Skip to main content
Log in

Multiple roles of class I HDACs in proliferation, differentiation, and development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Class I Histone deacetylases (HDACs) play a central role in controlling cell cycle regulation, cell differentiation, and tissue development. These enzymes exert their function by deacetylating histones and a growing number of non-histone proteins, thereby regulating gene expression and several other cellular processes. Class I HDACs comprise four members: HDAC1, 2, 3, and 8. Deletion and/or overexpression of these enzymes in mammalian systems has provided important insights about their functions and mechanisms of action which are reviewed here. In particular, unique as well as redundant functions have been identified in several paradigms. Studies with small molecule inhibitors of HDACs have demonstrated the medical relevance of these enzymes and their potential as therapeutic targets in cancer and other pathological conditions. Going forward, better understanding the specific role of individual HDACs in normal physiology as well as in pathological settings will be crucial to exploit this protein family as a useful therapeutic target in a range of diseases. Further dissection of the pathways they impinge on and of their targets, in chromatin or otherwise, will form important avenues of research for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735):491–496. doi:10.1038/20974

    Article  CAS  PubMed  Google Scholar 

  2. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989. doi:10.1158/1541-7786.MCR-07-0324

    Article  CAS  PubMed  Google Scholar 

  3. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840. doi:10.1126/science.1175371

    Article  CAS  PubMed  Google Scholar 

  4. Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Natl Rev Mol Cell Biol 9(3):206–218. doi:10.1038/nrm2346

    Article  CAS  Google Scholar 

  5. Bao J, Sack MN (2010) Protein deacetylation by sirtuins: delineating a post-translational regulatory program responsive to nutrient and redox stressors. Cell Mol Life Sci 67(18):3073–3087. doi:10.1007/s00018-010-0402-y

    Article  CAS  PubMed  Google Scholar 

  6. Walkinshaw DR, Tahmasebi S, Bertos NR, Yang XJ (2008) Histone deacetylases as transducers and targets of nuclear signaling. J Cell Biochem 104(5):1541–1552. doi:10.1002/jcb.21746

    Article  CAS  PubMed  Google Scholar 

  7. Haberland M, Johnson A, Mokalled MH, Montgomery RL, Olson EN (2009) Genetic dissection of histone deacetylase requirement in tumor cells. Proc Natl Acad Sci USA 106(19):7751–7755. doi:10.1073/pnas.0903139106

    Article  CAS  PubMed  Google Scholar 

  8. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31. doi:10.1016/j.jmb.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  9. Pflum MK, Tong JK, Lane WS, Schreiber SL (2001) Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J Biol Chem 276(50):47733–47741. doi:10.1074/jbc.M105590200

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Ozawa Y, Lee H, Wen YD, Tan TH, Wadzinski BE, Seto E (2005) Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev 19(7):827–839. doi:10.1101/gad.1286005

    Article  CAS  PubMed  Google Scholar 

  11. Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, Steinkuhler C, Di Marco S (2004) Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA 101(42):15064–15069. doi:10.1073/pnas.0404603101

    Article  CAS  PubMed  Google Scholar 

  12. Perissi V, Jepsen K, Glass CK, Rosenfeld MG (2010) Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 11(2):109–123. doi:10.1038/nrg2736

    Article  CAS  PubMed  Google Scholar 

  13. Hayakawa T, Nakayama J (2011) Physiological roles of class I HDAC complex and histone demethylase. J Biomed Biotechnol 2011:129383. doi:10.1155/2011/129383

    Article  PubMed  CAS  Google Scholar 

  14. Zupkovitz G, Grausenburger R, Brunmeir R, Senese S, Tischler J, Jurkin J, Rembold M, Meunier D, Egger G, Lagger S, Chiocca S, Propst F, Weitzer G, Seiser C (2010) The cyclin-dependent kinase inhibitor p21 is a crucial target for histone deacetylase 1 as a regulator of cellular proliferation. Mol Cell Biol 30(5):1171–1181. doi:10.1128/MCB.01500-09

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, Matthias P (2010) Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev 24(5):455–469. doi:10.1101/gad.552310

    Article  CAS  PubMed  Google Scholar 

  16. Lagger G, O’Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, Seiser C (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21(11):2672–2681. doi:10.1093/emboj/21.11.2672

    Article  CAS  PubMed  Google Scholar 

  17. Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21(14):1790–1802. doi:10.1101/gad.1563807

    Article  CAS  PubMed  Google Scholar 

  18. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13(3):324–331. doi:10.1038/nm1552

    Article  CAS  PubMed  Google Scholar 

  19. Zimmermann S, Kiefer F, Prudenziati M, Spiller C, Hansen J, Floss T, Wurst W, Minucci S, Gottlicher M (2007) Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Res 67(19):9047–9054. doi:10.1158/0008-5472.CAN-07-0312

    Article  CAS  PubMed  Google Scholar 

  20. Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243):55–60. doi:10.1038/nature07925

    Article  CAS  PubMed  Google Scholar 

  21. Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, Hiebert SW (2008) Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 30(1):61–72. doi:10.1016/j.molcel.2008.02.030

    Article  CAS  PubMed  Google Scholar 

  22. Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R, Olson EN (2008) Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest 118(11):3588–3597. doi:10.1172/JCI35847

    Article  CAS  PubMed  Google Scholar 

  23. Haberland M, Mokalled MH, Montgomery RL, Olson EN (2009) Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev 23(14):1625–1630. doi:10.1101/gad.1809209

    Article  CAS  PubMed  Google Scholar 

  24. Wilting RH, Yanover E, Heideman MR, Jacobs H, Horner J, van der Torre J, DePinho RA, Dannenberg JH (2010) Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. EMBO J 29(15):2586–2597. doi:10.1038/emboj.2010.136

    Article  CAS  PubMed  Google Scholar 

  25. LeBoeuf M, Terrell A, Trivedi S, Sinha S, Epstein JA, Olson EN, Morrisey EE, Millar SE (2010) Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells. Dev Cell 19(6):807–818. doi:10.1016/j.devcel.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  26. Senese S, Zaragoza K, Minardi S, Muradore I, Ronzoni S, Passafaro A, Bernard L, Draetta GF, Alcalay M, Seiser C, Chiocca S (2007) Role for histone deacetylase 1 in human tumor cell proliferation. Mol Cell Biol 27(13):4784–4795. doi:10.1128/MCB.00494-07

    Article  CAS  PubMed  Google Scholar 

  27. Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S, Jackson SP (2010) Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol 17(9):1144–1151. doi:10.1038/nsmb.1899

    Article  CAS  PubMed  Google Scholar 

  28. Tjeertes JV, Miller KM, Jackson SP (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 28(13):1878–1889. doi:10.1038/emboj.2009.119

    Article  CAS  PubMed  Google Scholar 

  29. Doetzlhofer A, Rotheneder H, Lagger G, Koranda M, Kurtev V, Brosch G, Wintersberger E, Seiser C (1999) Histone deacetylase 1 can repress transcription by binding to Sp1. Mol Cell Biol 19(8):5504–5511

    CAS  PubMed  Google Scholar 

  30. Lagger G, Doetzlhofer A, Schuettengruber B, Haidweger E, Simboeck E, Tischler J, Chiocca S, Suske G, Rotheneder H, Wintersberger E, Seiser C (2003) The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol 23(8):2669–2679

    Article  CAS  PubMed  Google Scholar 

  31. Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258(5081):424–429

    Article  CAS  PubMed  Google Scholar 

  32. Helin K, Lees JA, Vidal M, Dyson N, Harlow E, Fattaey A (1992) A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70(2):337–350

    Article  CAS  PubMed  Google Scholar 

  33. Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP, Troalen F, Trouche D, Harel-Bellan A (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391(6667):601–605. doi:10.1038/35410

    Article  CAS  PubMed  Google Scholar 

  34. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391(6667):597–601. doi:10.1038/35404

    Article  CAS  PubMed  Google Scholar 

  35. Morrison AJ, Sardet C, Herrera RE (2002) Retinoblastoma protein transcriptional repression through histone deacetylation of a single nucleosome. Mol Cell Biol 22(3):856–865

    Article  CAS  PubMed  Google Scholar 

  36. Rampalli S, Pavithra L, Bhatt A, Kundu TK, Chattopadhyay S (2005) Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. Mol Cell Biol 25(19):8415–8429. doi:10.1128/MCB.25.19.8415-8429.2005

    Article  CAS  PubMed  Google Scholar 

  37. Vance KW, Carreira S, Brosch G, Goding CR (2005) Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas. Cancer Res 65(6):2260–2268. doi:10.1158/0008-5472.CAN-04-3045

    Article  CAS  PubMed  Google Scholar 

  38. Findeisen HM, Gizard F, Zhao Y, Qing H, Heywood EB, Jones KL, Cohn D, Bruemmer D (2011) Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol 31(4):851–860. doi:10.1161/ATVBAHA.110.221952

    Article  CAS  PubMed  Google Scholar 

  39. Higashitsuji H, Masuda T, Liu Y, Itoh K, Fujita J (2007) Enhanced deacetylation of p53 by the anti-apoptotic protein HSCO in association with histone deacetylase 1. J Biol Chem 282(18):13716–13725. doi:10.1074/jbc.M609751200

    Article  CAS  PubMed  Google Scholar 

  40. Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP (2002) MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21(22):6236–6245

    Article  CAS  PubMed  Google Scholar 

  41. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W (2008) Acetylation is indispensable for p53 activation. Cell 133(4):612–626. doi:10.1016/j.cell.2008.03.025

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y, Wang H, Yoon SO, Xu X, Hottiger MO, Svaren J, Nave KA, Kim HA, Olson EN, Lu QR (2011) HDAC-mediated deacetylation of NF-kappaB is critical for Schwann cell myelination. Nat Neurosci 14(4):437–441. doi:10.1038/nn.2780

    Article  CAS  PubMed  Google Scholar 

  43. Mal A, Sturniolo M, Schiltz RL, Ghosh MK, Harter ML (2001) A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J 20(7):1739–1753. doi:10.1093/emboj/20.7.1739

    Article  CAS  PubMed  Google Scholar 

  44. Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T (2000) Regulation of E2F1 activity by acetylation. EMBO J 19(4):662–671. doi:10.1093/emboj/19.4.662

    Article  CAS  PubMed  Google Scholar 

  45. Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN (2009) Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA 106(19):7876–7881. doi:10.1073/pnas.0902750106

    Article  CAS  PubMed  Google Scholar 

  46. Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, Hu T, Taketo MM, van Es JH, Clevers H, Hsieh J, Bassel-Duby R, Olson EN, Lu QR (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin–TCF interaction. Nat Neurosci 12(7):829–838. doi:10.1038/nn.2333

    Article  CAS  PubMed  Google Scholar 

  47. Jawerka M, Colak D, Dimou L, Spiller C, Lagger S, Montgomery RL, Olson EN, Wurst W, Gottlicher M, Gotz M (2010) The specific role of histone deacetylase 2 in adult neurogenesis. Neuron Glia Biol 6(2):93–107. doi:10.1017/S1740925X10000049

    Article  PubMed  Google Scholar 

  48. Jacob C, Christen CN, Pereira JA, Somandin C, Baggiolini A, Lotscher P, Ozcelik M, Tricaud N, Meijer D, Yamaguchi T, Matthias P, Suter U (2011) HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat Neurosci 14(4):429–436. doi:10.1038/nn.2762

    Article  CAS  PubMed  Google Scholar 

  49. Kim D, Frank CL, Dobbin MM, Tsunemoto RK, Tu W, Peng PL, Guan JS, Lee BH, Moy LY, Giusti P, Broodie N, Mazitschek R, Delalle I, Haggarty SJ, Neve RL, Lu Y, Tsai LH (2008) Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60(5):803–817. doi:10.1016/j.neuron.2008.10.015

    Article  CAS  PubMed  Google Scholar 

  50. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622. doi:10.1038/45159

    Article  CAS  PubMed  Google Scholar 

  51. Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, Monteggia LM (2009) Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J Neurosci 29(25):8288–8297. doi:10.1523/JNEUROSCI.0097-09.2009

    Article  CAS  PubMed  Google Scholar 

  52. Trivedi CM, Zhu W, Wang Q, Jia C, Kee HJ, Li L, Hannenhalli S, Epstein JA (2010) Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Dev Cell 19(3):450–459. doi:10.1016/j.devcel.2010.08.012

    Article  CAS  PubMed  Google Scholar 

  53. Haberland M, Carrer M, Mokalled MH, Montgomery RL, Olson EN (2010) Redundant control of adipogenesis by histone deacetylases 1 and 2. J Biol Chem 285(19):14663–14670. doi:10.1074/jbc.M109.081679

    Article  CAS  PubMed  Google Scholar 

  54. Grausenburger R, Bilic I, Boucheron N, Zupkovitz G, El-Housseiny L, Tschismarov R, Zhang Y, Rembold M, Gaisberger M, Hartl A, Epstein MM, Matthias P, Seiser C, Ellmeier W (2010) Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. J Immunol 185(6):3489–3497. doi:10.4049/jimmunol.0903610

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Kao GD, Garcia BA, Shabanowitz J, Hunt DF, Qin J, Phelan C, Lazar MA (2006) A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity. Genes Dev 20(18):2566–2579. doi:10.1101/gad.1455006

    Article  CAS  PubMed  Google Scholar 

  56. Cobb J, Miyaike M, Kikuchi A, Handel MA (1999) Meiotic events at the centromeric heterochromatin: histone H3 phosphorylation, topoisomerase II alpha localization and chromosome condensation. Chromosoma 108(7):412–425

    Article  CAS  PubMed  Google Scholar 

  57. Conti C, Leo E, Eichler GS, Sordet O, Martin MM, Fan A, Aladjem MI, Pommier Y (2010) Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res 70(11):4470–4480. doi:10.1158/0008-5472.CAN-09-3028

    Article  CAS  PubMed  Google Scholar 

  58. Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, Yenamandra A, Locke K, Yuan JL, Bonine-Summers AR, Wells CE, Kaiser JF, Washington MK, Zhao Z, Wagner FF, Sun ZW, Xia F, Holson EB, Khabele D, Hiebert SW (2010) Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 18(5):436–447. doi:10.1016/j.ccr.2010.10.022

    Article  CAS  PubMed  Google Scholar 

  59. Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW (2008) Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J 27(7):1017–1028. doi:10.1038/emboj.2008.51

    Article  CAS  PubMed  Google Scholar 

  60. Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, Liu XS, Lazar MA (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331(6022):1315–1319. doi:10.1126/science.1198125

    Article  CAS  PubMed  Google Scholar 

  61. Trivedi CM, Lu MM, Wang Q, Epstein JA (2008) Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy. J Biol Chem 283(39):26484–26489. doi:10.1074/jbc.M803686200

    Article  CAS  PubMed  Google Scholar 

  62. Razidlo DF, Whitney TJ, Casper ME, McGee-Lawrence ME, Stensgard BA, Li X, Secreto FJ, Knutson SK, Hiebert SW, Westendorf JJ (2010) Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat. PLoS One 5(7):e11492. doi:10.1371/journal.pone.0011492

    Article  PubMed  CAS  Google Scholar 

  63. Sun G, Yu RT, Evans RM, Shi Y (2007) Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci USA 104(39):15282–15287. doi:10.1073/pnas.0704089104

    Article  CAS  PubMed  Google Scholar 

  64. McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S, Rusche JR, Lazar MA, Wood MA (2011) HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 31(2):764–774. doi:10.1523/JNEUROSCI.5052-10.2011

    Article  CAS  PubMed  Google Scholar 

  65. Singh N, Trivedi CM, Lu M, Mullican SE, Lazar MA, Epstein JA (2011) Histone deacetylase 3 regulates smooth muscle differentiation in neural crest cells and development of the cardiac outflow tract. Circ Res. doi:10.1161/CIRCRESAHA.111.255067

    Google Scholar 

  66. Barter MJ, Pybus L, Litherland GJ, Rowan AD, Clark IM, Edwards DR, Cawston TE, Young DA (2010) HDAC-mediated control of ERK- and PI3K-dependent TGF-beta-induced extracellular matrix-regulating genes. Matrix Biol 29(7):602–612. doi:10.1016/j.matbio.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  67. Oehme I, Deubzer HE, Wegener D, Pickert D, Linke JP, Hero B, Kopp-Schneider A, Westermann F, Ulrich SM, von Deimling A, Fischer M, Witt O (2009) Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 15(1):91–99. doi:10.1158/1078-0432.CCR-08-0684

    Article  CAS  PubMed  Google Scholar 

  68. Gao J, Siddoway B, Huang Q, Xia H (2009) Inactivation of CREB mediated gene transcription by HDAC8 bound protein phosphatase. Biochem Biophys Res Commun 379(1):1–5. doi:10.1016/j.bbrc.2008.11.135

    Article  CAS  PubMed  Google Scholar 

  69. Barco A, Marie H (2011) Genetic approaches to investigate the role of CREB in neuronal plasticity and memory. Mol Neurobiol. doi:10.1007/s12035-011-8209-x

    PubMed  Google Scholar 

  70. Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265(28):17174–17179

    CAS  PubMed  Google Scholar 

  71. Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, Kim DY (2001) Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res 92(12):1300–1304

    Article  CAS  PubMed  Google Scholar 

  72. Song J, Noh JH, Lee JH, Eun JW, Ahn YM, Kim SY, Lee SH, Park WS, Yoo NJ, Lee JY, Nam SW (2005) Increased expression of histone deacetylase 2 is found in human gastric cancer. Apmis 113(4):264–268. doi:10.1111/j.1600-0463.2005.apm_04.x

    Article  CAS  PubMed  Google Scholar 

  73. Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59(2):177–189. doi:10.1002/pros.20022

    Article  CAS  PubMed  Google Scholar 

  74. Bartling B, Hofmann HS, Boettger T, Hansen G, Burdach S, Silber RE, Simm A (2005) Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma. Lung Cancer 49(2):145–154. doi:10.1016/j.lungcan.2005.02.006

    Article  PubMed  Google Scholar 

  75. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749):188–193. doi:10.1038/43710

    Article  CAS  PubMed  Google Scholar 

  76. Sternson SM, Wong JC, Grozinger CM, Schreiber SL (2001) Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin. Org Lett 3(26):4239–4242

    Article  CAS  PubMed  Google Scholar 

  77. Miller TA, Witter DJ, Belvedere S (2003) Histone deacetylase inhibitors. J Med Chem 46(24):5097–5116. doi:10.1021/jm0303094

    Article  CAS  PubMed  Google Scholar 

  78. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280(29):26729–26734. doi:10.1074/jbc.C500186200

    Article  CAS  PubMed  Google Scholar 

  79. Sun C, Zhang M, Shan X, Zhou X, Yang J, Wang Y, Li-Ling J, Deng Y (2010) Inhibitory effect of cucurbitacin E on pancreatic cancer cells growth via STAT3 signaling. J Cancer Res Clin Oncol 136(4):603–610. doi:10.1007/s00432-009-0698-x

    Article  CAS  PubMed  Google Scholar 

  80. Blagosklonny MV, Robey R, Sackett DL, Du L, Traganos F, Darzynkiewicz Z, Fojo T, Bates SE (2002) Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther 1(11):937–941

    CAS  PubMed  Google Scholar 

  81. Rocchi P, Tonelli R, Camerin C, Purgato S, Fronza R, Bianucci F, Guerra F, Pession A, Ferreri AM (2005) p21Waf1/Cip1 is a common target induced by short-chain fatty acid HDAC inhibitors (valproic acid, tributyrin and sodium butyrate) in neuroblastoma cells. Oncol Rep 13(6):1139–1144

    CAS  PubMed  Google Scholar 

  82. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784. doi:10.1038/nrd2133

    Article  CAS  PubMed  Google Scholar 

  83. Fang JY (2005) Histone deacetylase inhibitors, anticancerous mechanism and therapy for gastrointestinal cancers. J Gastroenterol Hepatol 20(7):988–994. doi:10.1111/j.1440-1746.2005.03807.x

    Article  CAS  PubMed  Google Scholar 

  84. Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK (2003) Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2(2):151–163

    Article  CAS  PubMed  Google Scholar 

  85. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51. doi:10.1038/nrc1779

    Article  CAS  PubMed  Google Scholar 

  86. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409(2):581–589. doi:10.1042/BJ20070779

    Article  CAS  PubMed  Google Scholar 

  87. Thurn KT, Thomas S, Moore A, Munster PN (2011) Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol 7(2):263–283. doi:10.2217/fon.11.2

    Article  CAS  PubMed  Google Scholar 

  88. Kelly WK, O’Connor OA, Marks PA (2002) Histone deacetylase inhibitors: from target to clinical trials. Expert Opin Investig Drugs 11(12):1695–1713. doi:10.1517/13543784.11.12.1695

    Article  CAS  PubMed  Google Scholar 

  89. Kelly WK, O’Connor OA, Krug LM, Chiao JH, Heaney M, Curley T, MacGregore-Cortelli B, Tong W, Secrist JP, Schwartz L, Richardson S, Chu E, Olgac S, Marks PA, Scher H, Richon VM (2005) Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 23(17):3923–3931. doi:10.1200/JCO.2005.14.167

    Article  CAS  PubMed  Google Scholar 

  90. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12(10):1247–1252. doi:10.1634/theoncologist.12-10-1247

    Article  CAS  PubMed  Google Scholar 

  91. Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25(1):84–90. doi:10.1038/nbt1272

    Article  CAS  PubMed  Google Scholar 

  92. Grant S, Easley C, Kirkpatrick P (2007) Vorinostat. Nat Rev Drug Discov 6(1):21–22. doi:10.1038/nrd2227

    Article  CAS  PubMed  Google Scholar 

  93. Klimek VM, Fircanis S, Maslak P, Guernah I, Baum M, Wu N, Panageas K, Wright JJ, Pandolfi PP, Nimer SD (2008) Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin Cancer Res 14(3):826–832. doi:10.1158/1078-0432.CCR-07-0318

    Article  CAS  PubMed  Google Scholar 

  94. Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF, Hancox A, Hong JA, Chen GA, Kruchin E, Wright JJ, Rosing DR, Sparreboom A, Figg WD, Steinberg SM (2008) Clinical and molecular responses in lung cancer patients receiving Romidepsin. Clin Cancer Res 14(1):188–198. doi:10.1158/1078-0432.CCR-07-0135

    Article  CAS  PubMed  Google Scholar 

  95. Piekarz RL, Frye R, Turner M, Wright JJ, Allen SL, Kirschbaum MH, Zain J, Prince HM, Leonard JP, Geskin LJ, Reeder C, Joske D, Figg WD, Gardner ER, Steinberg SM, Jaffe ES, Stetler-Stevenson M, Lade S, Fojo AT, Bates SE (2009) Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 27(32):5410–5417. doi:10.1200/JCO.2008.21.6150

    Article  CAS  PubMed  Google Scholar 

  96. Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, Scarisbrick J, Reddy S, Robak T, Becker JC, Samtsov A, McCulloch W, Kim YH (2010) Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol 28(29):4485–4491. doi:10.1200/JCO.2010.28.9066

    Article  CAS  PubMed  Google Scholar 

  97. Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R (2010) Chemical phylogenetics of histone deacetylases. Nat Chem Biol 6(3):238–243. doi:10.1038/nchembio.313

    Article  CAS  PubMed  Google Scholar 

  98. Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H, Tanaka A, Komatsu Y, Nishino N, Yoshida M, Horinouchi S (2002) FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 62(17):4916–4921

    CAS  PubMed  Google Scholar 

  99. Grant C, Rahman F, Piekarz R, Peer C, Frye R, Robey RW, Gardner ER, Figg WD, Bates SE (2010) Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther 10(7):997–1008. doi:10.1586/era.10.88

    Article  CAS  PubMed  Google Scholar 

  100. Li Q, Xu W (2005) Novel anticancer targets and drug discovery in post genomic age. Curr Med Chem Anticancer Agents 5(1):53–63

    Article  CAS  PubMed  Google Scholar 

  101. Karagiannis TC, El-Osta A (2007) Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia 21(1):61–65. doi:10.1038/sj.leu.2404464

    Article  CAS  PubMed  Google Scholar 

  102. Piekarz RL, Frye AR, Wright JJ, Steinberg SM, Liewehr DJ, Rosing DR, Sachdev V, Fojo T, Bates SE (2006) Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res 12(12):3762–3773. doi:10.1158/1078-0432.CCR-05-2095

    Article  CAS  PubMed  Google Scholar 

  103. Adcock IM (2007) HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol 150(7):829–831. doi:10.1038/sj.bjp.0707166

    Article  CAS  PubMed  Google Scholar 

  104. Dinarello CA, Fossati G, Mascagni P (2011) Histone deacetylase inhibitors for treating a spectrum of diseases not related to cancer. Mol Med 17(5–6):333–352. doi:10.2119/molmed.2011.00116

    CAS  PubMed  Google Scholar 

  105. Fischer A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31(12):605–617. doi:10.1016/j.tips.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  106. Khan O, Fotheringham S, Wood V, Stimson L, Zhang C, Pezzella F, Duvic M, Kerr DJ, La Thangue NB (2010) HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy. Proc Natl Acad Sci USA 107(14):6532–6537. doi:10.1073/pnas.0913912107

    Article  CAS  PubMed  Google Scholar 

  107. Fotheringham S, Epping MT, Stimson L, Khan O, Wood V, Pezzella F, Bernards R, La Thangue NB (2009) Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell 15(1):57–66. doi:10.1016/j.ccr.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  108. Steele NL, Plumb JA, Vidal L, Tjornelund J, Knoblauch P, Rasmussen A, Ooi CE, Buhl-Jensen P, Brown R, Evans TR, DeBono JS (2008) A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin Cancer Res 14(3):804–810. doi:10.1158/1078-0432.CCR-07-1786

    Article  CAS  PubMed  Google Scholar 

  109. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA, Wong KK, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141(1):69–80. doi:10.1016/j.cell.2010.02.027

    Article  CAS  PubMed  Google Scholar 

  110. Ryan QC, Headlee D, Acharya M, Sparreboom A, Trepel JB, Ye J, Figg WD, Hwang K, Chung EJ, Murgo A, Melillo G, Elsayed Y, Monga M, Kalnitskiy M, Zwiebel J, Sausville EA (2005) Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol 23(17):3912–3922. doi:10.1200/JCO.2005.02.188

    Article  CAS  PubMed  Google Scholar 

  111. Sandor V, Bakke S, Robey RW, Kang MH, Blagosklonny MV, Bender J, Brooks R, Piekarz RL, Tucker E, Figg WD, Chan KK, Goldspiel B, Fojo AT, Balcerzak SP, Bates SE (2002) Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 8(3):718–728

    CAS  PubMed  Google Scholar 

  112. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247(4940):322–324

    Article  CAS  PubMed  Google Scholar 

  113. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA, Dove WF (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256(5057):668–670

    Article  CAS  PubMed  Google Scholar 

  114. Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M (2004) Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5(5):455–463

    Article  CAS  PubMed  Google Scholar 

  115. Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89(3):357–364

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Y, Sun ZW, Iratni R, Erdjument-Bromage H, Tempst P, Hampsey M, Reinberg D (1998) SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol Cell 1(7):1021–1031

    Article  CAS  PubMed  Google Scholar 

  117. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, Liang J, Sun L, Yang X, Shi L, Li R, Li Y, Zhang Y, Li Q, Yi X, Shang Y (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138(4):660–672. doi:10.1016/j.cell.2009.05.050

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D (1998) The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95(2):279–289

    Article  CAS  PubMed  Google Scholar 

  119. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13(15):1924–1935

    Article  CAS  PubMed  Google Scholar 

  120. Le Guezennec X, Vermeulen M, Brinkman AB, Hoeijmakers WA, Cohen A, Lasonder E, Stunnenberg HG (2006) MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol Cell Biol 26(3):843–851. doi:10.1128/MCB.26.3.843-851.2006

    Article  PubMed  CAS  Google Scholar 

  121. You A, Tong JK, Grozinger CM, Schreiber SL (2001) CoREST is an integral component of the CoREST—human histone deacetylase complex. Proc Natl Acad Sci USA 98(4):1454–1458. doi:10.1073/pnas.98.4.1454

    Article  CAS  PubMed  Google Scholar 

  122. Yoon HG, Chan DW, Reynolds AB, Qin J, Wong J (2003) N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 12(3):723–734

    Article  CAS  PubMed  Google Scholar 

  123. Zhang J, Kalkum M, Chait BT, Roeder RG (2002) The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell 9(3):611–623

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Camille Du Roure (Phocus, Basel), Benjamin Herquel (IGBMC, Strasbourg), Arnaud Krebs, and Oliver Truee for useful comments and suggestions on the manuscript. This work was supported by the Novartis Research Foundation and the SystemsX RTD Cellplasticity project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Matthias.

Additional information

N. Reichert and M.-A. Choukrallah contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichert, N., Choukrallah, MA. & Matthias, P. Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell. Mol. Life Sci. 69, 2173–2187 (2012). https://doi.org/10.1007/s00018-012-0921-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0921-9

Keywords

Navigation