Skip to main content

Advertisement

Log in

The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The mammalian genome is transcribed in a developmentally regulated manner, generating RNA strands ranging from long to short non-coding RNA (ncRNAs). NcRNAs generated by intergenic sequences and protein-coding loci, represent up to 98 % of the human transcriptome. Non-coding transcripts comprise short ncRNAs such as microRNAs, piwi-interacting RNAs, small nucleolar RNAs and long intergenic RNAs, most of which exercise a strictly controlled negative regulation of expression of protein-coding genes. In humans, the DLK1-DIO3 genomic region, located on human chromosome 14 (14q32) contains the paternally expressed imprinted genes DLK1, RTL1, and DIO3 and the maternally expressed imprinted genes MEG3 (Gtl2), MEG8 (RIAN), and antisense RTL1 (asRTL1). This region hosts, in addition to two long intergenic RNAs, the MEG3 and MEG8, one of the largest microRNA clusters in the genome, with 53 miRNAs in the forward strand and one (mir-1247) in the reverse strand. Many of these miRNAs are differentially expressed in several pathologic processes and various cancers. A better understanding of the pathophysiologic importance of the DLK1-DIO3 domain-containing microRNA cluster may contribute to innovative therapeutic strategies in a range of diseases. Here we present an in-depth review of this vital genomic region, and examine the role the microRNAs of this region may play in controlling tissue homeostasis and in the pathogenesis of some human diseases, mostly cancer, when aberrantly expressed. The potential clinical implications of this data are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Shabalina SA, Spiridonov NA (2004) The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biol 5(4):105. doi:10.1186/gb-2004-5-4-105

    Article  PubMed  Google Scholar 

  2. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220(2):126–139. doi:10.1002/path.2638

    Article  PubMed  CAS  Google Scholar 

  3. Mattick JS (2009) The genetic signatures of noncoding RNAs. PLoS Genet 5(4):e1000459. doi:10.1371/journal.pgen.1000459

    Article  PubMed  CAS  Google Scholar 

  4. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139. doi:10.1038/nrm2632

    Article  PubMed  CAS  Google Scholar 

  5. Rother S, Meister G (2011) Small RNAs derived from longer non-coding RNAs. Biochimie 93(11):1905–1915. doi:10.1016/j.biochi.2011.07.032

    Article  PubMed  CAS  Google Scholar 

  6. Tollervey D, Kiss T (1997) Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol 9(3):337–342

    Article  PubMed  CAS  Google Scholar 

  7. Kiss T (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109(2):145–148

    Article  PubMed  CAS  Google Scholar 

  8. Zhou H, Hu H, Lai M (2010) Non-coding RNAs and their epigenetic regulatory mechanisms. Biol Cell Auspices Eur Cell Biol Organ 102(12):645–655. doi:10.1042/BC20100029

    CAS  Google Scholar 

  9. Koerner MV, Pauler FM, Huang R, Barlow DP (2009) The function of non-coding RNAs in genomic imprinting. Development 136(11):1771–1783. doi:10.1242/dev.030403

    Article  PubMed  CAS  Google Scholar 

  10. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227. doi:10.1038/nature07672

    Article  PubMed  CAS  Google Scholar 

  11. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58. doi:10.1016/j.cell.2010.09.001

    Article  PubMed  CAS  Google Scholar 

  12. Tsai MC, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 71(1):3–7. doi:10.1158/0008-5472.CAN-10-2483

    Article  PubMed  CAS  Google Scholar 

  13. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076. doi:10.1038/nature08975

    Article  PubMed  CAS  Google Scholar 

  14. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300. doi:10.1038/nature10398

    Article  PubMed  CAS  Google Scholar 

  15. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128. doi:10.1038/nature07299

    Article  PubMed  CAS  Google Scholar 

  16. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934. doi:10.1126/science.1149460

    Article  PubMed  CAS  Google Scholar 

  17. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  18. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655. doi:10.1016/j.cell.2009.01.035

    Article  PubMed  CAS  Google Scholar 

  19. Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ (2010) A dicer-independent miRNA biogenesis pathway that requires ago catalysis. Nature 465(7298):584–589. doi:10.1038/nature09092

    Article  PubMed  CAS  Google Scholar 

  20. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336. doi:10.1016/j.molcel.2007.09.028

    Article  PubMed  CAS  Google Scholar 

  21. Ichimura A, Ruike Y, Terasawa K, Tsujimoto G (2011) miRNAs and regulation of cell signaling. FEBS J 278(10):1610–1618. doi:10.1111/j.1742-4658.2011.08087.x

    Article  PubMed  CAS  Google Scholar 

  22. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833. doi:10.1038/nature03552

    Article  PubMed  CAS  Google Scholar 

  23. Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467(7311):86–90. doi:10.1038/nature09284

    Article  PubMed  CAS  Google Scholar 

  24. Melo SA, Esteller M (2011) Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 585(13):2087–2099. doi:10.1016/j.febslet.2010.08.009

    Article  PubMed  CAS  Google Scholar 

  25. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9):2999–3004. doi:10.1073/pnas.0307323101

    Article  PubMed  CAS  Google Scholar 

  26. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi:10.1038/nrc1997

    Article  PubMed  CAS  Google Scholar 

  27. Benetatos L, Vartholomatos G (2012) Deregulated microRNAs in multiple myeloma. Cancer 118(4):878–887. doi:10.1002/cncr.26297

    Article  PubMed  CAS  Google Scholar 

  28. Calvo KR, Landgren O, Roccaro AM, Ghobrial IM (2011) Role of microRNAs from monoclonal gammopathy of undetermined significance to multiple myeloma. Semin Hematol 48(1):39–45. doi:10.1053/j.seminhematol.2010.11.007

    Article  PubMed  CAS  Google Scholar 

  29. Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD (2011) The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 117(4):1121–1129. doi:10.1182/blood-2010-09-191312

    Article  PubMed  CAS  Google Scholar 

  30. Rhyasen GW, Starczynowski DT (2012) Deregulation of microRNAs in myelodysplastic syndrome. Leuk Off J Leuk Soc Am Leuk Res Fund UK 26(1):13–22. doi:10.1038/leu.2011.221

    Article  CAS  Google Scholar 

  31. Chira P, Vareli K, Sainis I, Papandreou C, Briasoulis E (2010) Alterations of MicroRNAs in solid cancers and their prognostic value. Cancers 2(2):1328–1353. doi:10.3390/cancers2021328

    Article  CAS  Google Scholar 

  32. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:10.1038/nature03702

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt JV, Matteson PG, Jones BK, Guan XJ, Tilghman SM (2000) The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Gene Dev 14(16):1997–2002

    PubMed  CAS  Google Scholar 

  34. Irving MD, Buiting K, Kanber D, Donaghue C, Schulz R, Offiah A, Mohammed SN, Oakey RJ (2010) Segmental paternal uniparental disomy (patUPD) of 14q32 with abnormal methylation elicits the characteristic features of complete patUPD14. Am J Med Genet Part A 152A(8):1942–1950. doi:10.1002/ajmg.a.33449

    Article  PubMed  CAS  Google Scholar 

  35. Edwards CA, Mungall AJ, Matthews L, Ryder E, Gray DJ, Pask AJ, Shaw G, Graves JA, Rogers J, Dunham I, Renfree MB, Ferguson-Smith AC (2008) The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol 6(6):e135. doi:10.1371/journal.pbio.0060135

    Article  PubMed  CAS  Google Scholar 

  36. Kagami M, O’Sullivan MJ, Green AJ, Watabe Y, Arisaka O, Masawa N, Matsuoka K, Fukami M, Matsubara K, Kato F, Ferguson-Smith AC, Ogata T (2010) The IG-DMR and the MEG3-DMR at human chromosome 14q32.2: hierarchical interaction and distinct functional properties as imprinting control centers. PLoS Genet 6(6):e1000992. doi:10.1371/journal.pgen.1000992

    Article  PubMed  CAS  Google Scholar 

  37. da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC (2008) Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet TIG 24(6):306–316. doi:10.1016/j.tig.2008.03.011

    Article  CAS  Google Scholar 

  38. Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48(3):R45–R53. doi:10.1530/JME-12-0008

    Article  PubMed  CAS  Google Scholar 

  39. Benetatos L, Vartholomatos G, Hatzimichael E (2011) MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer J Int du cancer 129(4):773–779. doi:10.1002/ijc.26052

    Article  CAS  Google Scholar 

  40. Takahashi N, Okamoto A, Kobayashi R, Shirai M, Obata Y, Ogawa H, Sotomaru Y, Kono T (2009) Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Hum Mol Genet 18(10):1879–1888. doi:10.1093/hmg/ddp108

    Article  PubMed  CAS  Google Scholar 

  41. Zhou Y, Cheunsuchon P, Nakayama Y, Lawlor MW, Zhong Y, Rice KA, Zhang L, Zhang X, Gordon FE, Lidov HG, Bronson RT, Klibanski A (2010) Activation of paternally expressed genes and perinatal death caused by deletion of the Gtl2 gene. Development 137(16):2643–2652. doi:10.1242/dev.045724

    Article  PubMed  CAS  Google Scholar 

  42. Gordon FE, Nutt CL, Cheunsuchon P, Nakayama Y, Provencher KA, Rice KA, Zhou Y, Zhang X, Klibanski A (2010) Increased expression of angiogenic genes in the brains of mouse meg3-null embryos. Endocrinology 151(6):2443–2452. doi:10.1210/en.2009-1151

    Article  PubMed  CAS  Google Scholar 

  43. Liu L, Luo GZ, Yang W, Zhao X, Zheng Q, Lv Z, Li W, Wu HJ, Wang L, Wang XJ, Zhou Q (2010) Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. J Biol Chem 285(25):19483–19490. doi:10.1074/jbc.M110.131995

    Article  PubMed  CAS  Google Scholar 

  44. Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, Negrini M, Miotto E, Croce CM, Patel T (2011) microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30(47):4750–4756. doi:10.1038/onc.2011.193

    Article  PubMed  CAS  Google Scholar 

  45. Glazov EA, McWilliam S, Barris WC, Dalrymple BP (2008) Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals. Mol Biol Evol 25(5):939–948. doi:10.1093/molbev/msn045

    Article  PubMed  CAS  Google Scholar 

  46. Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J (2004) A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14(9):1741–1748. doi:10.1101/gr.2743304

    Article  PubMed  CAS  Google Scholar 

  47. Hagan JP, O’Neill BL, Stewart CL, Kozlov SV, Croce CM (2009) At least ten genes define the imprinted Dlk1-Dio3 cluster on mouse chromosome 12qF1. PLoS One 4(2):e4352. doi:10.1371/journal.pone.0004352

    Article  PubMed  CAS  Google Scholar 

  48. Song G, Wang L (2008) MiR-433 and miR-127 arise from independent overlapping primary transcripts encoded by the miR-433-127 locus. PLoS One 3(10):e3574. doi:10.1371/journal.pone.0003574

    Article  PubMed  CAS  Google Scholar 

  49. Song G, Wang L (2008) Transcriptional mechanism for the paired miR-433 and miR-127 genes by nuclear receptors SHP and ERRgamma. Nucleic Acids Res 36(18):5727–5735. doi:10.1093/nar/gkn567

    Article  PubMed  CAS  Google Scholar 

  50. Song G, Wang L (2009) A conserved gene structure and expression regulation of miR-433 and miR-127 in mammals. PLoS One 4(11):e7829. doi:10.1371/journal.pone.0007829

    Article  PubMed  CAS  Google Scholar 

  51. Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M, Bachellerie JP, Ferguson-Smith AC, Cavaille J (2003) Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet 34(3):261–262. doi:10.1038/ng1171

    Article  PubMed  CAS  Google Scholar 

  52. Sekita Y, Wagatsuma H, Nakamura K, Ono R, Kagami M, Wakisaka N, Hino T, Suzuki-Migishima R, Kohda T, Ogura A, Ogata T, Yokoyama M, Kaneko-Ishino T, Ishino F (2008) Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet 40(2):243–248. doi:10.1038/ng.2007.51

    Article  PubMed  CAS  Google Scholar 

  53. Cui XS, Zhang DX, Ko YG, Kim NH (2009) Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos. Biochem Biophys Res Commun 379(2):390–394. doi:10.1016/j.bbrc.2008.12.148

    Article  PubMed  CAS  Google Scholar 

  54. Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310):1105–1109. doi:10.1038/nature09271

    Article  PubMed  CAS  Google Scholar 

  55. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289. doi:10.1038/nature04367

    Article  PubMed  CAS  Google Scholar 

  56. Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J, Ng HH, Perera RJ, Lufkin T, Rigoutsos I, Thomson AM, Lim B (2008) MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells 26(1):17–29. doi:10.1634/stemcells.2007-0295

    Article  PubMed  CAS  Google Scholar 

  57. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17(19):3030–3042. doi:10.1093/hmg/ddn201

    Article  PubMed  CAS  Google Scholar 

  58. Zhang J, Zhang J, Liu LH, Zhou Y, Li YP, Shao ZH, Wu YJ, Li MJ, Fan YY, Shi HJ (2011) Effects of miR-541 on neurite outgrowth during neuronal differentiation. Cell Biochem Funct 29(4):279–286. doi:10.1002/cbf.1747

    Article  PubMed  CAS  Google Scholar 

  59. Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW, Kim TK, Greenberg ME, Schratt G (2009) Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J 28(6):697–710. doi:10.1038/emboj.2009.10

    Article  PubMed  CAS  Google Scholar 

  60. Simion A, Laudadio I, Prevot PP, Raynaud P, Lemaigre FP, Jacquemin P (2010) MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2. Biochem Biophys Res Commun 391(1):293–298. doi:10.1016/j.bbrc.2009.11.052

    Article  PubMed  CAS  Google Scholar 

  61. Tominaga K, Srikantan S, Lee EK, Subaran SS, Martindale JL, Abdelmohsen K, Gorospe M (2011) Competitive regulation of nucleolin expression by HuR and miR-494. Mol Cell Biol 31(20):4219–4231. doi:10.1128/MCB.05955-11

    Article  PubMed  CAS  Google Scholar 

  62. Williams AE, Moschos SA, Perry MM, Barnes PJ, Lindsay MA (2007) Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev Dyn Off Publ Am Assoc Anat 236(2):572–580. doi:10.1002/dvdy.21047

    CAS  Google Scholar 

  63. Choong ML, Yang HH, McNiece I (2007) MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol 35(4):551–564. doi:10.1016/j.exphem.2006.12.002

    Article  PubMed  CAS  Google Scholar 

  64. Wang F, Yu J, Yang GH, Wang XS, Zhang JW (2011) Regulation of erythroid differentiation by miR-376a and its targets. Cell Res 21(8):1196–1209. doi:10.1038/cr.2011.79

    Article  PubMed  CAS  Google Scholar 

  65. Beckman JD, Chen C, Nguyen J, Thayanithy V, Subramanian S, Steer CJ, Vercellotti GM (2011) Regulation of heme oxygenase-1 protein expression by miR-377 in combination with miR-217. J Biol Chem 286(5):3194–3202. doi:10.1074/jbc.M110.148726

    Article  PubMed  CAS  Google Scholar 

  66. Teferedegne B, Murata H, Quinones M, Peden K, Lewis AM (2010) Patterns of microRNA expression in non-human primate cells correlate with neoplastic development in vitro. PLoS One 5(12):e14416. doi:10.1371/journal.pone.0014416

    Article  PubMed  CAS  Google Scholar 

  67. Chien WW, Domenech C, Catallo R, Kaddar T, Magaud JP, Salles G, Ffrench M (2011) Cyclin-dependent kinase 1 expression is inhibited by p16(INK4a) at the post-transcriptional level through the microRNA pathway. Oncogene 30(16):1880–1891. doi:10.1038/onc.2010.570

    Article  PubMed  CAS  Google Scholar 

  68. Lee YN, Brandal S, Noel P, Wentzel E, Mendell JT, McDevitt MA, Kapur R, Carter M, Metcalfe DD, Takemoto CM (2011) KIT signaling regulates MITF expression through miRNAs in normal and malignant mast cell proliferation. Blood 117(13):3629–3640. doi:10.1182/blood-2010-07-293548

    Article  PubMed  CAS  Google Scholar 

  69. Chen CF, He X, Arslan AD, Mo YY, Reinhold WC, Pommier Y, Beck WT (2011) Novel regulation of nuclear factor-YB by miR-485-3p affects the expression of DNA topoisomerase IIalpha and drug responsiveness. Mol Pharmacol 79(4):735–741. doi:10.1124/mol.110.069633

    Article  PubMed  CAS  Google Scholar 

  70. Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T (2008) Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 27(3):378–386. doi:10.1038/sj.onc.1210648

    Article  PubMed  CAS  Google Scholar 

  71. Olaru AV, Ghiaur G, Yamanaka S, Luvsanjav D, An F, Popescu I, Alexandrescu S, Allen S, Pawlik TM, Torbenson M, Georgiades C, Roberts LR, Gores GJ, Ferguson-Smith A, Almeida MI, Calin GA, Mezey E, Selaru FM (2011) MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint. Hepatology 54(6):2089–2098. doi:10.1002/hep.24591

    Article  PubMed  CAS  Google Scholar 

  72. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT, Chen P, Wang Y, Yan M, Qian Z, Neilly MB, Jin J, Zhang Y, Bohlander SK, Zhang DE, Larson RA, Le Beau MM, Thirman MJ, Golub TR, Rowley JD, Chen J (2008) Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 105(40):15535–15540. doi:10.1073/pnas.0808266105

    Article  PubMed  CAS  Google Scholar 

  73. Dixon-McIver A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T, Andrew Lister T, Young BD, Debernardi S (2008) Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 3(5):e2141. doi:10.1371/journal.pone.0002141

    Article  PubMed  CAS  Google Scholar 

  74. Zhang C, Wang C, Chen X, Yang C, Li K, Wang J, Dai J, Hu Z, Zhou X, Chen L, Zhang Y, Li Y, Qiu H, Xing J, Liang Z, Ren B, Yang C, Zen K, Zhang CY (2010) Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem 56(12):1871–1879. doi:10.1373/clinchem.2010.147553

    Article  PubMed  CAS  Google Scholar 

  75. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, Yoshida K, Sasaki H, Nomura S, Seto Y, Kaminishi M, Calin GA, Croce CM (2010) Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 11(2):136–146. doi:10.1016/S1470-2045(09)70343-2

    Article  PubMed  CAS  Google Scholar 

  76. Haller F, von Heydebreck A, Zhang JD, Gunawan B, Langer C, Ramadori G, Wiemann S, Sahin O (2010) Localization- and mutation-dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31. J Pathol 220(1):71–86. doi:10.1002/path.2610

    Article  PubMed  CAS  Google Scholar 

  77. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M, Garcia-Foncillas J (2006) Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29. doi:10.1186/1476-4598-5-29

    Article  PubMed  CAS  Google Scholar 

  78. Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer J Int du Cancer 127(1):118–126. doi:10.1002/ijc.25007

    Article  CAS  Google Scholar 

  79. Mosakhani N, Sarhadi VK, Borze I, Karjalainen-Lindsberg ML, Sundstrom J, Ristamaki R, Osterlund P, Knuutila S (2012) MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosom Cancer 51(1):1–9. doi:10.1002/gcc.20925

    Article  PubMed  CAS  Google Scholar 

  80. Luk JM, Burchard J, Zhang C, Liu AM, Wong KF, Shek FH, Lee NP, Fan ST, Poon RT, Ivanovska I, Philippar U, Cleary MA, Buser CA, Shaw PM, Lee CN, Tenen DG, Dai H, Mao M (2011) DLK1-DIO3 genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival. J Biol Chem 286(35):30706–30713. doi:10.1074/jbc.M111.229831

    Article  PubMed  CAS  Google Scholar 

  81. Tryndyak VP, Ross SA, Beland FA, Pogribny IP (2009) Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog 48(6):479–487. doi:10.1002/mc.20484

    Article  PubMed  CAS  Google Scholar 

  82. Shih KK, Qin LX, Tanner EJ, Zhou Q, Bisogna M, Dao F, Olvera N, Viale A, Barakat RR, Levine DA (2011) A microRNA survival signature (MiSS) for advanced ovarian cancer. Gynecol Oncol 121(3):444–450. doi:10.1016/j.ygyno.2011.01.025

    Article  PubMed  CAS  Google Scholar 

  83. Ye G, Fu G, Cui S, Zhao S, Bernaudo S, Bai Y, Ding Y, Zhang Y, Yang BB, Peng C (2011) MicroRNA 376c enhances ovarian cancer cell survival by targeting activin receptor-like kinase 7: implications for chemoresistance. J Cell Sci 124(Pt 3):359–368. doi:10.1242/jcs.072223

    Article  PubMed  CAS  Google Scholar 

  84. Castilla MA, Moreno-Bueno G, Romero-Perez L, Van De Vijver K, Biscuola M, Lopez-Garcia MA, Prat J, Matias-Guiu X, Cano A, Oliva E, Palacios J (2011) Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol 223(1):72–80. doi:10.1002/path.2802

    Article  PubMed  CAS  Google Scholar 

  85. Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY, Kim WY, Kim TJ, Lee JH, Kim BG, Bae DS (2008) Altered microRNA expression in cervical carcinomas. Clin Cancer Res Off J Am Assoc Cancer Res 14(9):2535–2542. doi:10.1158/1078-0432.CCR-07-1231

    Article  CAS  Google Scholar 

  86. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, Alexiou P, Hasegawa K, Johnstone CN, Megraw MS, Adams S, Lassus H, Huang J, Kaur S, Liang S, Sethupathy P, Leminen A, Simossis VA, Sandaltzopoulos R, Naomoto Y, Katsaros D, Gimotty PA, DeMichele A, Huang Q, Butzow R, Rustgi AK, Weber BL, Birrer MJ, Hatzigeorgiou AG, Croce CM, Coukos G (2008) Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA 105(19):7004–7009. doi:10.1073/pnas.0801615105

    Article  PubMed  CAS  Google Scholar 

  87. Wang LL, Zhang Z, Li Q, Yang R, Pei X, Xu Y, Wang J, Zhou SF, Li Y (2009) Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod 24(3):562–579. doi:10.1093/humrep/den439

    Article  PubMed  CAS  Google Scholar 

  88. Tang H, Liu X, Wang Z, She X, Zeng X, Deng M, Liao Q, Guo X, Wang R, Li X, Zeng F, Wu M, Li G (2011) Interaction of hsa-miR-381 and glioma suppressor LRRC4 is involved in glioma growth. Brain Res 1390:21–32. doi:10.1016/j.brainres.2011.03.034

    Article  PubMed  CAS  Google Scholar 

  89. Swarbrick A, Woods SL, Shaw A, Balakrishnan A, Phua Y, Nguyen A, Chanthery Y, Lim L, Ashton LJ, Judson RL, Huskey N, Blelloch R, Haber M, Norris MD, Lengyel P, Hackett CS, Preiss T, Chetcuti A, Sullivan CS, Marcusson EG, Weiss W, L’Etoile N, Goga A (2010) miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 16(10):1134–1140. doi:10.1038/nm.2227

    Article  PubMed  CAS  Google Scholar 

  90. Skalsky RL, Cullen BR (2011) Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene. PLoS One 6(9):e24248. doi:10.1371/journal.pone.0024248

    Article  PubMed  CAS  Google Scholar 

  91. Gattolliat CH, Thomas L, Ciafre SA, Meurice G, Le Teuff G, Job B, Richon C, Combaret V, Dessen P, Valteau-Couanet D, May E, Busson P, Douc-Rasy S, Benard J (2011) Expression of miR-487b and miR-410 encoded by 14q32.31 locus is a prognostic marker in neuroblastoma. Br J Cancer 105(9):1352–1361. doi:10.1038/bjc.2011.388

    Article  PubMed  CAS  Google Scholar 

  92. Cheunsuchon P, Zhou Y, Zhang X, Lee H, Chen W, Nakayama Y, Rice KA, Tessa Hedley-Whyte E, Swearingen B, Klibanski A (2011) Silencing of the imprinted DLK1-MEG3 locus in human clinically nonfunctioning pituitary adenomas. Am J Pathol 179(4):2120–2130. doi:10.1016/j.ajpath.2011.07.002

    Article  PubMed  CAS  Google Scholar 

  93. Liu L, Jiang Y, Zhang H, Greenlee AR, Han Z (2010) Overexpressed miR-494 down-regulates PTEN gene expression in cells transformed by anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide. Life Sci 86(5–6):192–198. doi:10.1016/j.lfs.2009.12.002

    Article  PubMed  CAS  Google Scholar 

  94. Duan H, Jiang Y, Zhang H, Wu Y (2010) MiR-320 and miR-494 affect cell cycles of primary murine bronchial epithelial cells exposed to benzo[a]pyrene. Toxicol In vitro Int J publ Assoc BIBRA 24(3):928–935. doi:10.1016/j.tiv.2009.11.013

    Article  CAS  Google Scholar 

  95. Guo L, Liu Y, Bai Y, Sun Y, Xiao F, Guo Y (2010) Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer 46(9):1692–1702. doi:10.1016/j.ejca.2010.02.043

    Article  PubMed  CAS  Google Scholar 

  96. Dacic S, Kelly L, Shuai Y, Nikiforova MN (2010) miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol Off J USA Can Acad Pathol Inc 23(12):1577–1582. doi:10.1038/modpathol.2010.152

    CAS  Google Scholar 

  97. Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, Demidenko E, Korc M, Shi W, Preis M, Dragnev KH, Li H, Direnzo J, Bak M, Freemantle SJ, Kauppinen S, Dmitrovsky E (2010) MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Investig 120(4):1298–1309. doi:10.1172/JCI39566

    Article  PubMed  CAS  Google Scholar 

  98. Guled M, Lahti L, Lindholm PM, Salmenkivi K, Bagwan I, Nicholson AG, Knuutila S (2009) CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma-A miRNA microarray analysis. Genes Chromosom Cancer 48(7):615–623. doi:10.1002/gcc.20669

    Article  PubMed  CAS  Google Scholar 

  99. Hwang-Verslues WW, Chang PH, Wei PC, Yang CY, Huang CK, Kuo WH, Shew JY, Chang KJ, Lee EY, Lee WH (2011) miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene 30(21):2463–2474. doi:10.1038/onc.2010.618

    Article  PubMed  CAS  Google Scholar 

  100. Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lemetre C, Benes V, Schmidt S, Blake J, Ball G, Kerin MJ (2009) MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res BCR 11(3):R27. doi:10.1186/bcr2257

    Article  CAS  Google Scholar 

  101. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14(11):2348–2360. doi:10.1261/rna.1034808

    Article  PubMed  CAS  Google Scholar 

  102. Bockmeyer CL, Christgen M, Muller M, Fischer S, Ahrens P, Langer F, Kreipe H, Lehmann U (2011) MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res Treat 130(3):735–745. doi:10.1007/s10549-010-1303-3

    Article  PubMed  CAS  Google Scholar 

  103. Kriegel AJ, Fang Y, Liu Y, Tian Z, Mladinov D, Matus IR, Ding X, Greene AS, Liang M (2010) MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: a novel role of miR-382. Nucleic Acids Res 38(22):8338–8347. doi:10.1093/nar/gkq718

    Article  PubMed  CAS  Google Scholar 

  104. Tombol Z, Eder K, Kovacs A, Szabo PM, Kulka J, Liko I, Zalatnai A, Racz G, Toth M, Patocs A, Falus A, Racz K, Igaz P (2010) MicroRNA expression profiling in benign (sporadic and hereditary) and recurring adrenal pheochromocytomas. Mod Pathol Off J USA Canad Acad Pathol Inc 23(12):1583–1595. doi:10.1038/modpathol.2010.164

    Google Scholar 

  105. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443. doi:10.1016/j.ccr.2006.04.020

    Article  PubMed  CAS  Google Scholar 

  106. Nagano T, Fraser P (2011) No nonsense functions for long noncoding RNAs. Cell 145(2):178–181. doi:10.1016/j.cell.2011.03.014

    Article  PubMed  CAS  Google Scholar 

  107. Bertani S, Sauer S, Bolotin E, Sauer F (2011) The noncoding RNA mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 43(6):1040–1046. doi:10.1016/j.molcel.2011.08.019

    Article  PubMed  CAS  Google Scholar 

  108. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217. doi:10.1016/j.cell.2006.07.031

    Article  PubMed  CAS  Google Scholar 

  109. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  110. Robertus JL, Harms G, Blokzijl T, Booman M, de Jong D, van Imhoff G, Rosati S, Schuuring E, Kluin P, van den Berg A (2009) Specific expression of miR-17-5p and miR-127 in testicular and central nervous system diffuse large B-cell lymphoma. Mod Pathol Off J US Can Acad Pathol Inc 22(4):547–555. doi:10.1038/modpathol.2009.10

    CAS  Google Scholar 

  111. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71(5):1550–1560. doi:10.1158/0008-5472.CAN-10-2372

    Article  PubMed  CAS  Google Scholar 

  112. Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE (2009) The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 112(1):55–59. doi:10.1016/j.ygyno.2008.08.036

    Article  PubMed  CAS  Google Scholar 

  113. Lages E, Guttin A, El Atifi M, Ramus C, Ipas H, Dupre I, Rolland D, Salon C, Godfraind C, deFraipont F, Dhobb M, Pelletier L, Wion D, Gay E, Berger F, Issartel JP (2011) MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS One 6(5):e20600. doi:10.1371/journal.pone.0020600

    Article  PubMed  CAS  Google Scholar 

  114. Cahill S, Smyth P, Denning K, Flavin R, Li J, Potratz A, Guenther SM, Henfrey R, O’Leary JJ, Sheils O (2007) Effect of BRAFV600E mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol Cancer 6:21. doi:10.1186/1476-4598-6-21

    Article  PubMed  CAS  Google Scholar 

  115. Duan Z, Choy E, Harmon D, Liu X, Susa M, Mankin H, Hornicek F (2011) MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther 10(8):1337–1345. doi:10.1158/1535-7163.MCT-11-0096

    Article  PubMed  CAS  Google Scholar 

  116. Genovesi LA, Carter KW, Gottardo NG, Giles KM, Dallas PB (2011) Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with neural stem cells. PLoS One 6(9):e23935. doi:10.1371/journal.pone.0023935

    Article  PubMed  CAS  Google Scholar 

  117. Cipollone F, Felicioni L, Sarzani R, Ucchino S, Spigonardo F, Mandolini C, Malatesta S, Bucci M, Mammarella C, Santovito D, de Lutiis F, Marchetti A, Mezzetti A, Buttitta F (2011) A unique microRNA signature associated with plaque instability in humans. Stroke J Cereb Circ 42(9):2556–2563. doi:10.1161/STROKEAHA.110.597575

    Article  Google Scholar 

  118. Sylvius N, Bonne G, Straatman K, Reddy T, Gant TW, Shackleton S (2011) MicroRNA expression profiling in patients with lamin A/C-associated muscular dystrophy. FASEB J Off Publ Fed Am Soc Exp Biol 25(11):3966–3978. doi:10.1096/fj.11-182915

    CAS  Google Scholar 

  119. Tsai KW, Wu CW, Hu LY, Li SC, Liao YL, Lai CH, Kao HW, Fang WL, Huang KH, Chan WC, Lin WC (2011) Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer J Int du Cancer 129(11):2600–2610. doi:10.1002/ijc.25919

    Article  CAS  Google Scholar 

  120. Hamano R, Miyata H, Yamasaki M, Kurokawa Y, Hara J, Moon JH, Nakajima K, Takiguchi S, Fujiwara Y, Mori M, Doki Y (2011) Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clin Cancer Res Off J Am Assoc Cancer Res 17(9):3029–3038. doi:10.1158/1078-0432.CCR-10-2532

    Article  CAS  Google Scholar 

  121. Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y (2009) Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int 29(7):749–754. doi:10.1007/s00296-008-0758-6

    Article  PubMed  CAS  Google Scholar 

  122. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116(3):258–267. doi:10.1161/CIRCULATIONAHA.107.687947

    Article  PubMed  CAS  Google Scholar 

  123. Haenisch S, Laechelt S, Bruckmueller H, Werk A, Noack A, Bruhn O, Remmler C, Cascorbi I (2011) Down-regulation of ATP-binding cassette C2 protein expression in HepG2 cells after rifampicin treatment is mediated by microRNA-379. Mol Pharmacol 80(2):314–320. doi:10.1124/mol.110.070714

    Article  PubMed  CAS  Google Scholar 

  124. Xiao J, Jing ZC, Ellinor PT, Liang D, Zhang H, Liu Y, Chen X, Pan L, Lyon R, Liu Y, Peng LY, Liang X, Sun Y, Popescu LM, Condorelli G, Chen YH (2011) MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J Transl Med 9:159. doi:10.1186/1479-5876-9-159

    Article  PubMed  CAS  Google Scholar 

  125. Kim TH, Kim YK, Kwon Y, Heo JH, Kang H, Kim G, An HJ (2010) Deregulation of miR-519a, 153, and 485–5p and its clinicopathological relevance in ovarian epithelial tumours. Histopathology 57(5):734–743. doi:10.1111/j.1365-2559.2010.03686.x

    Article  PubMed  Google Scholar 

  126. Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, Flanigan KM, Neely LA, Whitney D, Beggs AH, Kohane IS, Kunkel LM (2007) Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA 104(43):17016–17021. doi:10.1073/pnas.0708115104

    Article  PubMed  CAS  Google Scholar 

  127. Hoekstra M, van der Lans CA, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, van Berkel TJ, Biessen EA (2010) The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun 394(3):792–797. doi:10.1016/j.bbrc.2010.03.075

    Article  PubMed  CAS  Google Scholar 

  128. Lehmann U, Streichert T, Otto B, Albat C, Hasemeier B, Christgen H, Schipper E, Hille U, Kreipe HH, Langer F (2010) Identification of differentially expressed microRNAs in human male breast cancer. BMC Cancer 10:109. doi:10.1186/1471-2407-10-109

    Article  PubMed  CAS  Google Scholar 

  129. Zhang X, Cairns M, Rose B, O’Brien C, Shannon K, Clark J, Gamble J, Tran N (2009) Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer J Int du Cancer 124(12):2855–2863. doi:10.1002/ijc.24298

    Article  CAS  Google Scholar 

  130. Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, Lao K, Kosik KS (2008) Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics 9(3):153–161. doi:10.1007/s10048-008-0133-5

    Article  PubMed  CAS  Google Scholar 

  131. Bimpaki EI, Iliopoulos D, Moraitis A, Stratakis CA (2010) MicroRNA signature in massive macronodular adrenocortical disease and implications for adrenocortical tumourigenesis. Clin Endocrinol 72(6):744–751. doi:10.1111/j.1365-2265.2009.03725.x

    Article  CAS  Google Scholar 

  132. Redell JB, Liu Y, Dash PK (2009) Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. J Neurosci Res 87(6):1435–1448. doi:10.1002/jnr.21945

    Article  PubMed  CAS  Google Scholar 

  133. Hussein K, von Neuhoff N, Busche G, Buhr T, Kreipe H, Bock O (2009) Opposite expression pattern of Src kinase Lyn in acute and chronic haematological malignancies. Ann Hematol 88(11):1059–1067. doi:10.1007/s00277-009-0727-5

    Article  PubMed  CAS  Google Scholar 

  134. Yao Y, Suo AL, Li ZF, Liu LY, Tian T, Ni L, Zhang WG, Nan KJ, Song TS, Huang C (2009) MicroRNA profiling of human gastric cancer. Mol Med Rep 2(6):963–970. doi:10.3892/mmr_00000199

    CAS  Google Scholar 

  135. Saba R, Goodman CD, Huzarewich RL, Robertson C, Booth SA (2008) A miRNA signature of prion induced neurodegeneration. PLoS One 3(11):e3652. doi:10.1371/journal.pone.0003652

    Article  PubMed  CAS  Google Scholar 

  136. Luo H, Zhang H, Zhang Z, Zhang X, Ning B, Guo J, Nie N, Liu B, Wu X (2009) Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res CR 28:82. doi:10.1186/1756-9966-28-82

    Article  CAS  Google Scholar 

  137. Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer J Int du Cancer 120(5):1046–1054. doi:10.1002/ijc.22394

    Article  CAS  Google Scholar 

  138. Kumar S, Kumar A, Shah PP, Rai SN, Panguluri SK, Kakar SS (2011) MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines. J Ovarian Res 4(1):17. doi:10.1186/1757-2215-4-17

    Article  PubMed  CAS  Google Scholar 

  139. Iliopoulos D, Bimpaki EI, Nesterova M, Stratakis CA (2009) MicroRNA signature of primary pigmented nodular adrenocortical disease: clinical correlations and regulation of Wnt signaling. Cancer Res 69(8):3278–3282. doi:10.1158/0008-5472.CAN-09-0155

    Article  PubMed  CAS  Google Scholar 

  140. Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y (2011) MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 137(4):557–566. doi:10.1007/s00432-010-0918-4

    Article  PubMed  CAS  Google Scholar 

  141. Wang Q, Wang Y, Minto AW, Wang J, Shi Q, Li X, Quigg RJ (2008) MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J Off Publ Fed Am Soc Exp Biol 22(12):4126–4135. doi:10.1096/fj.08-112326

    CAS  Google Scholar 

  142. Zhu XM, Han T, Sargent IL, Yin GW, Yao YQ (2009) Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol 200(6):661–667. doi:10.1016/j.ajog.2008.12.045

    Article  PubMed  CAS  Google Scholar 

  143. Yu J, Wang F, Yang GH, Wang FL, Ma YN, Du ZW, Zhang JW (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349(1):59–68. doi:10.1016/j.bbrc.2006.07.207

    Article  PubMed  CAS  Google Scholar 

  144. Wang X, Ye L, Zhou Y, Liu MQ, Zhou DJ, Ho WZ (2011) Inhibition of anti-HIV microRNA expression: a mechanism for opioid-mediated enhancement of HIV infection of monocytes. Am J Pathol 178(1):41–47. doi:10.1016/j.ajpath.2010.11.042

    Article  PubMed  CAS  Google Scholar 

  145. Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI (2008) Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res Off J Am Assoc Cancer Res 14(9):2588–2592. doi:10.1158/1078-0432.CCR-07-0666

    Article  CAS  Google Scholar 

  146. Goodarzi HR, Abbasi A, Saffari M, Tabei MB, Noori Daloii MR (2010) MicroRNAs take part in pathophysiology and pathogenesis of male pattern baldness. Mol Biol Rep 37(6):2959–2965. doi:10.1007/s11033-009-9862-2

    Article  PubMed  CAS  Google Scholar 

  147. Hummel R, Wang T, Watson DI, Michael MZ, Van der Hoek M, Haier J, Hussey DJ (2011) Chemotherapy-induced modification of microRNA expression in esophageal cancer. Oncol Rep 26(4):1011–1017. doi:10.3892/or.2011.1381

    PubMed  CAS  Google Scholar 

  148. Lai CY, Yu SL, Hsieh MH, Chen CH, Chen HY, Wen CC, Huang YH, Hsiao PC, Hsiao CK, Liu CM, Yang PC, Hwu HG, Chen WJ (2011) MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One 6(6):e21635. doi:10.1371/journal.pone.0021635

    Article  PubMed  CAS  Google Scholar 

  149. Qi Y, Tu J, Cui L, Guo X, Shi Z, Li S, Shi W, Shan Y, Ge Y, Shan J, Wang H, Lu Z (2010) High-throughput sequencing of microRNAs in adenovirus type 3 infected human laryngeal epithelial cells. J Biomed Biotechnol 2010:915980. doi:10.1155/2010/915980

    Article  PubMed  CAS  Google Scholar 

  150. Simon D, Laloo B, Barillot M, Barnetche T, Blanchard C, Rooryck C, Marche M, Burgelin I, Coupry I, Chassaing N, Gilbert-Dussardier B, Lacombe D, Grosset C, Arveiler B (2010) A mutation in the 3′-UTR of the HDAC6 gene abolishing the post-transcriptional regulation mediated by hsa-miR-433 is linked to a new form of dominant X-linked chondrodysplasia. Hum Mol Genet 19(10):2015–2027. doi:10.1093/hmg/ddq083

    Article  PubMed  CAS  Google Scholar 

  151. Hawkins SM, Creighton CJ, Han DY, Zariff A, Anderson ML, Gunaratne PH, Matzuk MM (2011) Functional microRNA involved in endometriosis. Mol Endocrinol 25(5):821–832. doi:10.1210/me.2010-0371

    Article  PubMed  CAS  Google Scholar 

  152. Melkamu T, Zhang X, Tan J, Zeng Y, Kassie F (2010) Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 31(2):252–258. doi:10.1093/carcin/bgp208

    Article  PubMed  CAS  Google Scholar 

  153. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, Moller P, Stilgenbauer S, Pollack JR, Wirth T (2008) MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112(10):4202–4212. doi:10.1182/blood-2008-03-147645

    Article  PubMed  CAS  Google Scholar 

  154. Roccaro AM, Sacco A, Chen C, Runnels J, Leleu X, Azab F, Azab AK, Jia X, Ngo HT, Melhem MR, Burwick N, Varticovski L, Novina CD, Rollins BJ, Anderson KC, Ghobrial IM (2009) MicroRNA expression in the biology, prognosis, and therapy of Waldenstrom macroglobulinemia. Blood 113(18):4391–4402. doi:10.1182/blood-2008-09-178228

    Article  PubMed  CAS  Google Scholar 

  155. Montag J, Hitt R, Opitz L, Schulz-Schaeffer WJ, Hunsmann G, Motzkus D (2009) Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol Neurodegener 4:36. doi:10.1186/1750-1326-4-36

    Article  PubMed  CAS  Google Scholar 

  156. Li X, Luo F, Li Q, Xu M, Feng D, Zhang G, Wu W (2011) Identification of new aberrantly expressed miRNAs in intestinal-type gastric cancer and its clinical significance. Oncol Rep 26(6):1431–1439. doi:10.3892/or.2011.1437

    PubMed  Google Scholar 

Download references

Acknowledgments

E.H. is a scholar of the Hellenic Society of Haematology Foundation. P.L. and I.R. are partially supported by a William M. Keck Foundation grant.

Conflict of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas Benetatos.

Additional information

L. Benetatos, E. Hatzimichael contributed equally to this work.

I. Rigoutsos and E. Briasoulis contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benetatos, L., Hatzimichael, E., Londin, E. et al. The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis. Cell. Mol. Life Sci. 70, 795–814 (2013). https://doi.org/10.1007/s00018-012-1080-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1080-8

Keywords

Navigation