Skip to main content

Advertisement

Log in

Development and pathologies of the arterial wall

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Arteries consist of an inner single layer of endothelial cells surrounded by layers of smooth muscle and an outer adventitia. The majority of vascular developmental studies focus on the construction of endothelial networks through the process of angiogenesis. Although many devastating vascular diseases involve abnormalities in components of the smooth muscle and adventitia (i.e., the vascular wall), the morphogenesis of these layers has received relatively less attention. Here, we briefly review key elements underlying endothelial layer formation and then focus on vascular wall development, specifically on smooth muscle cell origins and differentiation, patterning of the vascular wall, and the role of extracellular matrix and adventitial progenitor cells. Finally, we discuss select human diseases characterized by marked vascular wall abnormalities. We propose that continuing to apply approaches from developmental biology to the study of vascular disease will stimulate important advancements in elucidating disease mechanism and devising novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAA:

Abdominal aortic aneurysm

ADCL:

Autosomal dominant cutis laxa

ALK1:

Activin receptor-like kinase 1

BMP:

Bone morphogenetic protein

CADASIL:

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

DIT:

Diffuse intimal thickening

E:

Embryonic day

EC:

Endothelial cell

ECM:

Extracellular matrix

EMT:

Epithelial-to-mesenchymal transition

FGF:

Fibroblast growth factor

hESC:

Human embryonic stem cell

IL:

Interleukin

IPAH:

Idiopathic pulmonary arterial hypertension

iPSC:

Induced pluripotent stem cell

ISV:

Intersegmental vessel

JAG1:

Jagged 1

LDS:

Loeys–Dietz syndrome

LPM:

Lateral plate mesoderm

LTBP:

Latent TGFβ binding protein

MFS:

Marfan syndrome

MI:

Myocardial infarction

MMPs:

Matrix metalloproteases

P:

Postnatal day

PA:

Pulmonary artery

PAH:

Pulmonary arterial hypertension

PAP:

Pulmonary arterial pressure

PDGF:

Platelet-derived growth factor

PH:

Pulmonary hypertension

PSM:

Presomitic mesoderm

RV:

Right ventricle

S1PR1:

Sphingosine 1 phosphate receptor 1

SRF:

Serum response factor

SMA:

Alpha smooth muscle actin

SMC:

Smooth muscle cell

SMMHC:

Smooth muscle myosin heavy chain

STAT:

Signal transducer and activator of transcription

SVAS:

Supravalvular aortic stenosis

TAA:

Thoracic aortic aneurysm

TGF:

Transforming growth factor

TIMPs:

Tissue inhibitors of metalloproteases

VEGF:

Vascular endothelial growth factor

VSMC:

Vascular smooth muscle cell

WS:

Williams syndrome

Wt1:

Wilms tumor 1

YAC:

Yeast artificial chromosome

β-gal:

β-Galactosidase

References

  1. Horowitz A, Simons M (2008) Branching morphogenesis. Circ Res 103:784–795

    CAS  PubMed  Google Scholar 

  2. Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL (2001) Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 276:4128–4133

    CAS  PubMed  Google Scholar 

  3. Lubarsky B, Krasnow MA (2003) Tube morphogenesis: making and shaping biological tubes. Cell 112:19–28

    CAS  PubMed  Google Scholar 

  4. Weinstein BM (2002) Plumbing the mysteries of vascular development using the zebrafish. Semin Cell Dev Biol 13:515–522

    PubMed  Google Scholar 

  5. De Ruiter C (2010) Fate mapping techniques. Embryo Project Encyclopedia. ISSN:1940-5030, http://embryo.asu.edu/view/embryo:124893

  6. Zhou Q, Melton DA (2008) Extreme makeover: converting one cell into another. Cell Stem Cell 3:382–388

    CAS  PubMed  Google Scholar 

  7. Arciniegas E, Frid MG, Douglas IS, Stenmark KR (2007) Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293:L1–L8

    CAS  PubMed  Google Scholar 

  8. De Ruiter MC, Poelmann RE, Van Munsteren JC, Mironov V, Markwald RR, Gittenberger-de Groot AC (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80:444–451

    Google Scholar 

  9. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96

    CAS  PubMed  Google Scholar 

  10. Zhu P, Huang L, Ge X, Yan F, Wu R, Ao Q (2006) Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. Int J Exp Pathol 87:463–474

    CAS  PubMed Central  PubMed  Google Scholar 

  11. van Meeteren LA, ten Dijke P (2012) Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res 347:177–186

    PubMed Central  PubMed  Google Scholar 

  12. Chen PY, Qin L, Barnes C, Charisse K, Yi T, Zhang X, Ali R, Medina PP, Yu J, Slack FJ, Anderson DG, Kotelianski V, Wang F, Tellides G, Simons M (2012) FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep 2:1684–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Kinder SJ, Tsang TE, Quinlan GA, Hadjantonakis AK, Nagy A, Tam PP (1999) The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126:4691–4701

    CAS  PubMed  Google Scholar 

  14. Lawson KA, Meneses JJ, Pedersen RA (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113:891–911

    CAS  PubMed  Google Scholar 

  15. Parameswaran M, Tam PP (1995) Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet 17:16–28

    CAS  PubMed  Google Scholar 

  16. Kinder SJ, Loebel DA, Tam PP (2001) Allocation and early differentiation of cardiovascular progenitors in the mouse embryo. Trends Cardiovasc Med 11:177–184

    CAS  PubMed  Google Scholar 

  17. Pouget C, Gautier R, Teillet MA, Jaffredo T (2006) Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development 133:1013–1022

    CAS  PubMed  Google Scholar 

  18. Wasteson P, Johansson BR, Jukkola T, Breuer S, Akyurek LM, Partanen J, Lindahl P (2008) Developmental origin of smooth muscle cells in the descending aorta in mice. Development 135:1823–1832

    CAS  PubMed  Google Scholar 

  19. Esner M, Meilhac SM, Relaix F, Nicolas JF, Cossu G, Buckingham ME (2006) Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development 133:737–749

    CAS  PubMed  Google Scholar 

  20. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    CAS  PubMed  Google Scholar 

  21. Sabin FR (2002) Preliminary note on the differentiation of angioblasts and the method by which they produce blood-vessels, blood-plasma and red blood-cells as seen in the living chick. 1917. J Hematother Stem Cell Res 11:5–7

    PubMed  Google Scholar 

  22. Hirschi KK (2012) Hemogenic endothelium during development and beyond. Blood 119:4823–4827

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4:403–414

    CAS  PubMed  Google Scholar 

  25. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    CAS  PubMed  Google Scholar 

  26. Smithers L, Haddon C, Jiang YJ, Lewis J (2000) Sequence and embryonic expression of deltaC in the zebrafish. Mech Dev 90:119–123

    CAS  PubMed  Google Scholar 

  27. Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414:216–220

    CAS  PubMed  Google Scholar 

  28. Zhong TP, Rosenberg M, Mohideen MA, Weinstein B, Fishman MC (2000) gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287:1820–1824

    CAS  PubMed  Google Scholar 

  29. Noden DM (1989) Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 140:1097–1103

    CAS  PubMed  Google Scholar 

  30. Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683

    CAS  PubMed  Google Scholar 

  31. Lawson ND, Vogel AM, Weinstein BM (2002) sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136

    CAS  PubMed  Google Scholar 

  32. Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A (2001) Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128:3359–3370

    CAS  PubMed  Google Scholar 

  33. Red-Horse K, Ueno H, Weissman IL, Krasnow MA (2010) Coronary arteries form by developmental reprogramming of venous cells. Nature 464:549–553

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Wang Y, Kaiser MS, Larson JD, Nasevicius A, Clark KJ, Wadman SA, Roberg-Perez SE, Ekker SC, Hackett PB, McGrail M, Essner JJ (2010) Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137:3119–3128

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Strilic B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S, Dejana E, Ferrara N, Lammert E (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17:505–515

    CAS  PubMed  Google Scholar 

  36. Zovein AC, Luque A, Turlo KA, Hofmann JJ, Yee KM, Becker MS, Fassler R, Mellman I, Lane TF, Iruela-Arispe ML (2010) Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell 18:39–51

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Bayless KJ, Davis GE (2002) The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci 115:1123–1136

    CAS  PubMed  Google Scholar 

  38. Davis GE, Bayless KJ (2003) An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation 10:27–44

    CAS  PubMed  Google Scholar 

  39. Folkman J, Haudenschild C (1980) Angiogenesis by capillary endothelial cells in culture. Trans Ophthalmol Soc UK 100:346–353

    CAS  PubMed  Google Scholar 

  40. Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456

    CAS  PubMed  Google Scholar 

  41. Blum Y, Belting HG, Ellertsdottir E, Herwig L, Luders F, Affolter M (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316:312–322

    CAS  PubMed  Google Scholar 

  42. Blanco R, Gerhardt H (2013) VEGF and notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3:a006569

    PubMed  Google Scholar 

  43. Claxton S, Fruttiger M (2004) Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr Patterns 5:123–127

    CAS  PubMed  Google Scholar 

  44. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    PubMed  Google Scholar 

  46. Herbert SP, Cheung JY, Stainier DY (2012) Determination of endothelial stalk versus tip cell potential during angiogenesis by H2.0-like homeobox-1. Curr Biol 22:1789–1794

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Gaengel K, Niaudet C, Hagikura K, Lavina B, Muhl L, Hofmann JJ, Ebarasi L, Nystrom S, Rymo S, Chen LL, Pang MF, Jin Y, Raschperger E, Roswall P, Schulte D, Benedito R, Larsson J, Hellstrom M, Fuxe J, Uhlen P, Adams R, Jakobsson L, Majumdar A, Vestweber D, Uv A, Betsholtz C (2012) The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 23:587–599

    CAS  PubMed  Google Scholar 

  48. Shoham AB, Malkinson G, Krief S, Shwartz Y, Ely Y, Ferrara N, Yaniv K, Zelzer E (2012) S1P1 inhibits sprouting angiogenesis during vascular development. Development 139:3859–3869

    PubMed  Google Scholar 

  49. Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, Simons M, Eichmann A (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22:489–500

    CAS  PubMed  Google Scholar 

  50. Adams RH, Eichmann A (2010) Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2:a001875

    PubMed Central  PubMed  Google Scholar 

  51. Ghabrial A, Luschnig S, Metzstein MM, Krasnow MA (2003) Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol 19:623–647

    CAS  PubMed  Google Scholar 

  52. Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453:745–750

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Mason JM, Morrison DJ, Basson MA, Licht JD (2006) Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 16:45–54

    CAS  PubMed  Google Scholar 

  54. Murakami M, Simons M (2008) Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol 15:215–220

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Taniguchi K, Sasaki K, Watari K, Yasukawa H, Imaizumi T, Ayada T, Okamoto F, Ishizaki T, Kato R, Kohno R, Kimura H, Sato Y, Ono M, Yonemitsu Y, Yoshimura A (2009) Suppression of Sproutys has a therapeutic effect for a mouse model of ischemia by enhancing angiogenesis. PLoS ONE 4:e5467

    PubMed Central  PubMed  Google Scholar 

  56. Lee S, Bui Nguyen TM, Kovalenko D, Adhikari N, Grindle S, Polster SP, Friesel R, Ramakrishnan S, Hall JL (2010) Sprouty1 inhibits angiogenesis in association with up-regulation of p21 and p27. Mol Cell Biochem 338:255–261

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W Jr, Richardson M, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD et al (1992) A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 85:391–405

    CAS  PubMed  Google Scholar 

  58. Nakashima Y, Wight TN, Sueishi K (2008) Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res 79:14–23

    CAS  PubMed  Google Scholar 

  59. Wilens SL (1951) The nature of diffuse intimal thickening of arteries. Am J Pathol 27:825–839

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Fukuda D, Aikawa M (2010) Intimal smooth muscle cells: the context-dependent origin. Circulation 122:2005–2008

    PubMed  Google Scholar 

  61. Tanaka K, Sata M, Hirata Y, Nagai R (2003) Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circ Res 93:783–790

    CAS  PubMed  Google Scholar 

  62. Andreeva ER, Pugach IM, Orekhov AN (1997) Subendothelial smooth muscle cells of human aorta express macrophage antigen in situ and in vitro. Atherosclerosis 135:19–27

    CAS  PubMed  Google Scholar 

  63. Orlandi A, Bennett M (2010) Progenitor cell-derived smooth muscle cells in vascular disease. Biochem Pharmacol 79:1706–1713

    CAS  PubMed  Google Scholar 

  64. Arciniegas E, Ponce L, Hartt Y, Graterol A, Carlini RG (2000) Intimal thickening involves transdifferentiation of embryonic endothelial cells. Anat Rec 258:47–57

    CAS  PubMed  Google Scholar 

  65. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    CAS  PubMed  Google Scholar 

  66. Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27:1248–1258

    CAS  PubMed  Google Scholar 

  67. Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S (2012) Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol 30:165–173

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Topouzis S, Majesky MW (1996) Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta. Dev Biol 178:430–445

    CAS  Google Scholar 

  69. Majesky MW (2004) Development of coronary vessels. Curr Top Dev Biol 62:225–259

    CAS  PubMed  Google Scholar 

  70. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Wilm B, Ipenberg A, Hastie ND, Burch JB, Bader DM (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132:5317–5328

    CAS  PubMed  Google Scholar 

  72. Que J, Wilm B, Hasegawa H, Wang F, Bader D, Hogan BL (2008) Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci USA 105:16626–16630

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Morimoto M, Liu Z, Cheng HT, Winters N, Bader D, Kopan R (2010) Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J Cell Sci 123:213–224

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Alva JA, Zovein AC, Monvoisin A, Murphy T, Salazar A, Harvey NL, Carmeliet P, Iruela-Arispe ML (2006) VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev Dyn 235:759–767

    CAS  PubMed  Google Scholar 

  75. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605

    CAS  PubMed  Google Scholar 

  76. Greif DM, Kumar M, Lighthouse JK, Hum J, An A, Ding L, Red-Horse K, Espinoza FH, Olson L, Offermanns S, Krasnow MA (2012) Radial construction of an arterial wall. Dev Cell 23:482–493

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Hungerford JE, Little CD (1999) Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res 36:2–27

    CAS  PubMed  Google Scholar 

  78. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    CAS  PubMed  Google Scholar 

  79. Li L, Miano JM, Cserjesi P, Olson EN (1996) SM22 alpha, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ Res 78:188–195

    CAS  PubMed  Google Scholar 

  80. Miano JM, Cserjesi P, Ligon KL, Periasamy M, Olson EN (1994) Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis. Circ Res 75:803–812

    CAS  PubMed  Google Scholar 

  81. van der Loop FT, Schaart G, Timmer ED, Ramaekers FC, van Eys GJ (1996) Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol 134:401–411

    PubMed  Google Scholar 

  82. Lee SH, Hungerford JE, Little CD, Iruela-Arispe ML (1997) Proliferation and differentiation of smooth muscle cell precursors occurs simultaneously during the development of the vessel wall. Dev Dyn 209:342–352

    CAS  PubMed  Google Scholar 

  83. Miano JM (2003) Serum response factor: toggling between disparate programs of gene expression. J Mol Cell Cardiol 35:577–593

    CAS  PubMed  Google Scholar 

  84. Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN (2004) Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428:185–189

    CAS  PubMed  Google Scholar 

  85. Wang Z, Wang DZ, Pipes GC, Olson EN (2003) Myocardin is a master regulator of smooth muscle gene expression. Proc Natl Acad Sci USA 100:7129–7134

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Li S, Wang DZ, Wang Z, Richardson JA, Olson EN (2003) The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proc Natl Acad Sci USA 100:9366–9370

    CAS  PubMed Central  PubMed  Google Scholar 

  87. McDonald OG, Owens GK (2007) Programming smooth muscle plasticity with chromatin dynamics. Circ Res 100:1428–1441

    CAS  PubMed  Google Scholar 

  88. Alexander MR, Owens GK (2012) Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol 74:13–40

    CAS  PubMed  Google Scholar 

  89. McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK (2006) Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest 116:36–48

    CAS  PubMed Central  PubMed  Google Scholar 

  90. el-Maghraby AA, Gardner DL (1972) Development of connective-tissue components of small arteries in the chick embryo. J Pathol 108:281–291

    CAS  PubMed  Google Scholar 

  91. Kadar A, Gardner DL, Bush V (1971) The relation between the fine structure of smooth-muscle cells and elastogenesis in the chick-embryo aorta. J Pathol 104:253–260

    CAS  PubMed  Google Scholar 

  92. de Ruiter MC, Poelmann RE, van Iperen L, Gittenberger-de Groot AC (1990) The early development of the tunica media in the vascular system of rat embryos. Anat Embryol (Berl) 181:341–349

    Google Scholar 

  93. Hungerford JE, Owens GK, Argraves WS, Little CD (1996) Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Dev Biol 178:375–392

    CAS  PubMed  Google Scholar 

  94. Nakamura H (1988) Electron microscopic study of the prenatal development of the thoracic aorta in the rat. Am J Anat 181:406–418

    CAS  PubMed  Google Scholar 

  95. Takahashi Y, Imanaka T, Takano T (1996) Spatial and temporal pattern of smooth muscle cell differentiation during development of the vascular system in the mouse embryo. Anat Embryol (Berl) 194:515–526

    CAS  Google Scholar 

  96. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72

    Google Scholar 

  97. Reilly KM, Melton DA (1996) Short-range signaling by candidate morphogens of the TGF beta family and evidence for a relay mechanism of induction. Cell 86:743–754

    CAS  PubMed  Google Scholar 

  98. Hoglund VJ, Majesky MW (2012) Patterning the artery wall by lateral induction of notch signaling. Circulation 125:212–215

    PubMed Central  PubMed  Google Scholar 

  99. Manderfield LJ, High FA, Engleka KA, Liu F, Li L, Rentschler S, Epstein JA (2012) Notch activation of Jagged1 contributes to the assembly of the arterial wall. Circulation 125:314–323

    PubMed Central  PubMed  Google Scholar 

  100. Feng X, Krebs LT, Gridley T (2010) Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion. Development 137:4191–4199

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638

    CAS  PubMed  Google Scholar 

  102. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    CAS  PubMed  Google Scholar 

  103. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    CAS  PubMed  Google Scholar 

  104. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887

    CAS  PubMed  Google Scholar 

  105. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    CAS  PubMed  Google Scholar 

  106. Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8:1888–1896

    CAS  PubMed  Google Scholar 

  107. Olson LE, Soriano P (2011) PDGFRbeta signaling regulates mural cell plasticity and inhibits fat development. Dev Cell 20:815–826

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Gridley T (2007) Notch signaling in vascular development and physiology. Development 134:2709–2718

    CAS  PubMed  Google Scholar 

  110. High FA, Lu MM, Pear WS, Loomes KM, Kaestner KH, Epstein JA (2008) Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proc Natl Acad Sci USA 105:1955–1959

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Wang T, Baron M, Trump D (2008) An overview of Notch3 function in vascular smooth muscle cells. Prog Biophys Mol Biol 96:499–509

    CAS  PubMed  Google Scholar 

  112. Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z, Tournier-Lasserve E, Gridley T, Joutel A (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18:2730–2735

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Joutel A (2011) Pathogenesis of CADASIL: transgenic and knock-out mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. Bioessays 33:73–80

    CAS  PubMed  Google Scholar 

  114. Kelleher CM, McLean SE, Mecham RP (2004) Vascular extracellular matrix and aortic development. Curr Top Dev Biol 62:153–188

    CAS  PubMed  Google Scholar 

  115. McLean SE, Mecham BH, Kelleher CM, Mariani TJ, Mecham RP (2005) Extracellular matrix gene expression in the developing mouse aorta. Adv Dev Biol 15:81–128

    Google Scholar 

  116. Parks WC, Pierce RA, Lee KA, Mecham RP (1993) Elastin. Adv Mol Cell Biol 6:133–181

    Google Scholar 

  117. Davis MR, Summers KM (2012) Structure and function of the mammalian fibrillin gene family: implications for human connective tissue diseases. Mol Genet Metab 107:635–647

    CAS  PubMed  Google Scholar 

  118. Jondeau G, Michel JB, Boileau C (2011) The translational science of Marfan syndrome. Heart 97:1206–1214

    PubMed  Google Scholar 

  119. Majesky MW, Dong XR, Hoglund V, Daum G, Mahoney WM Jr (2012) The adventitia: a progenitor cell niche for the vessel wall. Cells Tissues Organs 195:73–81

    PubMed  Google Scholar 

  120. Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181

    CAS  PubMed  Google Scholar 

  121. Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergun S (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133:1543–1551

    CAS  PubMed  Google Scholar 

  122. Pasquinelli G, Tazzari PL, Vaselli C, Foroni L, Buzzi M, Storci G, Alviano F, Ricci F, Bonafe M, Orrico C, Bagnara GP, Stella A, Conte R (2007) Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells 25:1627–1634

    CAS  PubMed  Google Scholar 

  123. Hoshino A, Chiba H, Nagai K, Ishii G, Ochiai A (2008) Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochem Biophys Res Commun 368:305–310

    CAS  PubMed  Google Scholar 

  124. Campagnolo P, Cesselli D, Al Haj Zen A, Beltrami AP, Krankel N, Katare R, Angelini G, Emanueli C, Madeddu P (2010) Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121:1735–1745

    PubMed Central  PubMed  Google Scholar 

  125. Passman JN, Dong XR, Wu SP, Maguire CT, Hogan KA, Bautch VL, Majesky MW (2008) A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci USA 105:9349–9354

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8:552–565

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Wagenseil JE, Mecham RP (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89:957–989

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10:53–62

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Li DY, Faury G, Taylor DG, Davis EC, Boyle WA, Mecham RP, Stenzel P, Boak B, Keating MT (1998) Novel arterial pathology in mice and humans hemizygous for elastin. J Clin Invest 102:1783–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Wagenseil JE, Nerurkar NL, Knutsen RH, Okamoto RJ, Li DY, Mecham RP (2005) Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries. Am J Physiol Heart Circ Physiol 289:H1209–H1217

    CAS  PubMed  Google Scholar 

  134. Faury G, Pezet M, Knutsen RH, Boyle WA, Heximer SP, McLean SE, Minkes RK, Blumer KJ, Kovacs A, Kelly DP, Li DY, Starcher B, Mecham RP (2003) Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. J Clin Invest 112:1419–1428

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, Eichwald E, Keating MT (1998) Elastin is an essential determinant of arterial morphogenesis. Nature 393:276–280

    CAS  PubMed  Google Scholar 

  136. Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim KY, Li W, Amos PJ, Bozkulak EC, Iyer A, Zheng W, Zhao H, Martin KA, Kotton DN, Tellides G, Park IH, Yue L, Qyang Y (2012) Modeling supravalvular aortic stenosis syndrome using human induced pluripotent stem cells. Circulation 126:1695–1704

    PubMed Central  PubMed  Google Scholar 

  137. Pober BR (2010) Williams–Beuren syndrome. N Engl J Med 362:239–252

    CAS  PubMed  Google Scholar 

  138. Szabo Z, Crepeau MW, Mitchell AL, Stephan MJ, Puntel RA, Yin Loke K, Kirk RC, Urban Z (2006) Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. J Med Genet 43:255–258

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Sandberg LB, Soskel NT, Leslie JG (1981) Elastin structure, biosynthesis, and relation to disease states. N Engl J Med 304:566–579

    CAS  PubMed  Google Scholar 

  140. Karnik SK, Brooke BS, Bayes-Genis A, Sorensen L, Wythe JD, Schwartz RS, Keating MT, Li DY (2003) A critical role for elastin signaling in vascular morphogenesis and disease. Development 130:411–423

    CAS  PubMed  Google Scholar 

  141. Norman PE, Powell JT (2010) Site specificity of aneurysmal disease. Circulation 121:560–568

    CAS  PubMed  Google Scholar 

  142. Kent KC, Zwolak RM, Egorova NN, Riles TS, Manganaro A, Moskowitz AJ, Gelijns AC, Greco G (2010) Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg 52:539–548

    PubMed  Google Scholar 

  143. Lindsay ME, Dietz HC (2011) Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 473:308–316

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, Bourgeois S, Estrera AL, Safi HJ, Sparks E, Amor D, Ades L, McConnell V, Willoughby CE, Abuelo D, Willing M, Lewis RA, Kim DH, Scherer S, Tung PP, Ahn C, Buja LM, Raman CS, Shete SS, Milewicz DM (2007) Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 39:1488–1493

    CAS  PubMed  Google Scholar 

  145. Zhu L, Vranckx R, Khau Van Kien P, Lalande A, Boisset N, Mathieu F, Wegman M, Glancy L, Gasc JM, Brunotte F, Bruneval P, Wolf JE, Michel JB, Jeunemaitre X (2006) Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 38:343–349

    CAS  PubMed  Google Scholar 

  146. Milewicz DM, Michael K, Fisher N, Coselli JS, Markello T, Biddinger A (1996) Fibrillin-1 (FBN1) mutations in patients with thoracic aortic aneurysms. Circulation 94:2708–2711

    CAS  PubMed  Google Scholar 

  147. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM et al (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339

    CAS  PubMed  Google Scholar 

  148. Malfait F, Symoens S, De Backer J, Hermanns-Lê T, Sakalihasan N, Lapière CM, Coucke P, De Paepe A (2007) Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers–Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum Mutat 28:387–395

    CAS  PubMed  Google Scholar 

  149. Rahkonen O, Su M, Hakovirta H, Koskivirta I, Hormuzdi SG, Vuorio E, Bornstein P, Penttinen R (2004) Mice with a deletion in the first intron of the Col1a1 gene develop age-dependent aortic dissection and rupture. Circ Res 94:83–90

    CAS  PubMed  Google Scholar 

  150. Schwarze U, Hata R, McKusick VA, Shinkai H, Hoyme HE, Pyeritz RE, Byers PH (2004) Rare autosomal recessive cardiac valvular form of Ehlers–Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am J Hum Genet 74:917–930

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Schwarze U, Schievink WI, Petty E, Jaff MR, Babovic-Vuksanovic D, Cherry KJ, Pepin M, Byers PH (2001) Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers–Danlos syndrome, Ehlers–Danlos syndrome type IV. Am J Hum Genet 69:989–1001

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94:1852–1856

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C, Verpont MC, Marro B, Desmettre T, Cohen SY, Roullet E, Dracon M, Fardeau M, Van Agtmael T, Kerjaschki D, Antignac C, Ronco P (2007) COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med 357:2687–2695

    CAS  PubMed  Google Scholar 

  154. Kashtan CE, Segal Y, Flinter F, Makanjuola D, Gan JS, Watnick T (2010) Aortic abnormalities in males with Alport syndrome. Nephrol Dial Transpl 25:3554–3560

    Google Scholar 

  155. Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R, Reinhardt DP, Sakai LY, Biery NJ, Bunton T, Dietz HC, Ramirez F (1997) Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 17:218–222

    CAS  PubMed  Google Scholar 

  156. Pyeritz RE (2009) Marfan syndrome: 30 years of research equals 30 years of additional life expectancy. Heart 95:173–175

    PubMed  Google Scholar 

  157. Pyeritz RE, Loeys B (2012) The 8th international research symposium on the Marfan syndrome and related conditions. Am J Med Genet A 158A:42–49

    PubMed  Google Scholar 

  158. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, Xu FL, Myers LA, Spevak PJ, Cameron DE, De Backer J, Hellemans J, Chen Y, Davis EC, Webb CL, Kress W, Coucke P, Rifkin DB, De Paepe AM, Dietz HC (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281

    CAS  PubMed  Google Scholar 

  159. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC (2006) Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 355:788–798

    CAS  PubMed  Google Scholar 

  160. Holman RL, Mc GH Jr, Strong JP, Geer JC (1958) The natural history of atherosclerosis: the early aortic lesions as seen in New Orleans in the middle of the of the 20th century. Am J Pathol 34:209–235

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Gimbrone MA Jr, Bevilacqua MP, Cybulsky MI (1990) Endothelial-dependent mechanisms of leukocyte adhesion in inflammation and atherosclerosis. Ann NY Acad Sci 598:77–85

    PubMed  Google Scholar 

  162. Goetz DJ, Greif DM, Ding H, Camphausen RT, Howes S, Comess KM, Snapp KR, Kansas GS, Luscinskas FW (1997) Isolated P-selectin glycoprotein ligand-1 dynamic adhesion to P- and E-selectin. J Cell Biol 137:509–519

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    CAS  PubMed  Google Scholar 

  164. Feil S, Hofmann F, Feil R (2004) SM22alpha modulates vascular smooth muscle cell phenotype during atherogenesis. Circ Res 94:863–865

    CAS  PubMed  Google Scholar 

  165. Iwata H, Manabe I, Fujiu K, Yamamoto T, Takeda N, Eguchi K, Furuya A, Kuro-o M, Sata M, Nagai R (2010) Bone marrow-derived cells contribute to vascular inflammation but do not differentiate into smooth muscle cell lineages. Circulation 122:2048–2057

    CAS  PubMed  Google Scholar 

  166. Campbell KA, Lipinski MJ, Doran AC, Skaflen MD, Fuster V, McNamara CA (2012) Lymphocytes and the adventitial immune response in atherosclerosis. Circ Res 110:889–900

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Hu Y, Xu Q (2011) Adventitial biology: differentiation and function. Arterioscler Thromb Vasc Biol 31:1523–1529

    CAS  PubMed  Google Scholar 

  168. Maiellaro K, Taylor WR (2007) The role of the adventitia in vascular inflammation. Cardiovasc Res 75:640–648

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Barger AC, Beeuwkes R 3rd, Lainey LL, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310:175–177

    CAS  PubMed  Google Scholar 

  170. Gossl M, Versari D, Mannheim D, Ritman EL, Lerman LO, Lerman A (2007) Increased spatial vasa vasorum density in the proximal LAD in hypercholesterolemia–implications for vulnerable plaque-development. Atherosclerosis 192:246–252

    PubMed  Google Scholar 

  171. Herrmann J, Lerman LO, Rodriguez-Porcel M, Holmes DR Jr, Richardson DM, Ritman EL, Lerman A (2001) Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc Res 51:762–766

    CAS  PubMed  Google Scholar 

  172. Khurana R, Zhuang Z, Bhardwaj S, Murakami M, De Muinck E, Yla-Herttuala S, Ferrara N, Martin JF, Zachary I, Simons M (2004) Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation 110:2436–2443

    PubMed  Google Scholar 

  173. Drinane M, Mollmark J, Zagorchev L, Moodie K, Sun B, Hall A, Shipman S, Morganelli P, Simons M, Mulligan-Kehoe MJ (2009) The antiangiogenic activity of rPAI-1(23) inhibits vasa vasorum and growth of atherosclerotic plaque. Circ Res 104:337–345

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Majesky MW, Dong XR, Hoglund V, Mahoney WM Jr, Daum G (2011) The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol 31:1530–1539

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 113:1258–1265

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Fukumoto Y, Shimokawa H (2011) Recent progress in the management of pulmonary hypertension. Circ J 75:1801–1810

    PubMed  Google Scholar 

  177. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:S43–S54

    PubMed  Google Scholar 

  178. Sakao S, Tatsumi K, Voelkel NF (2009) Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respir Res 10:95

    PubMed Central  PubMed  Google Scholar 

  179. Sakao S, Tatsumi K, Voelkel NF (2010) Reversible or irreversible remodeling in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 43:629–634

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691

    CAS  PubMed  Google Scholar 

  181. Mecham RP, Whitehouse LA, Wrenn DS, Parks WC, Griffin GL, Senior RM, Crouch EC, Stenmark KR, Voelkel NF (1987) Smooth muscle-mediated connective tissue remodeling in pulmonary hypertension. Science 237:423–426

    CAS  PubMed  Google Scholar 

  182. Stenmark KR, Gerasimovskaya E, Nemenoff RA, Das M (2002) Hypoxic activation of adventitial fibroblasts: role in vascular remodeling. Chest 122:326S–334S

    CAS  PubMed  Google Scholar 

  183. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30:2493–2537

    PubMed  Google Scholar 

  184. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, Yaici A, Weitzenblum E, Cordier JF, Chabot F, Dromer C, Pison C, Reynaud-Gaubert M, Haloun A, Laurent M, Hachulla E, Cottin V, Degano B, Jais X, Montani D, Souza R, Simonneau G (2010) Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 122:156–163

    PubMed  Google Scholar 

  185. Zamora MA, Dempsey EC, Walchak SJ, Stelzner TJ (1993) BQ123, an ETA receptor antagonist, inhibits endothelin-1-mediated proliferation of human pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 9:429–433

    CAS  PubMed  Google Scholar 

  186. Fetalvero KM, Martin KA, Hwa J (2007) Cardioprotective prostacyclin signaling in vascular smooth muscle. Prostaglandins Other Lipid Mediat 82:109–118

    CAS  PubMed  Google Scholar 

  187. Austin ED, Loyd JE, Phillips JA 3rd (2009) Genetics of pulmonary arterial hypertension. Semin Respir Crit Care Med 30:386–398

    PubMed Central  PubMed  Google Scholar 

  188. Rai PR, Cool CD, King JA, Stevens T, Burns N, Winn RA, Kasper M, Voelkel NF (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178:558–564

    PubMed Central  PubMed  Google Scholar 

  189. Owens P, Pickup MW, Novitskiy SV, Chytil A, Gorska AE, Aakre ME, West J, Moses HL (2012) Disruption of bone morphogenetic protein receptor 2 (BMPR2) in mammary tumors promotes metastases through cell autonomous and paracrine mediators. Proc Natl Acad Sci USA 109:2814–2819

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T, Miyazono K (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221:249–258

    CAS  PubMed  Google Scholar 

  191. Song Y, Jones JE, Beppu H, Keaney JF Jr, Loscalzo J, Zhang YY (2005) Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112:553–562

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Beppu H, Ichinose F, Kawai N, Jones RC, Yu PB, Zapol WM, Miyazono K, Li E, Bloch KD (2004) BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 287:L1241–L1247

    CAS  PubMed  Google Scholar 

  193. Hong KH, Lee YJ, Lee E, Park SO, Han C, Beppu H, Li E, Raizada MK, Bloch KD, Oh SP (2008) Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118:722–730

    CAS  PubMed Central  PubMed  Google Scholar 

  194. West J, Fagan K, Steudel W, Fouty B, Lane K, Harral J, Hoedt-Miller M, Tada Y, Ozimek J, Tuder R, Rodman DM (2004) Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 94:1109–1114

    CAS  PubMed  Google Scholar 

  195. West J, Harral J, Lane K, Deng Y, Ickes B, Crona D, Albu S, Stewart D, Fagan K (2008) Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. Am J Physiol Lung Cell Mol Physiol 295:L744–L755

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Purow B (2012) Notch inhibition as a promising new approach to cancer therapy. Adv Exp Med Biol 727:305–319

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Li X, Zhang X, Leathers R, Makino A, Huang C, Parsa P, Macias J, Yuan JX, Jamieson SW, Thistlethwaite PA (2009) Notch3 signaling promotes the development of pulmonary arterial hypertension. Nat Med 15:1289–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Thistlethwaite PA, Li X, Zhang X (2010) Notch signaling in pulmonary hypertension. Adv Exp Med Biol 661:279–298

    CAS  PubMed  Google Scholar 

  199. Fouillade C, Monet-Lepretre M, Baron-Menguy C, Joutel A (2012) Notch signalling in smooth muscle cells during development and disease. Cardiovasc Res 95:138–146

    CAS  PubMed  Google Scholar 

  200. Boucher J, Gridley T, Liaw L (2012) Molecular pathways of notch signaling in vascular smooth muscle cells. Front Physiol 3:81

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Joshi SR, McLendon JM, Comer BS, Gerthoffer WT (2011) MicroRNAs-control of essential genes: implications for pulmonary vascular disease. Pulm Circ 1:357–364

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X, Aldred MA, McLean DL, Park H, Comhair SA, Greif DM, Erzurum SC, Chun HJ (2013) An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med 19:74–82

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Golembeski SM, West J, Tada Y, Fagan KA (2005) Interleukin-6 causes mild pulmonary hypertension and augments hypoxia-induced pulmonary hypertension in mice. Chest 128:572S–573S

    PubMed  Google Scholar 

  204. Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, Duroux P, Galanaud P, Simonneau G, Emilie D (1995) Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 151:1628–1631

    CAS  PubMed  Google Scholar 

  205. Paulin R, Courboulin A, Meloche J, Mainguy V, Dumas de la Roque E, Saksouk N, Cote J, Provencher S, Sussman MA, Bonnet S (2011) Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension. Circulation 123:1205–1215

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Savale L, Tu L, Rideau D, Izziki M, Maitre B, Adnot S, Eddahibi S (2009) Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respir Res 10:6

    PubMed Central  PubMed  Google Scholar 

  207. Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB (2009) Interleukin-6 overexpression induces pulmonary hypertension. Circ Res 104:236–244 (228p following 244)

    CAS  PubMed  Google Scholar 

  208. Dewachter L, Dewachter C, Naeije R (2010) New therapies for pulmonary arterial hypertension: an update on current bench to bedside translation. Expert Opin Investig Drugs 19:469–488

    CAS  PubMed  Google Scholar 

  209. Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, Kim DH, Pannu H, Willing MC, Sparks E, Pyeritz RE, Singh MN, Dalman RL, Grotta JC, Marian AJ, Boerwinkle EA, Frazier LQ, LeMaire SA, Coselli JS, Estrera AL, Safi HJ, Veeraraghavan S, Muzny DM, Wheeler DA, Willerson JT, Yu RK, Shete SS, Scherer SE, Raman CS, Buja LM, Milewicz DM (2009) Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet 84:617–627

    Google Scholar 

  210. Milewicz DM, Ostergaard JR, Ala-Kokko LM, Khan N, Grange DK, Mendoza-Londono R, Bradley TJ, Olney AH, Ades L, Maher JF, Guo D, Buja LM, Kim D, Hyland JC, Regalado ES (2010) De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am J Med Genet A 152A:2437–2443

    Google Scholar 

  211. Andersen ND, Dubose J, Shah A, Lee T, Wechsler SB, Hughes GC (2010) Thoracic endografting in a patient with hereditary hemorrhagic telangiectasia presenting with a descending thoracic aneurysm. J Vasc Surg 51:468-470

    Google Scholar 

  212. Dasouki M, Markova D, Garola R, Sasaki T, Charbonneau NL, Sakai LY, Chu ML (2007) Compound heterozygous mutations in fibulin-4 causing neonatal lethal pulmonary artery occlusion, aortic aneurysm, arachnodactyly, and mild cutis laxa. Am J Med Genet A 143A:2635–2641

    Google Scholar 

  213. Huang J, Davis EC, Chapman SL, Budatha M, Marmorstein LY, Word RA, Yanagisawa H (2010) Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res 106:583–592

    Google Scholar 

  214. Hsi DH, Ryan GF, Hellems SO, Cheeran DC, Sheils LA (2003) Large aneurysms of the ascending aorta and major coronary arteries in a patient with hereditary hemorrhagic telangiectasia. Mayo Clin Proc 78:774–776

    Google Scholar 

  215. Kamath BM, Spinner NB, Emerick KM, Chudley AE, Booth C, Piccoli DA, Krantz ID (2004) Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109:1354–1358

    Google Scholar 

  216. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274

    Google Scholar 

  217. Wenstrup RJ, Murad S, Pinnell SR (1989) Ehlers-Danlos syndrome type VI: clinical manifestations of collagen lysyl hydroxylase deficiency. J Pediatr 115:405–409

    Google Scholar 

  218. Yeowell HN, Walker LC (2000) Mutations in the lysyl hydroxylase 1 gene that result in enzyme deficiency and the clinical phenotype of Ehlers-Danlos syndrome type VI. Mol Genet Metab 71:212–224

    Google Scholar 

  219. Salo AM, Cox H, Farndon P, Moss C, Grindulis H, Risteli M, Robins SP, Myllyla R (2008) A connective tissue disorder caused by mutations of the lysyl hydroxylase 3 gene. Am J Hum Genet 83:495–503

    Google Scholar 

  220. Ruotsalainen H, Sipila L, Vapola M, Sormunen R, Salo AM, Uitto L, Mercer DK, Robins SP, Risteli M, Aszodi A, Fassler R, Myllyla R (2006) Glycosylation catalyzed by lysyl hydroxylase 3 is essential for basement membranes. J Cell Sci 119:625–635

    Google Scholar 

  221. Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, Fox JE, Mancini GM, Kambouris M, Gardella R, Facchetti F, Willems PJ, Forsyth R, Dietz HC, Barlati S, Colombi M, Loeys B, De Paepe A (2006) Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet 38:452–457

    Google Scholar 

  222. van de Laar IM, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JM, Hoedemaekers YM, Willemsen R, Severijnen LA, Venselaar H, Vriend G, Pattynama PM, Collee M, Majoor-Krakauer D, Poldermans D, Frohn-Mulder IM, Micha D, Timmermans J, Hilhorst-Hofstee Y, Bierma-Zeinstra SM, Willems PJ, Kros JM, Oei EH, Oostra BA, Wessels MW, Bertoli-Avella AM (2011) Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet 43:121–126

    Google Scholar 

  223. Regalado ES, Guo DC, Villamizar C, Avidan N, Gilchrist D, McGillivray B, Clarke L, Bernier F, Santos-Cortez RL, Leal SM, Bertoli-Avella AM, Shendure J, Rieder MJ, Nickerson DA, Milewicz DM (2011) Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ Res 109:680–686

    Google Scholar 

  224. van de Laar IM, van der Linde D, Oei EH, Bos PK, Bessems JH, Bierma-Zeinstra SM, van Meer BL, Pals G, Oldenburg RA, Bekkers JA, Moelker A, de Graaf BM, Matyas G, Frohn-Mulder IM, Timmermans J, Hilhorst-Hofstee Y, Cobben JM, Bruggenwirth HT, van Laer L, Loeys B, De Backer J, Coucke PJ, Dietz HC, Willems PJ, Oostra BA, De Paepe A, Roos-Hesselink JW, Bertoli-Avella AM, Wessels MW (2012) Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J Med Genet 49:47–57

    Google Scholar 

Download references

Acknowledgments

We thank Greif laboratory members for input. D.M.G. was supported by the Pulmonary Hypertension Association and National Institute of Health under the K08 Award (5K08HL093362). J.K.L. was supported by the National Institute of Health under the Ruth L. Kirschstein NRSA Institutional Training Grant (2T32HL007950).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Greif.

Additional information

S.B. Seidelmann and J.K. Lighthouse contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidelmann, S.B., Lighthouse, J.K. & Greif, D.M. Development and pathologies of the arterial wall. Cell. Mol. Life Sci. 71, 1977–1999 (2014). https://doi.org/10.1007/s00018-013-1478-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1478-y

Keywords

Navigation