Skip to main content

Advertisement

Log in

Animal models in burn research

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brigham PA, McLoughlin E (1996) Burn incidence and medical care use in the United States: estimates, trends, and data sources. J Burn Care Rehabil 17(2):95–107

    CAS  PubMed  Google Scholar 

  2. Burn Incidence Fact Sheet (2012) American Burn Association. http://www.ameriburn.org/resources_factsheet.php

  3. Branski LK, Al-Mousawi A, Rivero H, Jeschke MG, Sanford AP, Herndon DN (2009) Emerging infections in burns. Surg Infect (Larchmt) 10(5):389–397. doi:10.1089/sur.2009.024

    Google Scholar 

  4. Williams FN, Herndon DN, Hawkins HK, Lee JO, Cox RA, Kulp GA, Finnerty CC, Chinkes DL, Jeschke MG (2009) The leading causes of death after burn injury in a single pediatric burn center. Crit Care 13(6):R183. doi:10.1186/cc8170

    PubMed Central  PubMed  Google Scholar 

  5. Kraft R, Herndon DN, Al-Mousawi AM, Williams FN, Finnerty CC, Jeschke MG (2012) Burn size and survival probability in paediatric patients in modern burn care: a prospective observational cohort study. Lancet 379(9820):1013–1021. doi:10.1016/S0140-6736(11)61345-7

    PubMed Central  PubMed  Google Scholar 

  6. Keck M, Herndon DH, Kamolz LP, Frey M, Jeschke MG (2009) Pathophysiology of burns. Wien Med Wochenschr 159(13–14):327–336. doi:10.1007/s10354-009-0651-2

    PubMed  Google Scholar 

  7. Jeschke MG, Gauglitz GG, Finnerty CC, Kraft R, Mlcak RP, Herndon DN (2013) Survivors versus nonsurvivors postburn: differences in inflammatory and hypermetabolic trajectories. Ann Surg. doi:10.1097/SLA.0b013e31828dfbf1

    PubMed  Google Scholar 

  8. Williams FN, Herndon DN, Jeschke MG (2009) The hypermetabolic response to burn injury and interventions to modify this response. Clin Plast Surg 36(4):583–596. doi:10.1016/j.cps.2009.05.001

    PubMed Central  PubMed  Google Scholar 

  9. Jeschke MG, Chinkes DL, Finnerty CC, Kulp G, Suman OE, Norbury WB, Branski LK, Gauglitz GG, Mlcak RP, Herndon DN (2008) Pathophysiologic response to severe burn injury. Ann Surg 248(3):387–401. doi:10.1097/SLA.0b013e3181856241

    PubMed Central  PubMed  Google Scholar 

  10. Jeschke MG, Mlcak RP, Finnerty CC, Norbury WB, Gauglitz GG, Kulp GA, Herndon DN (2007) Burn size determines the inflammatory and hypermetabolic response. Crit Care 11(4):R90. doi:10.1186/cc6102

    PubMed Central  PubMed  Google Scholar 

  11. Dahiya P (2009) Burns as a model of SIRS. Front Biosci 14:4962–4967 pii:3580

    CAS  Google Scholar 

  12. Gauglitz GG, Herndon DN, Jeschke MG (2008) Insulin resistance postburn: underlying mechanisms and current therapeutic strategies. J Burn Care Res 29(5):683–694. doi:10.1097/BCR.0b013e31818481ce

    PubMed Central  PubMed  Google Scholar 

  13. Jeschke MG, Finnerty CC, Herndon DN, Song J, Boehning D, Tompkins RG, Baker HV, Gauglitz GG (2012) Severe injury is associated with insulin resistance, endoplasmic reticulum stress response, and unfolded protein response. Ann Surg 255(2):370–378. doi:10.1097/SLA.0b013e31823e76e7

    PubMed Central  PubMed  Google Scholar 

  14. Mecott GA, Al-Mousawi AM, Gauglitz GG, Herndon DN, Jeschke MG (2010) The role of hyperglycemia in burned patients: evidence-based studies. Shock 33(1):5–13. doi:10.1097/SHK.0b013e3181af0494

    CAS  PubMed  Google Scholar 

  15. Kraft R, Herndon DN, Finnerty CC, Hiyama Y, Jeschke MG (2013) Association of postburn fatty acids and triglycerides with clinical outcome in severely burned children. J Clin Endocrinol Metab 98(1):314–321. doi:10.1210/jc.2012-2599

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Rivers EP, Katranji M, Jaehne KA, Brown S, Abou Dagher G, Cannon C, Coba V (2012) Early interventions in severe sepsis and septic shock: a review of the evidence one decade later. Minerva Anestesiol 78(6):712–724 pii:R02127095

    CAS  PubMed  Google Scholar 

  17. Toye AA, Moir L, Hugill A, Bentley L, Quarterman J, Mijat V, Hough T, Goldsworthy M, Haynes A, Hunter AJ, Browne M, Spurr N, Cox RD (2004) A new mouse model of type 2 diabetes, produced by N-ethyl-nitrosourea mutagenesis, is the result of a missense mutation in the glucokinase gene. Diabetes 53(6):1577–1583 pii:53/6/1577

    CAS  PubMed  Google Scholar 

  18. Carroll L, Voisey J, van Daal A (2004) Mouse models of obesity. Clin Dermatol 22(4):345–349. doi:10.1016/j.clindermatol.2004.01.004

    PubMed  Google Scholar 

  19. Takahashi N, Smithies O (2004) Human genetics, animal models and computer simulations for studying hypertension. Trends Genet 20(3):136–145. doi:10.1016/j.tig.2004.01.004

    CAS  PubMed  Google Scholar 

  20. Rego EM, He LZ, Warrell RP Jr, Wang ZG, Pandolfi PP (2000) Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc Natl Acad Sci USA 97(18):10173–10178. doi:10.1073/pnas.180290497

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Sayeed MM (2005) Inflammatory/cardiovascular-metabolic responses in a rat model of burn injury with superimposed infection. Shock 24(Suppl 1):40–44 pii:00024382-200512001-00007

    PubMed  Google Scholar 

  22. Marshall AH, Brooks NC, Hiyama Y, Qa’aty N, Al-Mousawi A, Finnerty CC, Jeschke MG (2013) Hepatic apoptosis postburn is mediated by c-Jun N-terminal kinase 2. Shock 39(2):183–188. doi:10.1097/SHK.0b013e31827f40ab

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC (2011) Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol 2011:969618. doi:10.1155/2011/969618

    PubMed Central  PubMed  Google Scholar 

  24. Dorsett-Martin WA (2004) Rat models of skin wound healing: a review. Wound Repair Regen 12(6):591–599. doi:10.1111/j.1067-1927.2004.12601.x

    PubMed  Google Scholar 

  25. Peterkofsky B (1991) Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr 54(6 Suppl):1135S–1140S

    CAS  PubMed  Google Scholar 

  26. Sullivan TP, Eaglstein WH, Davis SC, Mertz P (2001) The pig as a model for human wound healing. Wound Repair Regen 9(2):66–76 pii:wrr066

    CAS  PubMed  Google Scholar 

  27. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321. doi:10.1038/nature07039

    CAS  PubMed  Google Scholar 

  28. Bielefeld KA, Amini-Nik S, Alman BA (2012) Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci. doi:10.1007/s00018-012-1152-9

    PubMed Central  PubMed  Google Scholar 

  29. Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25(1):9–18. doi:10.1016/j.clindermatol.2006.09.007

    CAS  PubMed  Google Scholar 

  30. Stadelmann WK, Digenis AG, Tobin GR (1998) Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176(2A Suppl):26S–38S

    CAS  PubMed  Google Scholar 

  31. Alvarez OM, Kalinski C, Nusbaum J, Hernandez L, Pappous E, Kyriannis C, Parker R, Chrzanowski G, Comfort CP (2007) Incorporating wound healing strategies to improve palliation (symptom management) in patients with chronic wounds. J Palliat Med 10(5):1161–1189. doi:10.1089/jpm.2007.9909

    PubMed  Google Scholar 

  32. Amini-Nik S, Glancy D, Boimer C, Whetstone H, Keller C, Alman BA (2011) Pax7 expressing cells contribute to dermal wound repair; regulating scar size through a beta-catenin mediated process. Stem Cells. doi:10.1002/stem.688

    PubMed  Google Scholar 

  33. Bielefeld KA, Amini-Nik S, Whetstone H, Poon R, Youn A, Wang J, Alman BA (2011) Fibronectin and beta-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J Biol Chem 286(31):27687–27697. doi:10.1074/jbc.M111.261677

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Blit PH, Jeschke MG (2012) Keloids: what do we know and what do we do next? Transl Res 159(3):173–174. doi:10.1016/j.trsl.2011.11.007

    PubMed  Google Scholar 

  35. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG (2011) Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 17(1–2):113–125. doi:10.2119/molmed.2009.00153

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Brockes JP, Kumar A (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 3(8):566–574. doi:10.1038/nrm881

    CAS  PubMed  Google Scholar 

  37. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738

    CAS  PubMed  Google Scholar 

  38. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354. doi:10.1038/nm1328

    CAS  PubMed  Google Scholar 

  39. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447(7142):316–320. doi:10.1038/nature05766

    CAS  PubMed  Google Scholar 

  40. Oshimori N, Fuchs E (2012) Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10(1):63–75. doi:10.1016/j.stem.2011.11.005

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Oppenheim JJ, Biragyn A, Kwak LW, Yang D (2003) Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis 62(Suppl 2):ii17–ii21

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720. doi:10.1038/nri1180

    CAS  PubMed  Google Scholar 

  43. Olson TS, Ley K (2002) Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 283(1):R7–R28. doi:10.1152/ajpregu.00738.2001

    CAS  PubMed  Google Scholar 

  44. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870. doi:10.1152/physrev.00031.2002

    CAS  PubMed  Google Scholar 

  45. Papp A, Kiraly K, Harma M, Lahtinen T, Uusaro A, Alhava E (2004) The progression of burn depth in experimental burns: a histological and methodological study. Burns 30(7):684–690. doi:10.1016/j.burns.2004.03.021

    CAS  PubMed  Google Scholar 

  46. Amini-Nik S, Kraemer D, Cowan ML, Gunaratne K, Nadesan P, Alman BA, Miller RJ (2010) Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery. PLoS ONE 5(9). doi:10.1371/journal.pone.0013053

  47. Byl NN, McKenzie AL, West JM, Whitney JD, Hunt TK, Hopf HW, Scheuenstuhl H (1994) Pulsed microamperage stimulation: a controlled study of healing of surgically induced wounds in Yucatan pigs. Phys Ther 74(3):201–213 discussion 213-208

    CAS  PubMed  Google Scholar 

  48. Yao F, Visovatti S, Johnson CS, Chen M, Slama J, Wenger A, Eriksson E (2001) Age and growth factors in porcine full-thickness wound healing. Wound Repair Regen 9(5):371–377

    CAS  PubMed  Google Scholar 

  49. Jeschke MG, Gauglitz GG, Kulp GA, Finnerty CC, Williams FN, Kraft R, Suman OE, Mlcak RP, Herndon DN (2011) Long-term persistance of the pathophysiologic response to severe burn injury. PLoS ONE 6(7):e21245. doi:10.1371/journal.pone.0021245

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Arturson G, Danielsson U, Henriksson TG, Ponten B, Wennberg L (1976) New treatment method of patients with severe burns. Lakartidningen 73(32):2615–2620

    CAS  PubMed  Google Scholar 

  51. Aulick LH, Hander EH, Wilmore DW, Mason AD Jr, Pruitt BA Jr (1979) The relative significance of thermal and metabolic demands on burn hypermetabolism. J Trauma Inj Infect Crit Care 19(8):559–566

    CAS  Google Scholar 

  52. Caldwell FT Jr, Osterholm JL, Sower ND, Moyer CA (1959) Metabolic response to thermal trauma of normal and thyroprivic rats at three environmental temperatures. Ann Surg 150:976–988

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Karimi I (2012) Animal models as tools for translational research: focus on atherosclerosis, metabolic syndrome and type-II diabetes mellitus. In: Frank S, Kostner G (eds) Lipoproteins—role in health and diseases. InTech. doi:10.5772/47769

  54. Varga O, Harangi M, Olsson IA, Hansen AK (2010) Contribution of animal models to the understanding of the metabolic syndrome: a systematic overview. Obes Rev 11(11):792–807. doi:10.1111/j.1467-789X.2009.00667.x

    CAS  PubMed  Google Scholar 

  55. Dandri M, Burda MR, Torok E, Pollok JM, Iwanska A, Sommer G, Rogiers X, Rogler CE, Gupta S, Will H, Greten H, Petersen J (2001) Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 33(4):981–988. doi:10.1053/jhep.2001.23314

    CAS  PubMed  Google Scholar 

  56. Belke DD, Severson DL (2012) Diabetes in mice with monogenic obesity: the db/db mouse and its use in the study of cardiac consequences. Methods Mol Biol 933:47–57. doi:10.1007/978-1-62703-068-7_4

    CAS  PubMed  Google Scholar 

  57. Hu RH, Yu YM, Costa D, Young VR, Ryan CM, Burke JF, Tompkins RG (1998) A rabbit model for metabolic studies after burn injury. J Surg Res 75(2):153–160. doi:10.1006/jsre.1998.5274

    CAS  PubMed  Google Scholar 

  58. Fernandez ML, Volek JS (2006) Guinea pigs: a suitable animal model to study lipoprotein metabolism, atherosclerosis and inflammation. Nutr Metab 3:17. doi:10.1186/1743-7075-3-17

    Google Scholar 

  59. Cree MG, Wolfe RR (2008) Postburn trauma insulin resistance and fat metabolism. Am J Physiol Endocrinol Metab 294(1):E1–E9. doi:10.1152/ajpendo.00562.2007

    CAS  PubMed  Google Scholar 

  60. Martini WZ, Irtun O, Chinkes DL, Rasmussen B, Traber DL, Wolfe RR (2001) Alteration of hepatic fatty acid metabolism after burn injury in pigs. J Parenter Enteral Nutr 25(6):310–316

    CAS  Google Scholar 

  61. Campelo AP, Campelo MW, Britto GA, Ayala AP, Guimaraes SB, Vasconcelos PR (2011) An optimized animal model for partial and total skin thickness burns studies. Acta Cir Bras 26(Suppl 1):38–42 pii:S0102-86502011000700008

    PubMed  Google Scholar 

  62. Zelt RG, Daniel RK, Ballard PA, Brissette Y, Heroux P (1988) High-voltage electrical injury: chronic wound evolution. Plast Reconstr Surg 82(6):1027–1041

    CAS  PubMed  Google Scholar 

  63. Clouatre E, Pinto R, Banfield J, Jeschke MG (2013) Incidence of hot tap water scalds after the introduction of regulations in Ontario. J Burn Care Res 34(2):243–248. doi:10.1097/BCR.0b013e3182789057

    PubMed  Google Scholar 

  64. Hiyama Y, Marshall AH, Kraft R, Qa’aty N, Arno A, Herndon DN, Jeschke MG (2013) Effects of metformin on burn-induced hepatic endoplasmic reticulum stress in male rats. Mol Med 19(1):1–6. doi:10.2119/molmed.2012.00330

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Mitsunaga Junior JK, Gragnani A, Ramos ML, Ferreira LM (2012) Rat an experimental model for burns: a systematic review. Acta Cir Bras 27(6):417–423 pii:S0102-86502012000600010

    PubMed  Google Scholar 

  66. Pereira CT, Herndon DN (2005) The pharmacologic modulation of the hypermetabolic response to burns. Adv Surg 39:245–261

    PubMed  Google Scholar 

  67. Kulp GA, Tilton RG, Herndon DN, Jeschke MG (2012) Hyperglycemia exacerbates burn-induced liver inflammation via noncanonical nuclear factor-kappaB pathway activation. Mol Med 18:948–956. doi:10.2119/molmed.2011.00357

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Henze U, Lennartz A, Hafemann B, Goldmann C, Kirkpatrick CJ, Klosterhalfen B (1997) The influence of the C1-inhibitor BERINERT and the protein-free haemodialysate ACTIHAEMYL20% on the evolution of the depth of scald burns in a porcine model. Burns 23(6):473–477 pii:S0305417997000193

    CAS  PubMed  Google Scholar 

  69. Middelkoop E, van den Bogaerdt AJ, Lamme EN, Hoekstra MJ, Brandsma K, Ulrich MM (2004) Porcine wound models for skin substitution and burn treatment. Biomaterials 25(9):1559–1567 pii:S0142961203005027

    CAS  PubMed  Google Scholar 

  70. Branski LK, Mittermayr R, Herndon DN, Norbury WB, Masters OE, Hofmann M, Traber DL, Redl H, Jeschke MG (2008) A porcine model of full-thickness burn, excision and skin autografting. Burns 34(8):1119–1127. doi:10.1016/j.burns.2008.03.013

    PubMed Central  PubMed  Google Scholar 

  71. Zhang XJ, Chinkes DL, Wolfe RR (2004) Leucine supplementation has an anabolic effect on proteins in rabbit skin wound and muscle. J Nutr 134(12):3313–3318

    CAS  PubMed  Google Scholar 

  72. Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295(3):L379–L399. doi:10.1152/ajplung.00010.2008

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Wang HM, Bodenstein M, Markstaller K (2008) Overview of the pathology of three widely used animal models of acute lung injury. Eur Surg Res 40(4):305–316. doi:10.1159/000121471

    CAS  PubMed  Google Scholar 

  74. Enkhbaatar P, Traber DL (2004) Pathophysiology of acute lung injury in combined burn and smoke inhalation injury. Clin Sci (Lond) 107(2):137–143. doi:10.1042/CS20040135

    CAS  Google Scholar 

  75. Hubbard GB, Shimazu T, Yukioka T, Langlinais PC, Mason AD Jr, Pruitt BA Jr (1988) Smoke inhalation injury in sheep. Am J Pathol 133(3):660–663

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Lange M, Hamahata A, Enkhbaatar P, Cox RA, Nakano Y, Westphal M, Traber LD, Herndon DN, Traber DL (2011) Beneficial effects of concomitant neuronal and inducible nitric oxide synthase inhibition in ovine burn and inhalation injury. Shock 35(6):626–631. doi:10.1097/SHK.0b013e31820fe671

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Robinson B (2010) Recognition of animal welfare in biomedical science takes center stage. National Cancer Institute. http://www.cancer.gov/ncicancerbulletin/110210/page6

  78. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110(9):3507–3512. doi:10.1073/pnas.1222878110

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Younan G, Suber F, Xing W, Shi T, Kunori Y, Abrink M, Pejler G, Schlenner SM, Rodewald HR, Moore FD Jr, Stevens RL, Adachi R, Austen KF, Gurish MF (2010) The inflammatory response after an epidermal burn depends on the activities of mouse mast cell proteases 4 and 5. J Immunol 185(12):7681–7690. doi:10.4049/jimmunol.1002803

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Adams DH, Ruzehaji N, Strudwick XL, Greenwood JE, Campbell HD, Arkell R, Cowin AJ (2009) Attenuation of Flightless I, an actin-remodelling protein, improves burn injury repair via modulation of transforming growth factor (TGF)-beta1 and TGF-beta3. Br J Dermatol 161(2):326–336. doi:10.1111/j.1365-2133.2009.09296.x

    CAS  PubMed  Google Scholar 

  81. Shen H, Yao P, Lee E, Greenhalgh D, Soulika AM (2012) Interferon-gamma inhibits healing post-scald burn injury. Wound Repair Regen 20(4):580–591. doi:10.1111/j.1524-475X.2012.00812.x

    PubMed  Google Scholar 

  82. Adediran SG, Dauplaise DJ, Kasten KR, Tschop J, Dattilo J, Goetzman HS, England LG, Cave CM, Robinson CT, Caldwell CC (2010) Early infection during burn-induced inflammatory response results in increased mortality and p38-mediated neutrophil dysfunction. Am J Physiol Regul Integr Comp Physiol 299(3):R918–R925. doi:10.1152/ajpregu.00132.2010

    CAS  PubMed  Google Scholar 

  83. Hurtuk MG, He LK, Szilagyi A, Gamelli RL, Hecht DW, Kennedy RH, Rhys-Williams W, Love WG, Shankar R (2010) The novel antibacterial drug XF-70 is a potent inhibitor of Staphylococcus aureus infection of the burn wound. J Burn Care Res 31(3):462–469. doi:10.1097/BCR.0b013e3181db5265

    PubMed  Google Scholar 

  84. Zhang QH, Li JC, Dong N, Tang LM, Zhu XM, Sheng ZY, Yao YM (2013) Burn injury induces gelsolin expression and cleavage in the brain of mice. Neuroscience 228:60–72. doi:10.1016/j.neuroscience.2012.10.013

    CAS  PubMed  Google Scholar 

  85. Palmer JL, Deburghgraeve CR, Bird MD, Hauer-Jensen M, Kovacs EJ (2011) Development of a combined radiation and burn injury model. J Burn Care Res 32(2):317–323. doi:10.1097/BCR.0b013e31820aafa9

    PubMed Central  PubMed  Google Scholar 

  86. Posluszny JA Jr, Muthumalaiappan K, Kini AR, Szilagyi A, He LK, Li Y, Gamelli RL, Shankar R (2011) Burn injury dampens erythroid cell production through reprioritizing bone marrow hematopoietic response. J Trauma 71(5):1288–1296. doi:10.1097/TA.0b013e31822e2803

    PubMed Central  PubMed  Google Scholar 

  87. Howell K, Posluszny J, He LK, Szilagyi A, Halerz J, Gamelli RL, Shankar R, Muthu K (2012) High MafB expression following burn augments monocyte commitment and inhibits DC differentiation in hemopoietic progenitors. J Leukoc Biol 91(1):69–81. doi:10.1189/jlb.0711338

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Liu QY, Yao YM, Zhang SW, Yan YH, Wu X (2011) Naturally existing CD11c(low)CD45RB(high) dendritic cells protect mice from acute severe inflammatory response induced by thermal injury. Immunobiology 216(1–2):47–53. doi:10.1016/j.imbio.2010.03.005

    CAS  PubMed  Google Scholar 

  89. Plackett TP, Gamelli RL, Kovacs EJ (2010) Gender-based differences in cytokine production after burn injury: a role of interleukin-6. J Am Coll Surg 210(1):73–78. doi:10.1016/j.jamcollsurg.2009.09.019

    PubMed Central  PubMed  Google Scholar 

  90. Muthu K, He LK, Szilagyi A, Stevenson J, Gamelli RL, Shankar R (2009) Propranolol restores the tumor necrosis factor-alpha response of circulating inflammatory monocytes and granulocytes after burn injury and sepsis. J Burn Care Res 30(1):8–18. doi:10.1097/BCR.0b013e3181921f22

    PubMed Central  PubMed  Google Scholar 

  91. Fan J, Meng Q, Guo G, Xie Y, Xiu Y, Li T, Feng W, Ma L (2009) Effects of enteral nutrition supplemented with glutamine on intestinal mucosal immunity in burned mice. Nutrition 25(2):233–239. doi:10.1016/j.nut.2008.08.009

    CAS  PubMed  Google Scholar 

  92. Fan J, Meng Q, Guo G, Xie Y, Li X, Xiu Y, Li T, Ma L (2010) Effects of early enteral nutrition supplemented with arginine on intestinal mucosal immunity in severely burned mice. Clin Nutr 29(1):124–130. doi:10.1016/j.clnu.2009.07.005

    CAS  PubMed  Google Scholar 

  93. Fan J, Xie Y, Li X, Guo G, Meng Q, Xiu Y, Li T, Feng W, Ma L (2009) The influence of Peyer’s patch apoptosis on intestinal mucosal immunity in burned mice. Burns 35(5):687–694. doi:10.1016/j.burns.2008.10.013

    PubMed  Google Scholar 

  94. Huber NL, Bailey SR, Schuster R, Ogle CK, Lentsch AB, Pritts TA (2012) Prior thermal injury accelerates endotoxin-induced inflammatory cytokine production and intestinal nuclear factor-kappaB activation in mice. J Burn Care Res 33(2):279–285. doi:10.1097/BCR.0b013e3182331d75

    PubMed  Google Scholar 

  95. Huber NL, Bailey SR, Schuster RM, Ogle CK, Lentsch AB, Pritts TA (2010) Remote thermal injury increases LPS-induced intestinal IL-6 production. J Surg Res 160(2):190–195. doi:10.1016/j.jss.2009.06.006

    CAS  PubMed  Google Scholar 

  96. Beffa DC, Fischman AJ, Fagan SP, Hamrahi VF, Paul KW, Kaneki M, Yu YM, Tompkins RG, Carter EA (2011) Simvastatin treatment improves survival in a murine model of burn sepsis: role of interleukin 6. Burns 37(2):222–226. doi:10.1016/j.burns.2010.10.010

    PubMed Central  PubMed  Google Scholar 

  97. Song J, Wolf SE, Herndon DN, Wu XW, Jeschke MG (2008) Second hit post-burn increased proximal gut mucosa epithelial cells damage. Shock 30(2):184–188. doi:10.1097/SHK.0b013e318162a3f6

    PubMed  Google Scholar 

  98. Huang CC, Yan SH, Chen D, Chen BC, Zhao NW (2012) Application of on-line nanoLC-IT-TOF in the identification of serum beta-catenin complex in mice scald model. PLoS ONE 7(10):e46530. doi:10.1371/journal.pone.0046530

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Bohannon JK, Cui W, Toliver-Kinsky T (2009) Endogenous Fms-like tyrosine kinase-3 ligand levels are not altered in mice after a severe burn and infection. BMC Immunol 10:47. doi:10.1186/1471-2172-10-47

    PubMed Central  PubMed  Google Scholar 

  100. Song J, Finnerty CC, Herndon DN, Boehning D, Jeschke MG (2009) Severe burn-induced endoplasmic reticulum stress and hepatic damage in mice. Mol Med 15(9–10):316–320. doi:10.2119/molmed.2009.00048

    PubMed Central  PubMed  Google Scholar 

  101. Finnerty CC, Przkora R, Herndon DN, Jeschke MG (2009) Cytokine expression profile over time in burned mice. Cytokine 45(1):20–25. doi:10.1016/j.cyto.2008.10.005

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Xie T, Niu Y, Ge K, Lu S (2008) Regulation of keratinocyte proliferation in rats with deep, partial-thickness scald: modulation of cyclin D1-cyclin-dependent kinase 4 and histone H1 kinase activity of M-phase promoting factor. J Surg Res 147(1):9–14. doi:10.1016/j.jss.2007.08.023

    CAS  PubMed  Google Scholar 

  103. Baer LA, Wu X, Tou JC, Johnson E, Wolf SE, Wade CE (2013) Contributions of severe burn and disuse to bone structure and strength in rats. Bone 52(2):644–650. doi:10.1016/j.bone.2012.10.032

    CAS  PubMed  Google Scholar 

  104. Hemmila MR, Mattar A, Taddonio MA, Arbabi S, Hamouda T, Ward PA, Wang SC, Baker JR Jr (2010) Topical nanoemulsion therapy reduces bacterial wound infection and inflammation after burn injury. Surgery 148(3):499–509. doi:10.1016/j.surg.2010.01.001

    PubMed Central  PubMed  Google Scholar 

  105. Qiao L, Lu SL, Dong JY, Song F (2011) Abnormal regulation of neo-vascularisation in deep partial thickness scalds in rats with diabetes mellitus. Burns 37(6):1015–1022. doi:10.1016/j.burns.2011.03.020

    PubMed  Google Scholar 

  106. Pfurtscheller K, Petnehazy T, Goessler W, Wiederstein-Grasser I, Bubalo V, Trop M (2013) Innovative scald burn model and long-term dressing protector for studies in rats. J Trauma Acute Care Surg 74(3):932–935. doi:10.1097/TA.0b013e31827d0fc3

    PubMed  Google Scholar 

  107. Yang Q, Orman MA, Berthiaume F, Ierapetritou MG, Androulakis IP (2012) Dynamics of short-term gene expression profiling in liver following thermal injury. J Surg Res 176(2):549–558. doi:10.1016/j.jss.2011.09.052

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Niederbichler AD, Hoesel LM, Ipaktchi K, Olivarez L, Erdmann M, Vogt PM, Su GL, Arbabi S, Westfall MV, Wang SC, Hemmila MR (2011) Burn-induced heart failure: lipopolysaccharide binding protein improves burn and endotoxin-induced cardiac contractility deficits. J Surg Res 165(1):128–135. doi:10.1016/j.jss.2009.06.012

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Hoesel LM, Mattar AF, Arbabi S, Niederbichler AD, Ipaktchi K, Su GL, Westfall MV, Wang SC, Hemmila MR (2009) Local wound p38 MAPK inhibition attenuates burn-induced cardiac dysfunction. Surgery 146(4):775–785. doi:10.1016/j.surg.2009.06.019 discussion 785-776

    PubMed Central  PubMed  Google Scholar 

  110. Cevik O, Oba R, Macit C, Cetinel S, Kaya OT, Sener E, Sener G (2012) Lycopene inhibits caspase-3 activity and reduces oxidative organ damage in a rat model of thermal injury. Burns 38(6):861–871. doi:10.1016/j.burns.2012.01.006

    PubMed  Google Scholar 

  111. Chang KC, Ma H, Liao WC, Lee CK, Lin CY, Chen CC (2010) The optimal time for early burn wound excision to reduce pro-inflammatory cytokine production in a murine burn injury model. Burns 36(7):1059–1066. doi:10.1016/j.burns.2010.02.004

    PubMed  Google Scholar 

  112. Wang Z, Liu L, Hu T, Lei W, Wan F, Zhang P, Xu J, Zhu H, Zhu Z, Yang Y, Hu X, Xu L, Wang S (2012) Protective effect of glucose-insulin-potassium (GIK) on intestinal tissues after severe burn in experimental rats. Burns 38(6):846–854. doi:10.1016/j.burns.2011.12.015

    PubMed  Google Scholar 

  113. Al-Ghoul WM, Abu-Shaqra S, Park BG, Fazal N (2010) Melatonin plays a protective role in postburn rodent gut pathophysiology. Int J Biol Sci 6(3):282–293

    PubMed Central  PubMed  Google Scholar 

  114. Gokakin AK, Deveci K, Kurt A, Karakus BC, Duger C, Tuzcu M, Topcu O (2013) The protective effects of sildenafil in acute lung injury in a rat model of severe scald burn: a biochemical and histopathological study. Burns. doi:10.1016/j.burns.2012.12.017

    PubMed  Google Scholar 

  115. Gao C, Liu Y, Ma L, Wang S (2012) Protective effects of ulinastatin on pulmonary damage in rats following scald injury. Burns 38(7):1027–1034. doi:10.1016/j.burns.2012.02.004

    PubMed  Google Scholar 

  116. Gao C, Huan J, Li W, Tang J (2009) Protective effects of ulinastatin on pancreatic and renal damage in rats following early scald injury. Burns 35(4):547–552. doi:10.1016/j.burns.2008.10.006

    PubMed  Google Scholar 

  117. Gao C, Peng H, Wang S, Zhang X (2012) Effects of Ligustrazine on pancreatic and renal damage after scald injury. Burns 38(1):102–107. doi:10.1016/j.burns.2011.04.022

    PubMed  Google Scholar 

  118. Wang XH, Tang HT, Lu J, Xia ZF (2010) Increased hsp70 of glucocorticoid receptor complex induced by scald and heat stress and its possible effect on the affinity of glucocorticoid receptor. Chin Med J (Engl) 123(13):1780–1785

    CAS  Google Scholar 

  119. Liu X, Wu W, Li Q, Huang X, Chen B, Du J, Zhao K, Huang Q (2009) Effect of sphingosine 1-phosphate on morphological and functional responses in endothelia and venules after scalding injury. Burns 35(8):1171–1179. doi:10.1016/j.burns.2009.02.012

    PubMed  Google Scholar 

  120. Lin X, Dai Y, Zhu G, Wan L (2009) Changes of endothelin-1 expression in cerebral basilar arteries of scald rats. Burns 35(1):98–103. doi:10.1016/j.burns.2008.04.005

    PubMed  Google Scholar 

  121. Bao C, Hu S, Zhou G, Tian Y, Wu Y, Sheng Z (2010) Effect of carbachol on intestinal mucosal blood flow, activity of Na + -K + -ATPase, expression of aquaporin-1, and intestinal absorption rate during enteral resuscitation of burn shock in rats. J Burn Care Res 31(1):200–206. doi:10.1097/BCR.0b013e3181c89eba

    PubMed  Google Scholar 

  122. Wu X, Walters TJ, Rathbone CR (2012) Skeletal muscle satellite cell activation following cutaneous burn in rats. Burns. doi:10.1016/j.burns.2012.10.016

    Google Scholar 

  123. Wu X, Baer LA, Wolf SE, Wade CE, Walters TJ (2010) The impact of muscle disuse on muscle atrophy in severely burned rats. J Surg Res 164(2):e243–e251. doi:10.1016/j.jss.2010.08.032

    PubMed Central  PubMed  Google Scholar 

  124. Wu X, Wolf SE, Walters TJ (2010) Muscle contractile properties in severely burned rats. Burns 36(6):905–911. doi:10.1016/j.burns.2010.02.003

    PubMed Central  PubMed  Google Scholar 

  125. Oliveira F, Bevilacqua LR, Anaruma CA, Boldrini Sde C, Liberti EA (2010) Morphological changes in distant muscle fibers following thermal injury in Wistar rats. Acta Cir Bras 25(6):525–528 pii:S0102-86502010000600012

    PubMed  Google Scholar 

  126. Luo HM, Hu S, Zhou GY, Bai HY, Lv Y, Wang HB, Lin HY, Sheng ZY (2012) The effects of ulinastatin on systemic inflammation, visceral vasopermeability and tissue water content in rats with scald injury. Burns. doi:10.1016/j.burns.2012.11.004

    Google Scholar 

  127. Oliveira HM, Sallam HS, Espana-Tenorio J, Chinkes D, Chung DH, Chen JD, Herndon DN (2009) Gastric and small bowel ileus after severe burn in rats: the effect of cyclooxygenase-2 inhibitors. Burns 35(8):1180–1184. doi:10.1016/j.burns.2009.02.022

    PubMed  Google Scholar 

  128. Al-Mousawi AM, Kulp GA, Branski LK, Kraft R, Mecott GA, Williams FN, Herndon DN, Jeschke MG (2010) Impact of anesthesia, analgesia, and euthanasia technique on the inflammatory cytokine profile in a rodent model of severe burn injury. Shock 34(3):261–268

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the NIH Grant RO1 GM087285-01, the CIHR #123336 funding, the CFI Leader’s Opportunity Fund (Project # 25407), the Physician’s Services Incorporated Foundation–Health Research Grant Program, the Canadian Forces Health Services. The authors thank Alicia Castillo for providing us with animal costs and housing fees here at Sunnybrook Health Sciences Centre. The authors also thank Cassandra Belo in helping to edit this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdullahi.

Additional information

A. Abdullahi and S. Amini-Nik are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 924 kb)

Supplementary material 2 (PDF 649 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdullahi, A., Amini-Nik, S. & Jeschke, M.G. Animal models in burn research. Cell. Mol. Life Sci. 71, 3241–3255 (2014). https://doi.org/10.1007/s00018-014-1612-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1612-5

Keywords

Navigation