Skip to main content

Advertisement

Log in

Tumor cell migration in complex microenvironments

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Tumor cell migration is essential for invasion and dissemination from primary solid tumors and for the establishment of lethal secondary metastases at distant organs. In vivo and in vitro models enabled identification of different factors in the tumor microenvironment that regulate tumor progression and metastasis. However, the mechanisms by which tumor cells integrate these chemical and mechanical signals from multiple sources to navigate the complex microenvironment remain poorly understood. In this review, we discuss the factors that influence tumor cell migration with a focus on the migration of transformed carcinoma cells. We provide an overview of the experimental and computational methods that allow the investigation of tumor cell migration, and we highlight the benefits and shortcomings of the various assays. We emphasize that the chemical and mechanical stimulus paradigms are not independent and that crosstalk between them motivates the development of new assays capable of applying multiple, simultaneous stimuli and imaging the cellular migratory response in real-time. These next-generation assays will more closely mimic the in vivo microenvironment to provide new insights into tumor progression, inform techniques to control tumor cell migration, and render cancer more treatable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAF:

Cancer-associated fibroblast

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EMT:

Epithelial to mesenchymal transition

FAK:

Focal adhesion kinase

IF:

Interstitial flow

IFP:

Interstitial fluid pressure

LEGI:

Local excitation, global inhibition

LIMK1:

LIM domain kinase 1

LOX:

Lysyl oxidase

MMP:

Matrix metalloproteinase

ROCK:

Rho-associated kinase

RPTK:

Receptor protein kinase

References

  1. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    Article  PubMed  CAS  Google Scholar 

  2. Weigelt B, Peterse JL, van ‘t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5(8):591–602

    Article  PubMed  CAS  Google Scholar 

  3. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4(11):839–849

    Article  PubMed  CAS  Google Scholar 

  4. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009

    Article  PubMed  CAS  Google Scholar 

  5. Bristow RG, Hill RP (2008) Hypoxia and metabolism: hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8(3):180–192

    Article  PubMed  CAS  Google Scholar 

  6. Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197(4306):893–895

    Article  PubMed  CAS  Google Scholar 

  7. Weigelt B et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65(20):9155–9158

    Article  PubMed  CAS  Google Scholar 

  8. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369(9574):1742–1757

    Article  PubMed  CAS  Google Scholar 

  9. Almog N (2010) Molecular mechanisms underlying tumor dormancy. Cancer Lett 294(2):139–146

    Article  PubMed  CAS  Google Scholar 

  10. Paez D et al (2011) Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res 18(3):645–653

    Article  PubMed  Google Scholar 

  11. Rhim AD et al (2012) EMT and dissemination precede pancreatic tumor formation. Cell 148(1–2):349–361

    Article  PubMed  CAS  Google Scholar 

  12. Paszek MJ et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  PubMed  CAS  Google Scholar 

  13. Moore SW, Roca-Cusachs P, Sheetz MP (2010) Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev Cell 19(2):194–206

    Article  PubMed  CAS  Google Scholar 

  14. Roussos ET, Condeelis JS, Patsialou A (2011) Chemotaxis in cancer. Nat Rev Cancer 11(8):573–587

    Article  PubMed  CAS  Google Scholar 

  15. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219

    Article  PubMed  CAS  Google Scholar 

  16. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Article  PubMed  CAS  Google Scholar 

  17. Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    Article  PubMed  CAS  Google Scholar 

  18. Zigmond SH (1988) Orientation chamber in chemotaxis. Methods Enzymol 162:65–72

    Article  PubMed  CAS  Google Scholar 

  19. Zicha D, Dunn GA, Brown AF (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99(Pt 4):769–775

    PubMed  Google Scholar 

  20. Gundersen RW, Barrett JN (1979) Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science 206(4422):1079–1080

    Article  PubMed  CAS  Google Scholar 

  21. Soon L et al (2005) Description and characterization of a chamber for viewing and quantifying cancer cell chemotaxis. Cell Motil Cytoskelet 62(1):27–34

    Article  CAS  Google Scholar 

  22. Yarrow JC et al (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4:21

    Article  PubMed  Google Scholar 

  23. Wong MK, Gotlieb AI (1988) The reorganization of microfilaments, centrosomes, and microtubules during in vitro small wound reendothelialization. J Cell Biol 107(5):1777–1783

    Article  PubMed  CAS  Google Scholar 

  24. Van Horssen R, ten Hagen TL (2011) Crossing barriers: the new dimension of 2D cell migration assays. J Cell Physiol 226(1):288–290

    Article  PubMed  CAS  Google Scholar 

  25. Toley BJ et al (2012) Micrometer-scale oxygen delivery rearranges cells and prevents necrosis in tumor tissue in vitro. Biotechnol Prog 28(2):515–525

    Article  PubMed  CAS  Google Scholar 

  26. Simpson KJ et al (2008) Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat Cell Biol 10(9):1027–1038

    Article  PubMed  CAS  Google Scholar 

  27. Murrell M, Kamm R, Matsudaira P (2011) Tension, free space, and cell damage in a microfluidic wound healing assay. PLoS One 6(9):e24283

    Article  PubMed  CAS  Google Scholar 

  28. Chung S et al (2009) Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9(2):269–275

    Article  PubMed  CAS  Google Scholar 

  29. von Philipsborn AC et al (2006) Growth cone navigation in substrate-bound ephrin gradients. Development 133(13):2487–2495

    Article  CAS  Google Scholar 

  30. Salieb-Beugelaar GB et al (2010) Latest developments in microfluidic cell biology and analysis systems. Anal Chem 82(12):4848–4864

    Article  PubMed  CAS  Google Scholar 

  31. Saadi W et al (2006) A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed Microdevices 8(2):109–118

    Article  PubMed  Google Scholar 

  32. Polacheck WJ, Charest JL, Kamm RD (2011) Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc Natl Acad Sci USA 108(27):11115–11120

    Article  PubMed  CAS  Google Scholar 

  33. Huang CW et al (2009) Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosens Bioelectron 24(12):3510–3516

    Article  PubMed  CAS  Google Scholar 

  34. Hsu TH et al (2012) The migration speed of cancer cells influenced by macrophages and myofibroblasts co-cultured in a microfluidic chip. Integr Biol (Camb) 4:177–182

    Article  CAS  Google Scholar 

  35. Zervantonakis IK et al (2011) Microfluidic devices for studying heterotypic cell–cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics 5(1):13406

    Article  PubMed  CAS  Google Scholar 

  36. Pathak A, Kumar S (2011) Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr Biol (Camb) 3(4):267–278

    Article  CAS  Google Scholar 

  37. Kim HD, Peyton SR (2012) Bio-inspired materials for parsing matrix physicochemical control of cell migration: a review. Integr Biol (Camb) 4(1):37–52

    Article  CAS  Google Scholar 

  38. Levental KR et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906

    Article  PubMed  CAS  Google Scholar 

  39. Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185(1):11–19

    Article  PubMed  CAS  Google Scholar 

  40. Lo CM et al (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Article  PubMed  CAS  Google Scholar 

  41. Kaji H et al (2011) Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions. Biochim Biophys Acta 1810(3):239–250

    Article  PubMed  CAS  Google Scholar 

  42. Polio SR et al (2012) A micropatterning and image processing approach to simplify measurement of cellular traction forces. Acta Biomater 8(1):82–88

    Article  PubMed  CAS  Google Scholar 

  43. Doyle AD et al (2009) One-dimensional topography underlies three-dimensional fibrillar cell migration. J Cell Biol 184(4):481–490

    Article  PubMed  CAS  Google Scholar 

  44. Jiang X et al (2005) Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci USA 102(4):975–978

    Article  PubMed  CAS  Google Scholar 

  45. Irimia D, Toner M (2009) Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr Biol (Camb) 1(8–9):506–512

    Article  CAS  Google Scholar 

  46. Kaji H et al (2009) Controlled cocultures of HeLa cells and human umbilical vein endothelial cells on detachable substrates. Lab Chip 9(3):427–432

    Article  PubMed  CAS  Google Scholar 

  47. Liu L et al (2011) Probing the invasiveness of prostate cancer cells in a 3D microfabricated landscape. Proc Natl Acad Sci USA 108(17):6853–6856

    Article  PubMed  CAS  Google Scholar 

  48. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3(12):921–930

    Article  PubMed  CAS  Google Scholar 

  49. Pittet MJ, Weissleder R (2011) Intravital imaging. Cell 147(5):983–991

    Article  PubMed  CAS  Google Scholar 

  50. Alexander S et al (2008) Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130(6):1147–1154

    Article  PubMed  CAS  Google Scholar 

  51. Stoletov K et al (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci USA 104(44):17406–17411

    Article  PubMed  CAS  Google Scholar 

  52. Zijlstra A et al (2008) The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13(3):221–234

    Article  PubMed  CAS  Google Scholar 

  53. Wyckoff J et al (2011) High-resolution multiphoton imaging of tumors in vivo. Cold Spring Harb Protoc 2011(10):1167–1184

    PubMed  Google Scholar 

  54. Moshitch-Moshkovitz S et al (2006) In vivo direct molecular imaging of early tumorigenesis and malignant progression induced by transgenic expression of GFP-Met. Neoplasia 8(5):353–363

    Article  PubMed  CAS  Google Scholar 

  55. Wyckoff J et al (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64(19):7022–7029

    Article  PubMed  CAS  Google Scholar 

  56. Byrne HM (2010) Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer 10(3):221–230

    Article  PubMed  CAS  Google Scholar 

  57. Baxter LT, Jain RK (1989) Transport of fluid and macromolecules in tumors. 1. Role of interstitial pressure and convection. Microvasc Res 37(1):77–104

    Article  PubMed  CAS  Google Scholar 

  58. Chauhan VP et al (2011) Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng 2(1):281–298

    Article  PubMed  CAS  Google Scholar 

  59. Jeon J, Quaranta V, Cummings PT (2010) An off-lattice hybrid discrete-continuum model of tumor growth and invasion. Biophys J 98(1):37–47

    Article  PubMed  CAS  Google Scholar 

  60. Zaman MH et al (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci USA 103(29):10889–10894

    Article  PubMed  CAS  Google Scholar 

  61. Zaman MH et al (2005) Computational model for cell migration in three-dimensional matrices. Biophys J 89(2):1389–1397

    Article  PubMed  CAS  Google Scholar 

  62. Anderson AR et al (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5):905–915

    Article  PubMed  CAS  Google Scholar 

  63. Sandersius SA, Weijer CJ, Newman TJ (2011) Emergent cell and tissue dynamics from subcellular modeling of active biomechanical processes. Phys Biol 8(4):045007

    Article  PubMed  CAS  Google Scholar 

  64. Schoeberl B et al (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20(4):370–375

    Article  PubMed  Google Scholar 

  65. Painter KJ (2009) Modelling cell migration strategies in the extracellular matrix. J Math Biol 58(4–5):511–543

    Article  PubMed  CAS  Google Scholar 

  66. Ramis-Conde I et al (2009) Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys Biol 6(1):016008

    Article  PubMed  Google Scholar 

  67. Irimia D et al (2009) Adaptive-control model for neutrophil orientation in the direction of chemical gradients. Biophys J 96(10):3897–3916

    Article  PubMed  CAS  Google Scholar 

  68. Thompson EW et al (1994) Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metastasis 12(3):181–194

    Article  PubMed  CAS  Google Scholar 

  69. Sommers CL et al (1992) Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 52(19):5190–5197

    PubMed  CAS  Google Scholar 

  70. Nieman MT et al (1999) N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 147(3):631–644

    Article  PubMed  CAS  Google Scholar 

  71. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  PubMed  CAS  Google Scholar 

  72. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

    Article  PubMed  CAS  Google Scholar 

  73. Ridley AJ et al (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709

    Article  PubMed  CAS  Google Scholar 

  74. Weaver AM (2006) Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis 23(2):97–105

    Article  PubMed  Google Scholar 

  75. Tranquillo RT, Lauffenburger DA, Zigmond SH (1988) A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J Cell Biol 106(2):303–309

    Article  PubMed  CAS  Google Scholar 

  76. Stoker M, Gherardi E (1991) Regulation of cell movement: the motogenic cytokines. Biochim Biophys Acta 1072(1):81–102

    PubMed  CAS  Google Scholar 

  77. Petrie RJ, Doyle AD, Yamada KM (2009) Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 10(8):538–549

    Article  PubMed  CAS  Google Scholar 

  78. Dickinson RB, Tranquillo RT (1993) Optimal estimation of cell-movement indexes from the statistical-analysis of cell tracking data. AIChE J 39(12):1995–2010

    Article  Google Scholar 

  79. Ware MF, Wells A, Lauffenburger DA (1998) Epidermal growth factor alters fibroblast migration speed and directional persistence reciprocally and in a matrix-dependent manner. J Cell Sci 111(Pt 16):2423–2432

    PubMed  CAS  Google Scholar 

  80. Haessler U et al (2012) Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integr Biol (Camb) 4(4):401–409

    Article  CAS  Google Scholar 

  81. Bissell MJ et al (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70(9–10):537–546

    Article  PubMed  Google Scholar 

  82. Boyd NF et al (1998) Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7(12):1133–1144

    PubMed  CAS  Google Scholar 

  83. Provenzano PP et al (2009) Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28(49):4326–4343

    Article  PubMed  CAS  Google Scholar 

  84. van der Slot AJ et al (2005) Elevated formation of pyridinoline cross-links by profibrotic cytokines is associated with enhanced lysyl hydroxylase 2b levels. Biochim Biophys Acta 1741(1–2):95–102

    PubMed  Google Scholar 

  85. Akiri G et al (2003) Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Res 63(7):1657–1666

    PubMed  CAS  Google Scholar 

  86. Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9(4):325–342

    Article  PubMed  Google Scholar 

  87. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  PubMed  CAS  Google Scholar 

  88. Alenghat FJ, DE Ingber (2002) Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002(119):pe6

    Article  PubMed  Google Scholar 

  89. Jalali S et al (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 98(3):1042–1046

    Article  PubMed  CAS  Google Scholar 

  90. Kanchanawong P et al (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468(7323):580–584

    Article  PubMed  CAS  Google Scholar 

  91. Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls alpha5beta1 function. Science 323(5914):642–644

    Article  PubMed  CAS  Google Scholar 

  92. Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705

    Article  PubMed  CAS  Google Scholar 

  93. Balaban NQ et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472

    Article  PubMed  CAS  Google Scholar 

  94. Burke PA et al (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62(15):4263–4272

    PubMed  CAS  Google Scholar 

  95. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  PubMed  CAS  Google Scholar 

  96. Baker EL, Bonnecaze RT, Zaman MH (2009) Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys J 97(4):1013–1021

    Article  PubMed  CAS  Google Scholar 

  97. Baker EL et al (2010) Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys J 99(7):2048–2057

    Article  PubMed  CAS  Google Scholar 

  98. Moissoglu K, Schwartz MA (2006) Integrin signalling in directed cell migration. Biol Cell 98(9):547–555

    Article  PubMed  CAS  Google Scholar 

  99. Moschos SJ et al (2007) Integrins and cancer. Oncology (Williston Park) 21(9 Suppl 3):13–20

    Google Scholar 

  100. Alexander NR et al (2008) Extracellular matrix rigidity promotes invadopodia activity. Curr Biol 18(17):1295–1299

    Article  PubMed  CAS  Google Scholar 

  101. Ulrich TA, de Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69(10):4167–4174

    Article  PubMed  CAS  Google Scholar 

  102. Gupta GP et al (2005) Identifying site-specific metastasis genes and functions. Cold Spring Harb Symp Quant Biol 70:149–158

    Article  PubMed  CAS  Google Scholar 

  103. Kostic A, Lynch CD, Sheetz MP (2009) Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS One 4(7):e6361

    Article  PubMed  CAS  Google Scholar 

  104. Hadjipanayi E, Mudera V, Brown RA (2009) Guiding cell migration in 3D: a collagen matrix with graded directional stiffness. Cell Motil Cytoskelet 66(3):121–128

    Article  CAS  Google Scholar 

  105. Ehrbar M et al (2011) Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys J 100(2):284–293

    Article  PubMed  CAS  Google Scholar 

  106. Gray DS, Tien J, Chen CS (2003) Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J Biomed Mater Res A 66(3):605–614

    Article  PubMed  CAS  Google Scholar 

  107. Even-Ram S, Yamada KM (2005) Cell migration in 3D matrix. Curr Opin Cell Biol 17(5):524–532

    Article  PubMed  CAS  Google Scholar 

  108. Ulrich TA et al (2010) Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. Biomaterials 31(7):1875–1884

    Article  PubMed  CAS  Google Scholar 

  109. Sasaki N, Odajima S (1996) Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. J Biomech 29(5):655–658

    Article  PubMed  CAS  Google Scholar 

  110. Yang YL, Motte S, Kaufman LJ (2010) Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31(21):5678–5688

    Article  PubMed  CAS  Google Scholar 

  111. Wolf K et al (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9(8):893–904

    Article  PubMed  CAS  Google Scholar 

  112. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174

    Article  PubMed  CAS  Google Scholar 

  113. Friedl P, Wolf K (2008) Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 68(18):7247–7249

    Article  PubMed  CAS  Google Scholar 

  114. Sabeh F et al (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167(4):769–781

    Article  PubMed  CAS  Google Scholar 

  115. Mu D et al (2002) The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 157(3):493–507

    Article  PubMed  CAS  Google Scholar 

  116. Lee S et al (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169(4):681–691

    Article  PubMed  CAS  Google Scholar 

  117. Fleury ME, Boardman KC, Swartz MA (2006) Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys J 91(1):113–121

    Article  PubMed  CAS  Google Scholar 

  118. Tomasek JJ et al (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    Article  PubMed  CAS  Google Scholar 

  119. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659

    Article  PubMed  CAS  Google Scholar 

  120. Sappino AP et al (1988) Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 41(5):707–712

    Article  PubMed  CAS  Google Scholar 

  121. De Wever O et al (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123(10):2229–2238

    Article  PubMed  CAS  Google Scholar 

  122. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  PubMed  CAS  Google Scholar 

  123. Sadlonova A et al (2009) Identification of molecular distinctions between normal breast-associated fibroblasts and breast cancer-associated fibroblasts. Cancer Microenviron 2(1):9–21

    Article  PubMed  CAS  Google Scholar 

  124. Beacham DA, Cukierman E (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15(5):329–341

    Article  PubMed  Google Scholar 

  125. Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76(1):69–125

    PubMed  CAS  Google Scholar 

  126. Dimanche-Boitrel MT et al (1994) In vivo and in vitro invasiveness of a rat colon-cancer cell line maintaining E-cadherin expression: an enhancing role of tumor-associated myofibroblasts. Int J Cancer 56(4):512–521

    Article  PubMed  CAS  Google Scholar 

  127. Huang D et al (1993) Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann Biomed Eng 21(3):289–305

    Article  PubMed  CAS  Google Scholar 

  128. Grinnell F, Ho CH (2002) Transforming growth factor beta stimulates fibroblast-collagen matrix contraction by different mechanisms in mechanically loaded and unloaded matrices. Exp Cell Res 273(2):248–255

    Article  PubMed  CAS  Google Scholar 

  129. Gaggioli C et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9(12):1392–1400

    Article  PubMed  CAS  Google Scholar 

  130. Stevenson MD et al (2010) Pericellular conditions regulate extent of cell-mediated compaction of collagen gels. Biophys J 99(1):19–28

    Article  PubMed  CAS  Google Scholar 

  131. Provenzano PP et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38

    Article  PubMed  CAS  Google Scholar 

  132. Wang W et al (2002) Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res 62(21):6278–6288

    PubMed  CAS  Google Scholar 

  133. Wyckoff JB et al (2006) ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 16(15):1515–1523

    Article  PubMed  CAS  Google Scholar 

  134. Provenzano PP et al (2008) Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys J 95(11):5374–5384

    Article  PubMed  CAS  Google Scholar 

  135. Dickinson RB, Guido S, Tranquillo RT (1994) Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann Biomed Eng 22(4):342–356

    Article  PubMed  CAS  Google Scholar 

  136. Ilina O et al (2011) Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Physical Biol 8:015010 8(2)

    Article  CAS  Google Scholar 

  137. Boucher Y, Jain RK (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 52(18):5110–5114

    PubMed  CAS  Google Scholar 

  138. Sarntinoranont M, Rooney F, Ferrari M (2003) Interstitial stress and fluid pressure within a growing tumor. Ann Biomed Eng 31(3):327–335

    Article  PubMed  Google Scholar 

  139. Helmlinger G et al (1997) Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol 15(8):778–783

    Article  PubMed  CAS  Google Scholar 

  140. Roose T et al (2003) Solid stress generated by spheroid growth estimated using a linear poroelasticity model☆. Microvasc Res 66(3):204–212

    Article  PubMed  Google Scholar 

  141. Cheng G et al (2009) Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS One 4(2):e4632

    Article  PubMed  CAS  Google Scholar 

  142. Padera TP et al (2004) Pathology: cancer cells compress intratumour vessels. Nature 427(6976):695

    Article  PubMed  CAS  Google Scholar 

  143. Khalil AA, Friedl P (2010) Determinants of leader cells in collective cell migration. Integr Biol (Camb) 2(11–12):568–574

    Article  Google Scholar 

  144. Tse JM et al (2012) Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci USA 109:911–916

    Article  PubMed  CAS  Google Scholar 

  145. Muller A et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  PubMed  CAS  Google Scholar 

  146. Ben-Baruch A (2006) The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev 25(3):357–371

    Article  PubMed  CAS  Google Scholar 

  147. Wang SJ et al (2004) Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp Cell Res 300(1):180–189

    Article  PubMed  CAS  Google Scholar 

  148. Scherber C et al (2012) Epithelial cell guidance by self-generated EGF gradients. Integr Biol (Camb) 4:259–269

    Article  Google Scholar 

  149. Raja WK et al (2010) A new chemotaxis device for cell migration studies. Integr Biol (Camb) 2(11–12):696–706

    Article  CAS  Google Scholar 

  150. Calvo F, Sahai E (2011) Cell communication networks in cancer invasion. Curr Opin Cell Biol 23:621–629

    Article  PubMed  CAS  Google Scholar 

  151. Li H, Fan X, Houghton J (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 101(4):805–815

    Article  PubMed  CAS  Google Scholar 

  152. Schor SL, Schor AM (2001) Phenotypic and genetic alterations in mammary stroma: implications for tumour progression. Breast Cancer Res 3(6):373–379

    Article  PubMed  CAS  Google Scholar 

  153. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    Article  PubMed  CAS  Google Scholar 

  154. Sung KE et al (2011) Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr Biol (Camb) 3(4):439–450

    Article  CAS  Google Scholar 

  155. Green CE et al (2009) Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One 4(8):e6713

    Article  PubMed  CAS  Google Scholar 

  156. De Wever O et al (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18(9):1016–1018

    PubMed  Google Scholar 

  157. Liu T, Lin B, Qin J (2010) Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Lab Chip 10(13):1671–1677

    Article  PubMed  CAS  Google Scholar 

  158. Franses JW et al (2011) Stromal endothelial cells directly influence cancer progression. Sci Transl Med 3(66):66ra5

    Article  PubMed  CAS  Google Scholar 

  159. Issa A et al (2009) Vascular endothelial growth factor-C and C–C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res 69(1):349–357

    Article  PubMed  CAS  Google Scholar 

  160. Walter-Yohrling J et al (2003) Identification of genes expressed in malignant cells that promote invasion. Cancer Res 63(24):8939–8947

    PubMed  CAS  Google Scholar 

  161. Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 9:229–256

    Article  PubMed  CAS  Google Scholar 

  162. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47(12):3039–3051

    PubMed  CAS  Google Scholar 

  163. Jain RK, Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal-antibodies and other macromolecules in tumors—significance of elevated interstitial pressure. Cancer Res 48(24):7022–7032

    PubMed  CAS  Google Scholar 

  164. Stohrer M et al (2000) Oncotic pressure in solid tumors is elevated. Cancer Res 60(15):4251–4255

    PubMed  CAS  Google Scholar 

  165. Curti BD et al (1993) Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: changes during treatment. Cancer Res 53(10 Suppl):2204–2207

    PubMed  CAS  Google Scholar 

  166. Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67(6):2729–2735

    Article  PubMed  CAS  Google Scholar 

  167. Chary SR, Jain RK (1989) Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc Natl Acad Sci USA 86(14):5385–5389

    Article  PubMed  CAS  Google Scholar 

  168. Dafni H et al (2002) Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res 62(22):6731–6739

    PubMed  CAS  Google Scholar 

  169. Shieh AC, Swartz MA (2011) Regulation of tumor invasion by interstitial fluid flow. Phys Biol 8(1):015012

    Article  PubMed  Google Scholar 

  170. Shields JD et al (2007) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11(6):526–538

    Article  PubMed  CAS  Google Scholar 

  171. Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118(Pt 20):4731–4739

    Article  PubMed  CAS  Google Scholar 

  172. Shi ZD et al (2009) Interstitial flow promotes vascular fibroblast, myofibroblast, and smooth muscle cell motility in 3-D collagen I via upregulation of MMP-1. Am J Physiol Heart Circ Physiol 297(4):H1225–H1234

    Article  PubMed  CAS  Google Scholar 

  173. Shieh AC et al (2011) Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res 71(3):790–800

    Article  PubMed  CAS  Google Scholar 

  174. Pedersen JA, Lichter S, Swartz MA (2010) Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces. J Biomech 43(5):900–905

    Article  PubMed  Google Scholar 

  175. Pedersen JA, Boschetti F, Swartz MA (2007) Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. J Biomech 40(7):1484–1492

    Article  PubMed  Google Scholar 

  176. Shi ZD, Wang H, Tarbell JM (2011) Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen. PLoS One 6(1):e15956

    Article  PubMed  CAS  Google Scholar 

  177. Beauvais DM, Rapraeger AC (2003) Syndecan-1-mediated cell spreading requires signaling by alpha(v)beta(3) integrins in human breast carcinoma cells. Exp Cell Res 286(2):219–232

    Article  PubMed  CAS  Google Scholar 

  178. Qazi H, Shi ZD, Tarbell JM (2011) Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLoS One 6(5):e20348

    Article  PubMed  CAS  Google Scholar 

  179. McLean GW et al (2005) The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat Rev Cancer 5(7):505–515

    Article  PubMed  CAS  Google Scholar 

  180. Shi Q et al (2007) A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth. Mol Carcinog 46(6):488–496

    Article  PubMed  CAS  Google Scholar 

  181. Shi Q, Boettiger D (2003) A novel mode for integrin-mediated signaling: tethering is required for phosphorylation of FAK Y397. Mol Biol Cell 14(10):4306–4315

    Article  PubMed  CAS  Google Scholar 

  182. Schlaepfer DD et al (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372(6508):786–791

    PubMed  CAS  Google Scholar 

  183. Calalb MB, Polte TR, Hanks SK (1995) Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15(2):954–963

    PubMed  CAS  Google Scholar 

  184. Sieg DJ et al (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2(5):249–256

    Article  PubMed  CAS  Google Scholar 

  185. Chan KT, Cortesio CL, Huttenlocher A (2009) FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion. J Cell Biol 185(2):357–370

    Article  PubMed  CAS  Google Scholar 

  186. Hsia DA et al (2003) Differential regulation of cell motility and invasion by FAK. J Cell Biol 160(5):753–767

    Article  PubMed  CAS  Google Scholar 

  187. Kim LC, Song LX, Haura EB (2009) Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6(10):587–595

    Article  PubMed  CAS  Google Scholar 

  188. Frame MC (2002) Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602(2):114–130

    PubMed  CAS  Google Scholar 

  189. Giancotti FG, Tarone G (2003) Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol 19:173–206

    Article  PubMed  CAS  Google Scholar 

  190. Cabodi S et al (2004) Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem Soc Trans 32(Pt3):438–442

    Article  PubMed  CAS  Google Scholar 

  191. Ivaska J, Heino J (2011) Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu Rev Cell Dev Biol 27:291–320

    Article  PubMed  CAS  Google Scholar 

  192. Wang F et al (1998) Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci USA 95(25):14821–14826

    Article  PubMed  CAS  Google Scholar 

  193. Trusolino L, Bertotti A, Comoglio PM (2001) A signaling adapter function for alpha 6 beta 4 integrin in the control of HGF-dependent invasive growth. Cell 107(5):643–654

    Article  PubMed  CAS  Google Scholar 

  194. Kim JH, Asthagiri AR (2011) Matrix stiffening sensitizes epithelial cells to EGF and enables the loss of contact inhibition of proliferation. J Cell Sci 124(8):1280–1287

    Article  PubMed  CAS  Google Scholar 

  195. Engl T et al (2006) CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia 8(4):290–301

    Article  PubMed  CAS  Google Scholar 

  196. Mitra AK et al (2011) Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene 30(13):1566–1576

    Article  PubMed  CAS  Google Scholar 

  197. Weber GF, Bjerke MA, DeSimone DW (2011) Integrins and cadherins join forces to form adhesive networks. J Cell Sci 124(Pt 8):1183–1193

    Article  PubMed  CAS  Google Scholar 

  198. Avizienyte E et al (2002) Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol 4(8):632–638

    PubMed  CAS  Google Scholar 

  199. Liu X, Feng R (2010) Inhibition of epithelial to mesenchymal transition in metastatic breast carcinoma cells by c-Src suppression. Acta Biochim Biophys Sin (Shanghai) 42(7):496–501

    Article  CAS  Google Scholar 

  200. Martinez-Rico C et al (2010) Integrins stimulate E-cadherin-mediated intercellular adhesion by regulating Src-kinase activation and actomyosin contractility. J Cell Sci 123(5):712–722

    Article  PubMed  CAS  Google Scholar 

  201. Tseng Q et al (2012) Spatial organization of the extracellular matrix regulates cell–cell junction positioning. Proc Natl Acad Sci USA 109(5):1506–1511

    Article  PubMed  CAS  Google Scholar 

  202. Borghi N et al (2010) Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc Natl Acad Sci USA 107(30):13324–13329

    Article  PubMed  CAS  Google Scholar 

  203. Abercrombie M, Heaysman JEM (1953) Observations on the social behaviour of cells in tissue culture. 1. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp Cell Res 5(1):111–131

    Article  PubMed  CAS  Google Scholar 

  204. Astin JW et al (2010) Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat Cell Biol 12(12):1194–1204

    Article  PubMed  CAS  Google Scholar 

  205. Provenzano PP et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3):418–429

    Article  PubMed  CAS  Google Scholar 

  206. Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA 108(37):15342–15347

    Article  PubMed  CAS  Google Scholar 

  207. Netti PA et al (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60(9):2497–2503

    PubMed  CAS  Google Scholar 

  208. Gilbert PM et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081

    Article  PubMed  CAS  Google Scholar 

  209. Cross SE et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783

    Article  PubMed  CAS  Google Scholar 

  210. Kalluri R (2003) Angiogenesis: basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3(6):422–433

    Article  PubMed  CAS  Google Scholar 

  211. Pluen A (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci USA 98(8):4628–4633

    Article  PubMed  CAS  Google Scholar 

  212. McKee TD (2006) Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res 66(5):2509–2513

    Article  PubMed  CAS  Google Scholar 

  213. Castello-Cros R et al (2009) Staged stromal extracellular 3D matrices differentially regulate breast cancer cell responses through PI3K and beta I-integrins. BMC Cancer 9:94

    Article  PubMed  CAS  Google Scholar 

  214. Montes GS (1996) Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int 20(1):15–27

    Article  PubMed  CAS  Google Scholar 

  215. Yamamura N et al (2007) Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng 13(7):1443–1453

    Article  PubMed  CAS  Google Scholar 

  216. Thorne RG, Hrabetova S, Nicholson C (2004) Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J Neurophysiol 92(6):3471–3481

    Article  PubMed  CAS  Google Scholar 

  217. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224

    Article  PubMed  CAS  Google Scholar 

  218. Tyska MJ et al (1999) Two heads of myosin are better than one for generating force and motion. Proc Natl Acad Sci USA 96(8):4402–4407

    Article  PubMed  CAS  Google Scholar 

  219. Guilford WH et al (1997) Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J 72(3):1006–1021

    Article  PubMed  CAS  Google Scholar 

  220. du Roure O et al (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102(7):2390–2395

    Article  PubMed  CAS  Google Scholar 

  221. Kraning-Rush CM et al (2011) The role of the cytoskeleton in cellular force generation in 2D and 3D environments. Phys Biol 8(1):015009

    Article  PubMed  CAS  Google Scholar 

  222. Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316

    Article  PubMed  CAS  Google Scholar 

  223. Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure-gradients in tissue-isolated and subcutaneous tumors—implications for therapy. Cancer Res 50(15):4478–4484

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank members of the Kamm lab for critically reading the manuscript. Funding from The National Cancer Institute (R21CA140096), The Charles Stark Draper Laboratory University Research and Development Program (N.DL-H-550151) is greatly appreciated. W.J.P. was supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Kamm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polacheck, W.J., Zervantonakis, I.K. & Kamm, R.D. Tumor cell migration in complex microenvironments. Cell. Mol. Life Sci. 70, 1335–1356 (2013). https://doi.org/10.1007/s00018-012-1115-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1115-1

Keywords

Navigation