Skip to main content
Log in

Ten experiments that would make a difference in understanding immune mechanisms

  • Visions and reflections
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Jacques Monod used to say, “Never trust an experiment that is not supported by a good theory.” Theory or conceptualization permits us to put order or structure into a vast amount of data in a way that increases understanding. Validly competing theories are most useful when they make testably disprovable predictions. Illustrating the theory–experiment interaction is the goal of this exercise. Stated bleakly, the answers derived from the theory-based experiments described here would impact dramatically on how we understand immune behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Langman RE, Cohn M (1999) The Standard Model of T-cell receptor function: a critical reassessment. Scand J Immunol 49:570–577

    Article  PubMed  CAS  Google Scholar 

  2. Cohn M (2011) On the logic of restrictive recognition of peptide by the T-cell antigen receptor. Immunol Res 50:49–68

    Article  PubMed  CAS  Google Scholar 

  3. Cohn M (2003) Does complexity belie a simple decision—on the Efroni and Cohen critique of the minimal model for a self-nonself discrimination. Cell Immunol 221:138–142

    Article  PubMed  CAS  Google Scholar 

  4. Cohn M (2005) The Tritope Model for restrictive recognition of antigen by T-cells I. What assumptions about structure are needed to explain function? Mol Immunol 42:1419–1443

    Article  PubMed  CAS  Google Scholar 

  5. Cohn M (2007) On a key postulate of TCR restrictive function: the V-gene loci act as a single pool encoding recognition of the polymorphic alleles of the species MHC. Immunology 120(1):140–142

    Article  PubMed  CAS  Google Scholar 

  6. Cohn M (2008) The Tritope Model for restrictive recognition of antigen by T-cells II. Implications for ontogeny, evolution and physiology. Mol Immunol 45:632–652

    Article  PubMed  CAS  Google Scholar 

  7. Cohn M (2004) Distinguishing the Tritope from the interaction antigen models. Trends Immunol 25(1):8–9

    Article  PubMed  CAS  Google Scholar 

  8. Morris GP, Ni PP, Allen PM (2011) Alloreactivity is limited by the endogenous peptide repertoire. PNAS 108(9):3695–3700

    Article  PubMed  CAS  Google Scholar 

  9. Felix NJ, Donermeyer DL, Horvath S, Walters JJ, Gross MI, Suri A, Allen PM (2007) Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nat Immunol 8:388–397

    Article  PubMed  CAS  Google Scholar 

  10. Park J-H, Adoro S, Guinter T, Erman B, Alag AS, Catalfamo M, Kimura MY, Cui Y, Lucas PJ, Gress RE, Kubo M, Hennighausen L, Feigenbaum L, Singer A (2010) Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiaion of cytotoxic-lineage T cells. Nat Immunol 11(3):257–264

    Article  PubMed  CAS  Google Scholar 

  11. Ignatowicz L, Kappler J, Marrack P (1996) The repertoire of T cells shaped by a single MHC/peptide ligand. Cell 84:521–529

    Article  PubMed  CAS  Google Scholar 

  12. Langman RE, Mata JJ, Cohn M (2003) A computerized model for the self-nonself discrimination at the level of the T-helper (Th genesis) II. The behavior of the system upon encounter with nonself antigens. Int Immunol 15(5):593–609

    Article  PubMed  CAS  Google Scholar 

  13. Cohn M (2007) Conceptualizing the self-nonself discrimination by the vertebrate immune system. In: Timmis J, Flower D (eds) In silico immunology. Springer, New York, pp 375–398

    Chapter  Google Scholar 

  14. Cohn M (2010) The evolutionary context for a self-nonself discrimination. Cell Mol Life Sci 67:2851–2862

    Article  PubMed  CAS  Google Scholar 

  15. Bretscher PA (1999) A two-step, two-signal model for the primary activation of precursor helper T cells. Proc Natl Acad Sci USA 96:185–190

    Article  PubMed  CAS  Google Scholar 

  16. Lantz O, Grandjean I, Matzinger P, Di Santo JP (2000) Gamma chain required for naive CD4+ T cell survival but not for antigen proliferation. Nat Immunol 1(1):54–58

    Article  PubMed  CAS  Google Scholar 

  17. Cohn M (2005) A biological context for the self-nonself discrimination and the regulation of effector class by the immune system. Immunol Res 31(2):133–150

    Article  PubMed  CAS  Google Scholar 

  18. Ismail N, Bretscher P (1999) The Th1/Th2 nature of concurrent immune responses to unrelated antigens can be independent. Eur J Immunol 163:4842–4850

    CAS  Google Scholar 

  19. Bretscher P (1974) On the control between cell-mediated, IgM and IgG immunity. Cell Immunol 13:171–195

    Article  PubMed  CAS  Google Scholar 

  20. Anderson MS, Su MA (2011) Aire and T cell development. Curr Opin Immunol 23:198–206

    Article  PubMed  CAS  Google Scholar 

  21. Cohn M (2009) Why Aire? Compensating for late bloomers. Eur J Immunol 39:1–4

    Article  Google Scholar 

  22. Gray DHD, Gavanescu I, Benoist C, Mathis D (2007) Danger-free autoimmune disease in Aire-deficient mice. PNAS 104(46):18193–18198

    Article  PubMed  CAS  Google Scholar 

  23. Cohn M (2008) A rationalized set of default postulates that permit a coherent description of the immune system amenable to computer modeling. Scan J Immunol 68:371–380

    Article  CAS  Google Scholar 

  24. Radbruch A, Muller W, Rajewsky K (1986) Class switch recombination is IgG1 specific on active and inactive IgH loci of IgG1-secreting B-cell blasts. PNAS 83:3954–3957

    Article  PubMed  CAS  Google Scholar 

  25. Cohn M (2008) A hypothesis accounting for the paradoxical expression of the D gene segment in the BCR and the TCR. Eur J Immunol 38:1779–1787

    Article  PubMed  CAS  Google Scholar 

  26. Cohn M, Langman RE (1990) The protecton: the evolutionarily selected unit of humoral immunity. Immunol Rev 115:1–131

    Article  Google Scholar 

  27. Cohn M (2005) Degeneracy, mimicry and crossreactivity in immune recognition. Mol Immunol 42(5):651–655

    Article  PubMed  CAS  Google Scholar 

  28. Cohn M (2008) An in depth analysis of the concept of “polyspecificity” assumed to characterize TCR/BCR recognition. Immunol Res 40:128–147

    Article  PubMed  CAS  Google Scholar 

  29. Huseby ES, White J, Crawford F, Vass T, Becker D, Pinilla C, Marrack P, Kappler JW (2005) How the T cell repertoire becomes peptide and MHC specific. Cell 122(2):247–260

    Article  PubMed  CAS  Google Scholar 

  30. Huseby ES, Crawford F, White J, Kappler J, Marrack P (2003) Negative selection imparts peptide specificity to the mature T cell repertoire. PNAS 100(20):11565–11570

    Article  PubMed  CAS  Google Scholar 

  31. Huseby ES, Kappler JW, Marrack P (2008) Thymic selection stifles TCR reactivity with the main chain structure of MHC and forces interactions with the peptide side chains. Mol Immunol 45:599–606

    Article  PubMed  CAS  Google Scholar 

  32. Cohn M (2004) Whither T-suppressors: if they didn’t exist would we have to invent them? Cell Immunol 227:81–92

    Article  PubMed  CAS  Google Scholar 

  33. Cohn M (2008) What roles do regulatory T-cells play in the control of the adaptive immune response? Int Immunol 20(9):1107–1118

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin Cohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohn, M. Ten experiments that would make a difference in understanding immune mechanisms. Cell. Mol. Life Sci. 69, 405–412 (2012). https://doi.org/10.1007/s00018-011-0869-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0869-1

Keywords

Navigation