Skip to main content
Log in

Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Ubiquitination, the covalent attachment of ubiquitin to a target protein, regulates most cellular processes and is involved in several neurological disorders. In particular, Angelman syndrome and one of the most common genomic forms of autism, dup15q, are caused respectively by lack of or excess of UBE3A, a ubiquitin E3 ligase. Its Drosophila orthologue, Ube3a, is also active during brain development. We have now devised a protocol to screen for substrates of this particular ubiquitin ligase. In a neuronal cell system, we find direct ubiquitination by Ube3a of three proteasome-related proteins Rpn10, Uch-L5, and CG8209, as well as of the ribosomal protein Rps10b. Only one of these, Rpn10, is targeted for degradation upon ubiquitination by Ube3a, indicating that degradation might not be the only effect of Ube3a on its substrates. Furthermore, we report the genetic interaction in vivo between Ube3a and the C-terminal part of Rpn10. Overexpression of these proteins leads to an enhanced accumulation of ubiquitinated proteins, further supporting the biochemical evidence of interaction obtained in neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Williams CA (2005) Neurological aspects of the Angelman syndrome. Brain Dev 27:88

    Article  PubMed  Google Scholar 

  2. Kishino T et al (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15:70

    Article  CAS  PubMed  Google Scholar 

  3. Matsuura T et al (1997) De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 15:74

    Article  CAS  PubMed  Google Scholar 

  4. Jiang YH et al (2004) A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am J Med Genet A 131:1

    Article  PubMed  Google Scholar 

  5. Schanen NC (2006) Epigenetics of autism spectrum disorders. Hum Mol Genet 15(Spec no 2):R138–R150

    Article  CAS  PubMed  Google Scholar 

  6. Glessner JT et al (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459:569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Urraca N et al (2013) The interstitial duplication 15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature. Autism Res 6(4):268–279

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hutsler JJ et al (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83

    Article  CAS  PubMed  Google Scholar 

  9. Dindot SV et al (2008) The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 17:111

    Article  CAS  PubMed  Google Scholar 

  10. Sato M et al (2010) Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proc Natl Acad Sci USA 107:5611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Smith SE et al (2011) Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 3:103ra97

    PubMed Central  PubMed  Google Scholar 

  12. Groothuis TA et al (2006) Ubiquitin crosstalk connecting cellular processes. Cell Div 1:21

    Article  PubMed Central  PubMed  Google Scholar 

  13. Greer PL et al (2010) The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140:704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mishra A et al (2009) UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27. Neurobiol Dis 36:26

    Article  CAS  PubMed  Google Scholar 

  15. Jiang YH et al (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21:799

    Article  CAS  PubMed  Google Scholar 

  16. Reiter LT et al (2006) Expression of the Rho-GEF Pbl/ECT2 is regulated by the UBE3A E3 ubiquitin ligase. Hum Mol Genet 15:2825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Margolis SS et al (2010) EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143:442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kuhnle S et al (2013) Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc. Proc Natl Acad Sci USA 110:8888

    Article  PubMed Central  PubMed  Google Scholar 

  19. Greer PL et al (2008) From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59:846

    Article  CAS  PubMed  Google Scholar 

  20. Jensen L et al (2013) Proteomic profiling in Drosophila reveals potential Dube3a regulation of the actin cytoskeleton and neuronal homeostasis. PLoS One 8:e61952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Low Hai Loon C-F, Chi-Chen Kevin Chen JC, Tew Wai Loon, Hew Choy Sin, Ken-Shiung Chen (2012) In: Ken-Shiung Chen (ed) Advanced topics in neurological disorders (InTech 2012)

  22. Wu Y et al (2008) A Drosophila model for Angelman syndrome. Proc Natl Acad Sci USA 105:12399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lu Y et al (2009) The Drosophila homologue of the Angelman syndrome ubiquitin ligase regulates the formation of terminal dendritic branches. Hum Mol Genet 18:454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Franco M et al (2011) A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 10:M110002188

    Article  Google Scholar 

  25. Takagi Y et al (1998) Laminin-dependent integrin clustering with tyrosine-phosphorylated molecules in a Drosophila neuronal cell line. Neurosci Lett 244:149

    Article  CAS  PubMed  Google Scholar 

  26. Min M et al (2013) Ubiquitination site preferences in anaphase promoting complex/cyclosome (APC/C) substrates. Open Bio 3:130097

    Article  Google Scholar 

  27. Wang M et al (2005) Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J 24:4324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lipinszki Z et al (2009) Developmental-stage-specific regulation of the polyubiquitin receptors in Drosophila melanogaster. J Cell Sci 122:3083

    Article  CAS  PubMed  Google Scholar 

  29. Tai HC et al (2010) Characterization of the brain 26S proteasome and its interacting proteins. Front Mol Neurosci. doi:10.3389/fnmol.2010.00012

    PubMed Central  PubMed  Google Scholar 

  30. Martinez-Noel G et al (2012) Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes. Mol Cell Biol 32:3095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wang X et al (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46:3553

    Article  CAS  PubMed  Google Scholar 

  32. Scanlon TC et al (2009) Isolation of human proteasomes and putative proteasome-interacting proteins using a novel affinity chromatography method. Exp Cell Res 315:176

    Article  CAS  PubMed  Google Scholar 

  33. Kleijnen MF et al (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 6:409

    Article  CAS  PubMed  Google Scholar 

  34. Besche HC et al (2009) Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry 48:2538

    Article  CAS  PubMed  Google Scholar 

  35. Bingol B et al (2006) Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441:1144

    Article  CAS  PubMed  Google Scholar 

  36. Bingol B et al (2010) Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140:567

    Article  CAS  PubMed  Google Scholar 

  37. Shen H et al (2007) NAC1 regulates the recruitment of the proteasome complex into dendritic spines. J Neurosci 27:8903

    Article  CAS  PubMed  Google Scholar 

  38. Hamilton AM et al (2012) Activity-dependent growth of new dendritic spines is regulated by the proteasome. Neuron 74:1023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Puram SV et al (2013) The ubiquitin receptor s5a/rpn10 links centrosomal proteasomes with dendrite development in the Mammalian brain. Cell Rep 4:19

    Article  CAS  PubMed  Google Scholar 

  40. Szlanka T et al (2003) Deletion of proteasomal subunit S5a/Rpn10/p54 causes lethality, multiple mitotic defects and overexpression of proteasomal genes in Drosophila melanogaster. J Cell Sci 116:1023

    Article  CAS  PubMed  Google Scholar 

  41. Hamazaki J et al (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol Cell Biol 27:6629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Bowden NA et al (2006) Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophr Res 82:175

    Article  PubMed  Google Scholar 

  43. Martins-de-Souza D et al (2009) Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J Neural Transm 116:275

    Article  CAS  PubMed  Google Scholar 

  44. Yao T et al (2006) Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 8:994

    Article  CAS  PubMed  Google Scholar 

  45. Hjerpe R et al (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10:1250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ui K et al (1994) Newly established cell lines from Drosophila larval CNS express neural specific characteristics. In Vitro Cell Dev Biol Anim 30A:209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Janice Fischer, Fen-Biao Gao, Zoltán Lipinszki, Bloomington Stock Center, the DRSC, and The Developmental Studies Hybridoma Bank-DSHB (University of Iowa) for flies, cells, dsRNA templates, and antibodies, and David Gubb for helpful advice and support. We thank J. D. Sutherland for his suggestion to use the anti-GFP beads. We would also like to thank Larry Reiter and Catherine Lindon for critical reading and comments on the manuscript. We acknowledge the CIC bioGUNE Gene Silencing Platform for support. This work was supported by a Basque Government research grant (PI2011-24) and a March of Dimes Basil O′Connor Starter Scholar Research Award (5-FY12-16) to U.M. RB thanks the Spanish MICINN (grants BFU2008-01884, BFU2011-25986) and the Consolider Program (CSD2007-008-25120), the Basque Government (PI2009-16 and PI2012/42), and the Bizkaia County.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Mayor.

Additional information

Authors S. Y. Lee and J. Ramirez contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.Y., Ramirez, J., Franco, M. et al. Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10. Cell. Mol. Life Sci. 71, 2747–2758 (2014). https://doi.org/10.1007/s00018-013-1526-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1526-7

Keywords

Navigation