclonal selection. Here, we discuss the antigen-presenting cell (APC) function of the major subset of circulating γδ T cells, Vγ9/Vδ2 T cells, present in human blood. During tissue culture, Vγ9/Vδ2 T cells uniformly respond to a class of non-peptide antigens, so-called prenyl pyrophosphates, derived from stressed host cells or from microbes. It is this feature that distinguishes human (and primate) Vγ9/Vδ2 T cells from αβ and γδ T cells of all other species and that forms the basis for detailed studies of human Vγ9/Vδ2 T cells. One of the consequences of Vγ9/Vδ2 T cell activation is the rapid acquisition of APC characteristics (γδ T-APCs) reminiscent of mature dendritic cells (DCs). In the following discussion, we will discriminate between the potential use of γδ T-APCs as a cellular vaccine in immunotherapy and their role in anti-microbial immunity. Exploiting the APC function in γδ T-APCs represents a true novelty in current immunotherapy research and may lead to effective, anti-tumor immunity in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cells

γδ T-APC:

Antigen-presenting γδ T cells

DC:

Dendritic cells

MHC:

Major histocompatibility complex antigen

TCR:

T cell antigen receptor

HMB-PP:

(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate

IPP:

Isopentenyl pyrophosphate

References

  1. Caccamo N, Dieli F, Wesch D, Jomaa H, Eberl M (2006) Sex-specific phenotypical and functional differences in peripheral human Vgamma9/Vdelta2 T cells. J Leukoc Biol 79:663–666

    Article  PubMed  CAS  Google Scholar 

  2. Morita CT, Jin C, Sarikonda G, Wang H (2007) Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 215:59–76

    Article  PubMed  CAS  Google Scholar 

  3. Sicard H, Fournie JJ (2000) Metabolic routes as targets for immunological discrimination of host and parasite. Infect Immun 68:4375–4377

    Article  PubMed  CAS  Google Scholar 

  4. Hintz M, Reichenberg A, Altincicek B, Bahr U, Gschwind RM, Kollas AK, Beck E, Wiesner J, Eberl M, Jomaa H (2001) Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human gammadelta T cells in Escherichia coli. FEBS Lett 509:317–322

    Article  PubMed  CAS  Google Scholar 

  5. Eberl M, Hintz M, Reichenberg A, Kollas AK, Wiesner J, Jomaa H (2003) Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett 544:4–10

    Article  PubMed  CAS  Google Scholar 

  6. Brandes M, Willimann K, Lang AB, Nam KH, Jin C, Brenner MB, Morita CT, Moser B (2003) Flexible migration program regulates gamma delta T-cell involvement in humoral immunity. Blood 102:3693–3701

    Article  PubMed  CAS  Google Scholar 

  7. Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O, Kabelitz D (2002) Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma delta T cells. J Immunol 168:4920–4929

    PubMed  CAS  Google Scholar 

  8. Cipriani B, Borsellino G, Poccia F, Placido R, Tramonti D, Bach S, Battistini L, Brosnan CF (2000) Activation of C-C β-chemokines in human peripheral blood gammaδ T cells by isopentenyl pyrophosphate and regulation by cytokines. Blood 95:39–47

    PubMed  CAS  Google Scholar 

  9. Poggi A, Carosio R, Fenoglio D, Brenci S, Murdaca G, Setti M, Indiveri F, Scabini S, Ferrero E, Zocchi MR (2004) Migration of V delta 1 and V delta 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat. Blood 103:2205–2213

    Article  PubMed  CAS  Google Scholar 

  10. Moser B, Loetscher P (2001) Lymphocyte traffic control by chemokines. Nat Immunol 2:123–128

    Article  PubMed  CAS  Google Scholar 

  11. Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25:75–84

    Article  PubMed  CAS  Google Scholar 

  12. Eberl M, Moser B (2009) Monocytes and gammadelta T cells: close encounters in microbial infection. Trends Immunol 30:562–568

    Article  PubMed  CAS  Google Scholar 

  13. Sallusto F, Mackay CR, Lanzavecchia A (2000) The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 18:593–620

    Article  PubMed  CAS  Google Scholar 

  14. Groh V, Porcelli S, Fabbi M, Lanier LL, Picker LJ, Anderson T, Warnke RA, Bhan AK, Strominger JL, Brenner MB (1989) Human lymphocytes bearing T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system. J Exp Med 169:1277–1294

    Article  PubMed  CAS  Google Scholar 

  15. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, Di Sano C, Salerno A (2003) Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 198:391–397

    Article  PubMed  CAS  Google Scholar 

  16. Vermijlen D, Ellis P, Langford C, Klein A, Engel R, Willimann K, Jomaa H, Hayday AC, Eberl M (2007) Distinct cytokine-driven responses of activated blood gammadelta T cells: insights into unconventional T cell pleiotropy. J Immunol 178:4304–4314

    PubMed  CAS  Google Scholar 

  17. Caccamo N, Battistini L, Bonneville M, Poccia F, Fournie JJ, Meraviglia S, Borsellino G, Kroczek RA, La Mendola C, Scotet E, Dieli F, Salerno A (2006) CXCR5 identifies a subset of Vgamma9 Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J Immunol 177:5290–5295

    PubMed  CAS  Google Scholar 

  18. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192:1553–1562

    Article  PubMed  CAS  Google Scholar 

  19. Vinuesa CG, Tangye SG, Moser B, Mackay CR (2005) Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol 5:853–865

    Article  PubMed  CAS  Google Scholar 

  20. Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human gammadelta T cells. Science 309:264–268

    Article  PubMed  CAS  Google Scholar 

  21. Meuter S, Eberl M, Moser B (2010) Prolonged antigen survival and cytosolic export in cross-presenting human gammadelta T cells. Proc Natl Acad Sci USA 107:8730–8735

    Article  PubMed  CAS  Google Scholar 

  22. Brandes M, Willimann K, Bioley G, Levy N, Eberl M, Luo M, Tampe R, Levy F, Romero P, Moser B (2009) Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci USA 106:2307–2312

    Article  PubMed  CAS  Google Scholar 

  23. Wu Y, Wu W, Wong WM, Ward E, Thrasher AJ, Goldblatt D, Osman M, Digard P, Canaday DH, Gustafsson K (2009) Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. J Immunol 183:5622–5629

    Article  PubMed  CAS  Google Scholar 

  24. Landmeier S, Altvater B, Pscherer S, Juergens H, Varnholt L, Hansmeier A, Bollard CM, Moosmann A, Bisping G, Rossig C (2009) Activated human gammadelta T cells as stimulators of specific CD8+ T-cell responses to subdominant Epstein Barr virus epitopes: potential for immunotherapy of cancer. J Immunother 32:310–321

    Article  PubMed  CAS  Google Scholar 

  25. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1:311–316

    Article  PubMed  CAS  Google Scholar 

  26. Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA (2005) Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev 207:145–157

    Article  PubMed  CAS  Google Scholar 

  27. Villadangos JA, Heath WR, Carbone FR (2007) Outside looking in: the inner workings of the cross-presentation pathway within dendritic cells. Trends Immunol 28:45–47

    Article  PubMed  CAS  Google Scholar 

  28. Villadangos JA, Shortman K (2010) Found in translation: the human equivalent of mouse CD8+ dendritic cells. J Exp Med 207:1131–1134

    Article  PubMed  CAS  Google Scholar 

  29. Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES (2005) Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307:1630–1634

    Article  PubMed  CAS  Google Scholar 

  30. Davey MS, Lin CY, Roberts GW, Heuston S, Brown AC, Chess JA, Toleman MA, Gahan CG, Hill C, Parish T, Williams JD, Davies SJ, Johnson DW, Topley N, Moser B, Eberl M (2011) Human neutrophil clearance of bacterial pathogens triggers anti-microbial gammadelta T cell responses in early infection. PLoS Pathog 7:e1002040

    Google Scholar 

  31. Eberl M, Roberts GW, Meuter S, Williams JD, Topley N, Moser B (2009) A Rapid crosstalk of human gammadelta T Cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog 5:e1000308

    Article  PubMed  Google Scholar 

  32. Dieli F, Sireci G, Di Sano C, Champagne E, Fournie JJ, Salerno JI (1999) Predominance of Vgamma9/Vdelta2 T lymphocytes in the cerebrospinal fluid of children with tuberculous meningitis: reversal after chemotherapy. Mol Med 5:301–312

    PubMed  CAS  Google Scholar 

  33. Parker CM, Groh V, Band H, Porcelli SA, Morita C, Fabbi M, Glass D, Strominger JL, Brenner MB (1990) Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J Exp Med 171:1597–1612

    Article  PubMed  CAS  Google Scholar 

  34. Green AE, Lissina A, Hutchinson SL, Hewitt RE, Temple B, James D, Boulter JM, Price DA, Sewell AK (2004) Recognition of nonpeptide antigens by human V gamma 9 V delta 2 T cells requires contact with cells of human origin. Clin Exp Immunol 136:472–482

    Article  PubMed  CAS  Google Scholar 

  35. Sarikonda G, Wang H, Puan KJ, Liu XH, Lee HK, Song Y, Distefano MD, Oldfield E, Prestwich GD, Morita CT (2008) Photoaffinity antigens for human gammadelta T cells. J Immunol 181:7738–7750

    PubMed  CAS  Google Scholar 

  36. Van Laethem F, Sarafova SD, Park JH, Tai X, Pobezinsky L, Guinter TI, Adoro S, Adams A, Sharrow SO, Feigenbaum L, Singer A (2007) Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity 27:735–750

    Article  PubMed  Google Scholar 

  37. Pechhold K, Wesch D, Schondelmaier S, Kabelitz D (1994) Primary activation of V gamma 9-expressing gamma delta T cells by Mycobacterium tuberculosis. Requirement for Th1-type CD4 T cell help and inhibition by IL-10. J Immunol 152:4984–4992

    PubMed  CAS  Google Scholar 

  38. Boullier S, Poquet Y, Debord T, Fournie JJ, Gougeon ML (1999) Regulation by cytokines (IL-12, IL-15, IL-4 and IL-10) of the Vgamma9 Vdelta2 T cell response to mycobacterial phosphoantigens in responder and anergic HIV-infected persons. Eur J Immunol 29:90–99

    Article  PubMed  CAS  Google Scholar 

  39. Eberl M, Altincicek B, Kollas AK, Sanderbrand S, Bahr U, Reichenberg A, Beck E, Foster D, Wiesner J, Hintz M, Jomaa H (2002) Accumulation of a potent gammadelta T-cell stimulator after deletion of the lytB gene in Escherichia coli. Immunology 106:200–211

    Article  PubMed  CAS  Google Scholar 

  40. Rojas RE, Torres M, Fournie JJ, Harding CV, Boom WH (2002) Phosphoantigen presentation by macrophages to Mycobacterium tuberculosis–reactive Vgamma9 Vdelta2 + T cells: modulation by chloroquine. Infect Immun 70:4019–4027

    Article  PubMed  CAS  Google Scholar 

  41. Wei H, Huang D, Lai X, Chen M, Zhong W, Wang R, Chen ZW (2008) Definition of APC presentation of phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate to Vgamma2 Vdelta 2 TCR. J Immunol 181:4798–4806

    PubMed  CAS  Google Scholar 

  42. Huang D, Shen Y, Qiu L, Chen CY, Shen L, Estep J, Hunt R, Vasconcelos D, Du G, Aye P, Lackner AA, Larson M, Jacobs WR Jr, Haynes BF, Letvin NL, Chen ZW (2008) Immune distribution and localization of phosphoantigen-specific V{gamma}2 V{delta}2 T cells in lymphoid and non-lymphoid tissues in M tuberculosis infection. Infect Immun 76:426–436

    Article  PubMed  CAS  Google Scholar 

  43. Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L, Kou Z, Wang Q, Jiang L, Estep J, Hunt R, Clagett M, Sehgal PK, Li Y, Zeng X, Morita CT, Brenner MB, Letvin NL, Chen ZW (2002) Adaptive immune response of Vgamma2 Vdelta2 + T cells during mycobacterial infections. Science 295:2255–2258

    Article  PubMed  CAS  Google Scholar 

  44. Cairo C, Hebbeler AM, Propp N, Bryant JL, Colizzi V, Pauza CD (2007) Innate-like gammadelta T cell responses to mycobacterium Bacille Calmette-Guerin using the public V gamma 2 repertoire in Macaca fascicularis. Tuberculosis (Edinb) 87:373–383

    Article  CAS  Google Scholar 

  45. Cendron D, Ingoure S, Martino A, Casetti R, Horand F, Romagne F, Sicard H, Fournie JJ, Poccia F (2007) A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct gammadelta and alphabeta T cell responses in primates. Eur J Immunol 37:549–565

    Article  PubMed  CAS  Google Scholar 

  46. Cheng L, Cui Y, Shao H, Han G, Zhu L, Huang Y, O’Brien RL, Born WK, Kaplan HJ, Sun D (2008) Mouse gammadelta T cells are capable of expressing MHC class II molecules, and of functioning as antigen-presenting cells. J Neuroimmunol 203:2–11

    Article  Google Scholar 

  47. Collins RA, Werling D, Duggan SE, Bland AP, Parsons KR, Howard CJ (1998) Gammadelta T cells present antigen to CD4+ alphabeta T cells. J Leukoc Biol 63:707–714

    PubMed  CAS  Google Scholar 

  48. Takamatsu HH, Denyer MS, Wileman TE (2002) A sub-population of circulating porcine gammadelta T cells can act as professional antigen presenting cells Vet. Immunol Immunopathol 87:223–224

    Article  CAS  Google Scholar 

  49. Takamatsu HH, Denyer MS, Stirling C, Cox S, Aggarwal N, Dash P, Wileman TE, Barnett PV (2006) Porcine gammadelta T cells: possible roles on the innate and adaptive immune responses following virus infection. Vet Immunol Immunopathol 112:49–61

    Article  PubMed  CAS  Google Scholar 

  50. Lanzavecchia A, Roosnek E, Gregory T, Berman P, Abrignani S (1988) T cells can present antigens such as HIV gp120 targeted to their own surface molecules. Nature 334:530–532

    Article  PubMed  CAS  Google Scholar 

  51. Price SJ, Hope JC (2009) Enhanced secretion of interferon-gamma by bovine gammadelta T cells induced by coculture with Mycobacterium bovis-infected dendritic cells: evidence for reciprocal activating signals. Immunology 126:201–208

    Article  PubMed  CAS  Google Scholar 

  52. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  PubMed  CAS  Google Scholar 

  53. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118

    Article  PubMed  CAS  Google Scholar 

  54. Kondo M, Sakuta K, Noguchi A, Ariyoshi N, Sato K, Sato S, Sato K, Hosoi A, Nakajima J, Yoshida Y, Shiraishi K, Nakagawa K, Kakimi K (2008) Zoledronate facilitates large-scale ex vivo expansion of functional gammadelta T cells from cancer patients for use in adoptive immunotherapy. Cytotherapy 10:842–856

    Article  PubMed  CAS  Google Scholar 

  55. Reid IR, Gamble GD, Mesenbrink P, Lakatos P, Black M (2010) Characterization of and risk factors for the acute-phase response after zoledronic acid. J Clin Endocrinol Metab (in press)

  56. Coleman R (2010) The use of bisphosphonates in cancer treatment. Ann N Y Acad Sci

  57. Kunzmann V, Bauer E, Wilhelm M (1999) Gamma/delta T-cell stimulation by pamidronate. N Engl J Med 340:737–738

    Article  PubMed  CAS  Google Scholar 

  58. Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F, Arcara C, Valerio MR, Meraviglia S, Di Sano C, Sireci G, Salerno A (2003) Induction of gammadelta T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 102:2310–2311

    Article  PubMed  CAS  Google Scholar 

  59. Roelofs AJ, Jauhiainen M, Monkkonen H, Rogers MJ, Monkkonen J, Thompson K (2009) Peripheral blood monocytes are responsible for gammadelta T cell activation induced by zoledronic acid through accumulation of IPP/DMAPP. Br J Haematol 144:245–250

    Article  PubMed  Google Scholar 

  60. Hu X, Ivashkiv LB (2009) Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31:539–550

    Article  PubMed  CAS  Google Scholar 

  61. Wesch D, Glatzel A, Kabelitz D (2001) Differentiation of resting human peripheral blood gamma delta T cells toward Th1- or Th2-phenotype. Cell Immunol 212:110–117

    Article  PubMed  CAS  Google Scholar 

  62. Ness-Schwickerath KJ, Jin C, Morita CT (2010) Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vgamma2Vdelta2 T cells. J Immunol 184:7268–7280

    Article  PubMed  CAS  Google Scholar 

  63. Pietschmann K, Beetz S, Welte S, Martens I, Gruen J, Oberg HH, Wesch D, Kabelitz D (2009) Toll-like receptor expression and function in subsets of human gammadelta T lymphocytes. Scand J Immunol 70:245–255

    Article  PubMed  CAS  Google Scholar 

  64. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56:469–476

    Article  PubMed  CAS  Google Scholar 

  65. Kobayashi H, Tanaka Y, Shimmura H, Minato N, Tanabe K (2010) Complete remission of lung metastasis following adoptive immunotherapy using activated autologous gammadelta T-cells in a patient with renal cell carcinoma. Anticancer Res 30:575–579

    PubMed  CAS  Google Scholar 

  66. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galea C, Salot S, Saiagh S, Audrain M, Rimbert M, Lafaye-de Micheaux S, Tiollier J, Negrier S (2008) Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57:1599–1609

    Article  PubMed  CAS  Google Scholar 

  67. Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y, Takamoto S, Kakimi K (2010) A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg 37:1191–1197

    Article  PubMed  Google Scholar 

  68. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96:384–392

    PubMed  CAS  Google Scholar 

  69. Lamb LS Jr, Lopez RD (2005) Gammadelta T cells: a new frontier for immunotherapy? Biol Blood Marrow Transplant 11:161–168

    Article  PubMed  Google Scholar 

  70. June CH, Blazar BR, Riley JL (2009) Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol 9:704–716

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research has been supported by Grants from the Swiss National Science Foundation, European FP6 (MAIN-NoE, INNOCHEM), Welsh Office for Research and Development, Wellcome Trust, Cancer Research UK, Breast Cancer Campaign, Baxter Healthcare, and Cardiff University i3-IRG. M.E. is a RCUK Fellow in Translational Research in Experimental Medicine; B.M. is the recipient of a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Moser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, B., Eberl, M. γδ T-APCs: a novel tool for immunotherapy?. Cell. Mol. Life Sci. 68, 2443–2452 (2011). https://doi.org/10.1007/s00018-011-0706-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0706-6

Keywords

Navigation