Skip to main content

Advertisement

Log in

Microglia and inflammation: conspiracy, controversy or control?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Microglial cells contribute to normal function of the central nervous system (CNS). Besides playing a role in the innate immunity, they are also involved in neuronal plasticity and homeostasis of the CNS. While microglial cells get activated and undergo phenotypic changes in different disease contexts, they are far from being the “villains” in the CNS. Mounting evidence indicates that microglial dysfunction can exacerbate the pathogenesis of several diseases in the CNS. Several molecular mechanisms tightly regulate the production of inflammatory and toxic factors released by microglia. These mechanisms involve the interaction with other glial cells and neurons and the fine regulation of signaling and transcription activation pathways. The purpose of this review is to discuss microglia activation and to highlight the molecular pathways that can counteract the detrimental role of microglia in several neurologic diseases. Recent work presented in this review support that the understanding of microglial responses can pave the way to design new therapies for inflammatory diseases of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schulz C et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90

    PubMed  CAS  Google Scholar 

  2. Aloisi F, Ria F, Adorini L (2000) Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 21(3):141–147

    PubMed  CAS  Google Scholar 

  3. Eichhoff G, Brawek B, Garaschuk O (2011) Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim Biophys Acta 1813(5):1014–1024

    PubMed  CAS  Google Scholar 

  4. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    PubMed  CAS  Google Scholar 

  5. Davalos D et al (2012) Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 3:1227

    PubMed  PubMed Central  Google Scholar 

  6. Fuhrmann M et al (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 13(4):411–413

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Davalos D et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    PubMed  CAS  Google Scholar 

  8. Ginhoux F et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Wake H et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980

    PubMed  CAS  Google Scholar 

  10. Schafer DP et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Parkhurst CN et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Yrjanheikki J et al (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95(26):15769–15774

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Frank-Cannon TC et al (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47

    PubMed  PubMed Central  Google Scholar 

  14. Blank T, Prinz M (2013) Microglia as modulators of cognition and neuropsychiatric disorders. Glia 61(1):62–70

    PubMed  Google Scholar 

  15. Kierdorf K et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280

    PubMed  CAS  Google Scholar 

  16. Hume DA (2006) The mononuclear phagocyte system. Curr Opin Immunol 18(1):49–53

    PubMed  CAS  Google Scholar 

  17. Mildner A et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553

    PubMed  CAS  Google Scholar 

  18. Simard AR, Rivest S (2004) Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 18(9):998–1000

    PubMed  CAS  Google Scholar 

  19. Ajami B et al (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543

    PubMed  CAS  Google Scholar 

  20. Ransohoff RM (2007) Microgliosis: the questions shape the answers. Nat Neurosci 10(12):1507–1509

    PubMed  CAS  Google Scholar 

  21. Wang Y et al (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13(8):753–760

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Wirenfeldt M et al (2005) Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury. J Neurosci Res 82(4):507–514

    PubMed  CAS  Google Scholar 

  23. Pais TF, Chatterjee S (2005) Brain macrophage activation in murine cerebral malaria precedes accumulation of leukocytes and CD8+ T cell proliferation. J Neuroimmunol 163(1–2):73–83

    PubMed  CAS  Google Scholar 

  24. Logan TT, Villapol S, Symes AJ (2013) TGF-beta superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PLoS ONE 8(3):e59250

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    PubMed  CAS  Google Scholar 

  26. Codolo G et al (2013) Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8(1):e55375

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Schwartz M et al (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29(2):68–74

    PubMed  CAS  Google Scholar 

  28. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    PubMed  CAS  Google Scholar 

  29. Chao CC et al (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149(8):2736–2741

    PubMed  CAS  Google Scholar 

  30. Bhat NR et al (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18(5):1633–1641

    PubMed  CAS  Google Scholar 

  31. Takeuchi H et al (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368

    PubMed  CAS  Google Scholar 

  32. Meda L et al (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374(6523):647–650

    PubMed  CAS  Google Scholar 

  33. Pais TF et al (2008) Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway. J Neuroinflammation 5:43

    PubMed  PubMed Central  Google Scholar 

  34. Maezawa I et al (2011) Amyloid-beta protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J Biol Chem 286(5):3693–3706

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Zhang W et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542

    PubMed  CAS  Google Scholar 

  36. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69

    PubMed  CAS  Google Scholar 

  37. Tufekci KU, Genc S, Genc K (2011) The endotoxin-induced neuroinflammation model of Parkinson’s disease. Parkinsons Dis 2011:487450

    PubMed  PubMed Central  Google Scholar 

  38. Freilich RW, Woodbury ME, Ikezu T (2013) Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS ONE 8(11):e79416

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Zhao W et al (2006) Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J Neurochem 99(4):1176–1187

    PubMed  CAS  Google Scholar 

  40. Chao CC, Molitor TW, Hu S (1993) Neuroprotective role of IL-4 against activated microglia. J Immunol 151(3):1473–1481

    PubMed  CAS  Google Scholar 

  41. Shimizu E et al (2008) IL-4-induced selective clearance of oligomeric beta-amyloid peptide(1-42) by rat primary type 2 microglia. J Immunol 181(9):6503–6513

    PubMed  CAS  Google Scholar 

  42. Miron VE et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Ponomarev ED et al (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 27(40):10714–10721

    PubMed  CAS  Google Scholar 

  44. Colton CA et al (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 3:27

    PubMed  PubMed Central  Google Scholar 

  45. Vogel DY et al (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation 10:35

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Hanamsagar R, Hanke ML, Kielian T (2012) Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends Immunol 33(7):333–342

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Klesney-Tait J, Turnbull IR, Colonna M (2006) The TREM receptor family and signal integration. Nat Immunol 7(12):1266–1273

    PubMed  CAS  Google Scholar 

  48. Schmid CD et al (2002) Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem 83(6):1309–1320

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Daws MR et al (2003) Pattern recognition by TREM-2: binding of anionic ligands. J Immunol 171(2):594–599

    PubMed  CAS  Google Scholar 

  51. Stefano L et al (2009) The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem 110(1):284–294

    PubMed  CAS  Google Scholar 

  52. Chouery E et al (2008) Mutations in TREM2 lead to pure early-onset dementia without bone cysts. Hum Mutat 29(9):E194–E204

    PubMed  Google Scholar 

  53. Kondo T et al (2002) Heterogeneity of presenile dementia with bone cysts (Nasu-Hakola disease): three genetic forms. Neurology 59(7):1105–1107

    PubMed  CAS  Google Scholar 

  54. Jiang T et al (2013) TREM2 in Alzheimer’s disease. Mol Neurobiol 48(1):180–185

    PubMed  CAS  Google Scholar 

  55. Napoli I, Neumann H (2010) Protective effects of microglia in multiple sclerosis. Exp Neurol 225(1):24–28

    PubMed  Google Scholar 

  56. Takahashi K et al (2007) TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 4(4):e124

    PubMed  PubMed Central  Google Scholar 

  57. Olah M et al (2012) Identification of a microglia phenotype supportive of remyelination. Glia 60(2):306–321

    PubMed  Google Scholar 

  58. Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7(4):255–266

    PubMed  CAS  Google Scholar 

  59. Pillai S et al (2012) Siglecs and immune regulation. Annu Rev Immunol 30:357–392

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Angata T et al (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277(27):24466–24474

    PubMed  CAS  Google Scholar 

  61. Wang Y, Neumann H (2010) Alleviation of neurotoxicity by microglial human Siglec-11. J Neurosci 30(9):3482–3488

    PubMed  CAS  Google Scholar 

  62. Claude J et al (2013) Microglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst. J Neurosci 33(46):18270–18276

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Griciuc A et al (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78(4):631–643

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Mihrshahi R, Barclay AN, Brown MH (2009) Essential roles for Dok2 and RasGAP in CD200 receptor-mediated regulation of human myeloid cells. J Immunol 183(8):4879–4886

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Wright GJ et al (2000) Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13(2):233–242

    PubMed  CAS  Google Scholar 

  66. Lyons A et al (2007) CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J Neurosci 27(31):8309–8313

    PubMed  CAS  Google Scholar 

  67. Dentesano G et al (2012) Inhibition of CD200R1 expression by C/EBP beta in reactive microglial cells. J Neuroinflammation 9:165

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Lyons A et al (2012) Dok2 mediates the CD200Fc attenuation of Abeta-induced changes in glia. J Neuroinflammation 9:107

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Hoek RM et al (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290(5497):1768–1771

    PubMed  CAS  Google Scholar 

  70. Hernangomez M et al (2012) CD200–CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia 60(9):1437–1450

    PubMed  Google Scholar 

  71. Chitnis T et al (2007) Elevated neuronal expression of CD200 protects Wlds mice from inflammation-mediated neurodegeneration. Am J Pathol 170(5):1695–1712

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Koning N et al (2009) Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron–glia and glia–glia interactions. J Neuropathol Exp Neurol 68(2):159–167

    PubMed  CAS  Google Scholar 

  73. Walker DG et al (2009) Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol 215(1):5–19

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Harrison JK et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 95(18):10896–10901

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Wolf Y et al (2013) Microglia, seen from the CX3CR1 angle. Front Cell Neurosci 7:26

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Garton KJ et al (2001) Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276(41):37993–38001

    PubMed  CAS  Google Scholar 

  77. Maciejewski-Lenoir D et al (1999) Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 163(3):1628–1635

    PubMed  CAS  Google Scholar 

  78. Zujovic V et al (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29(4):305–315

    PubMed  CAS  Google Scholar 

  79. Noda M et al (2011) Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J Biol Chem 286(3):2308–2319

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Cardona AE et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924

    PubMed  CAS  Google Scholar 

  81. Rogers JT et al (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31(45):16241–16250

    PubMed  CAS  Google Scholar 

  82. Garcia JA et al (2013) Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. J Immunol 191(3):1063–1072

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Zhu W et al (2013) Elevated expression of fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) in the dorsal root ganglia and spinal cord in experimental autoimmune encephalomyelitis: implications in multiple sclerosis-induced neuropathic pain. Biomed Res Int 2013:480702

    PubMed  PubMed Central  Google Scholar 

  84. Wu J et al (2013) Suppression of central chemokine fractalkine receptor signaling alleviates amyloid-induced memory deficiency. Neurobiol Aging 34(12):2843–2852

    PubMed  CAS  Google Scholar 

  85. Lee S et al (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177(5):2549–2562

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Cho SH et al (2011) CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem 286(37):32713–32722

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Saunders AE, Johnson P (2010) Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal 22(3):339–348

    PubMed  CAS  Google Scholar 

  88. Ford AL et al (1995) Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 154(9):4309–4321

    PubMed  CAS  Google Scholar 

  89. Sedgwick JD et al (1991) Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 88(16):7438–7442

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Masliah E et al (1991) Immunoreactivity of CD45, a protein phosphotyrosine phosphatase. Alzheimer’s disease. Acta Neuropathol 83(1):12–20

    CAS  Google Scholar 

  91. Tan J et al (2000) CD45 opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J Neurosci 20(20):7587–7594

    PubMed  CAS  Google Scholar 

  92. Zhu Y et al (2008) CD45RB is a novel molecular therapeutic target to inhibit Abeta peptide-induced microglial MAPK activation. PLoS ONE 3(5):e2135

    PubMed  PubMed Central  Google Scholar 

  93. Mott RT et al (2004) Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia 46(4):369–379

    PubMed  Google Scholar 

  94. Mason LH et al (2006) Regulation of Ly49D/DAP12 signal transduction by Src-family kinases and CD45. J Immunol 176(11):6615–6623

    PubMed  CAS  Google Scholar 

  95. Taylor DL, Diemel LT, Pocock JM (2003) Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J Neurosci 23(6):2150–2160

    PubMed  CAS  Google Scholar 

  96. Lee M, Schwab C, McGeer PL (2011) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59(1):152–165

    PubMed  Google Scholar 

  97. Lee M (2013) Neurotransmitters and microglial-mediated neuroinflammation. Curr Protein Pept Sci 14(1):21–32

    PubMed  CAS  Google Scholar 

  98. Chan-Palay V, Asan E (1989) Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression. J Comp Neurol 287(3):373–392

    PubMed  CAS  Google Scholar 

  99. Albuquerque EX et al (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Zhang L et al (1998) Cholinergic agonists increase intracellular Ca2+ in cultured human microglia. Neurosci Lett 255(1):33–36

    PubMed  CAS  Google Scholar 

  101. Shytle RD et al (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89(2):337–343

    PubMed  CAS  Google Scholar 

  102. De Simone R et al (2005) Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation 2(1):4

    PubMed  PubMed Central  Google Scholar 

  103. Mori K et al (2002) Effects of norepinephrine on rat cultured microglial cells that express alpha1, alpha2, beta1 and beta2 adrenergic receptors. Neuropharmacology 43(6):1026–1034

    PubMed  CAS  Google Scholar 

  104. Dello Russo C et al (2004) Inhibition of microglial inflammatory responses by norepinephrine: effects on nitric oxide and interleukin-1beta production. J Neuroinflammation 1(1):9

    PubMed  PubMed Central  Google Scholar 

  105. Waschek JA (2013) VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br J Pharmacol 169(3):512–523

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Kim WK et al (2000) Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-alpha production in injured spinal cord and in activated microglia via a cAMP-dependent pathway. J Neurosci 20(10):3622–3630

    PubMed  CAS  Google Scholar 

  107. Delgado M, Leceta J, Ganea D (2003) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J Leukoc Biol 73(1):155–164

    PubMed  CAS  Google Scholar 

  108. Delgado M, Varela N, Gonzalez-Rey E (2008) Vasoactive intestinal peptide protects against beta-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels. Glia 56(10):1091–1103

    PubMed  Google Scholar 

  109. Heese K, Hock C, Otten U (1998) Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem 70(2):699–707

    PubMed  CAS  Google Scholar 

  110. Neumann H et al (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA 95(10):5779–5784

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Mizoguchi Y et al (2009) Brain-derived neurotrophic factor induces sustained elevation of intracellular Ca2+ in rodent microglia. J Immunol 183(12):7778–7786

    PubMed  CAS  Google Scholar 

  112. Nakajima K et al (1998) Neurotrophins regulate the function of cultured microglia. Glia 24(3):272–289

    PubMed  CAS  Google Scholar 

  113. Tzeng SF, Huang HY (2003) Downregulation of inducible nitric oxide synthetase by neurotrophin-3 in microglia. J Cell Biochem 90(2):227–233

    PubMed  CAS  Google Scholar 

  114. Yamashita H et al (1994) Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem 269(31):20172–20178

    PubMed  CAS  Google Scholar 

  115. Spittau B et al (2013) Endogenous transforming growth factor-beta promotes quiescence of primary microglia in vitro. Glia 61(2):287–300

    PubMed  Google Scholar 

  116. Qian L et al (2008) Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia. J Immunol 181(1):660–668

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Chen S et al (2002) TGF-beta1 upregulates CX3CR1 expression and inhibits fractalkine-stimulated signaling in rat microglia. J Neuroimmunol 133(1–2):46–55

    PubMed  CAS  Google Scholar 

  118. Makwana M et al (2007) Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. J Neurosci 27(42):11201–11213

    PubMed  CAS  Google Scholar 

  119. Brionne TC et al (2003) Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40(6):1133–1145

    PubMed  CAS  Google Scholar 

  120. Hu X et al (2007) Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol 82(2):237–243

    PubMed  CAS  Google Scholar 

  121. Natoli G, Ghisletti S, Barozzi I (2011) The genomic landscapes of inflammation. Genes Dev 25(2):101–106

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Zhang G et al (2013) Hypothalamic programming of systemic ageing involving IKK-beta. NF-kappaB and GnRH. Nature 497(7448):211–216

    CAS  Google Scholar 

  123. Milatovic D et al (2003) Pharmacologic suppression of neuronal oxidative damage and dendritic degeneration following direct activation of glial innate immunity in mouse cerebrum. J Neurochem 87(6):1518–1526

    PubMed  CAS  Google Scholar 

  124. Hayden MS, Ghosh S (2012) NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26(3):203–234

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Cho IH et al (2008) Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. Brain 131(Pt 11):3019–3033

    PubMed  PubMed Central  Google Scholar 

  126. Frakes AE et al (2014) Microglia induce motor neuron death via the classical NF-kappaB pathway in amyotrophic lateral sclerosis. Neuron 81(5):1009–1023

    PubMed  CAS  Google Scholar 

  127. Cheret C et al (2008) Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci 28(46):12039–12051

    PubMed  CAS  Google Scholar 

  128. Pawate S et al (2004) Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 77(4):540–551

    PubMed  CAS  Google Scholar 

  129. Innamorato NG et al (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181(1):680–689

    PubMed  CAS  Google Scholar 

  130. Koh K et al (2011) Transcription factor Nrf2 suppresses LPS-induced hyperactivation of BV-2 microglial cells. J Neuroimmunol 233(1–2):160–167

    PubMed  CAS  Google Scholar 

  131. Ponomarev ED, Veremeyko T, Weiner HL (2013) MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 61(1):91–103

    PubMed  PubMed Central  Google Scholar 

  132. Cardoso AL et al (2012) miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 135(1):73–88

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Parisi C et al (2013) Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation. Cell Death Dis 4:e959

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Ponomarev ED et al (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17(1):64–70

    PubMed  CAS  PubMed Central  Google Scholar 

  135. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    PubMed  CAS  Google Scholar 

  136. Glozak MA et al (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    PubMed  CAS  Google Scholar 

  137. Faraco G et al (2009) Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 36(2):269–279

    PubMed  CAS  Google Scholar 

  138. Giorgini F et al (2008) Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. J Biol Chem 283(12):7390–7400

    PubMed  CAS  Google Scholar 

  139. Martinez-Redondo P, Vaquero A (2013) The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer 4(3–4):148–163

    PubMed  PubMed Central  Google Scholar 

  140. Kawahara TL et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136(1):62–74

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Yeung F et al (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23(12):2369–2380

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Rothgiesser KM et al (2010) SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci 123(Pt 24):4251–4258

    PubMed  CAS  Google Scholar 

  143. Chen J et al (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280(48):40364–40374

    PubMed  CAS  Google Scholar 

  144. Pandithage R et al (2008) The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol 180(5):915–929

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Pais TF et al (2013) The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO J 32(19):2603–2616

    PubMed  CAS  Google Scholar 

  146. Beutner C et al (2013) Engineered stem cell-derived microglia as therapeutic vehicle for experimental autoimmune encephalomyelitis. Gene Ther 20(8):797–806

    PubMed  CAS  Google Scholar 

  147. Yasojima K et al (1999) Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res 830(2):226–236

    PubMed  CAS  Google Scholar 

  148. Fan LW et al (2013) Celecoxib attenuates systemic lipopolysaccharide-induced brain inflammation and white matter injury in the neonatal rats. Neuroscience 240:27–38

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Lim GP et al (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 20(15):5709–5714

    PubMed  CAS  Google Scholar 

  150. Szekely CA et al (2004) Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology 23(4):159–169

    PubMed  Google Scholar 

  151. Klegeris A, McGeer PL (2005) Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr Alzheimer Res 2(3):355–365

    PubMed  CAS  Google Scholar 

  152. Aisen PS et al (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289(21):2819–2826

    PubMed  CAS  Google Scholar 

  153. Reines SA et al (2004) Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology 62(1):66–71

    PubMed  CAS  Google Scholar 

  154. Yong VW et al (2004) The promise of minocycline in neurology. Lancet Neurol 3(12):744–751

    PubMed  Google Scholar 

  155. Good ML, Hussey DL (2003) Minocycline: stain devil? Br J Dermatol 149(2):237–239

    PubMed  CAS  Google Scholar 

  156. Aronson AL (1980) Pharmacotherapeutics of the newer tetracyclines. J Am Vet Med Assoc 176(10):1061–1068

    PubMed  CAS  Google Scholar 

  157. Blum D et al (2004) Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis 17(3):359–366

    PubMed  CAS  Google Scholar 

  158. Ryan ME, Greenwald RA, Golub LM (1996) Potential of tetracyclines to modify cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 8(3):238–247

    PubMed  CAS  Google Scholar 

  159. Lin S et al (2001) Minocycline blocks nitric oxide-induced neurotoxicity by inhibition p38 MAP kinase in rat cerebellar granule neurons. Neurosci Lett 315(1–2):61–64

    PubMed  CAS  Google Scholar 

  160. Pi R et al (2004) Minocycline prevents glutamate-induced apoptosis of cerebellar granule neurons by differential regulation of p38 and Akt pathways. J Neurochem 91(5):1219–1230

    PubMed  CAS  Google Scholar 

  161. Wu DC et al (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22(5):1763–1771

    PubMed  CAS  Google Scholar 

  162. Yrjanheikki J et al (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96(23):13496–13500

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Ferretti MT et al (2012) Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J Neuroinflammation 9:62

    PubMed  CAS  PubMed Central  Google Scholar 

  164. Biscaro B et al (2012) Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer’s disease. Neurodegener Dis 9(4):187–198

    PubMed  CAS  Google Scholar 

  165. Seabrook TJ et al (2006) Minocycline affects microglia activation, Abeta deposition, and behavior in APP-tg mice. Glia 53(7):776–782

    PubMed  Google Scholar 

  166. Popovic N et al (2002) Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 51(2):215–223

    PubMed  CAS  Google Scholar 

  167. Nikodemova M et al (2007) Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC)alpha/betaII. J Biol Chem 282(20):15208–15216

    PubMed  CAS  Google Scholar 

  168. Plane JM et al (2010) Prospects for minocycline neuroprotection. Arch Neurol 67(12):1442–1448

    PubMed  PubMed Central  Google Scholar 

  169. Metz LM et al (2004) Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol 55(5):756

    PubMed  Google Scholar 

  170. Zabad RK et al (2007) The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: a pilot study. Mult Scler 13(4):517–526

    PubMed  CAS  Google Scholar 

  171. Zhang Y et al (2008) Pilot study of minocycline in relapsing–remitting multiple sclerosis. Can J Neurol Sci 35(2):185–191

    PubMed  CAS  Google Scholar 

  172. Liu Y et al (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 26(50):12904–12913

    PubMed  CAS  Google Scholar 

  173. Murugaiyan G et al (2011) Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol 187(5):2213–2221

    PubMed  CAS  PubMed Central  Google Scholar 

  174. Akerblom M et al (2013) Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9. Nat Commun 4:1770

    PubMed  Google Scholar 

  175. Tabas I, Glass CK (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339(6116):166–172

    PubMed  CAS  PubMed Central  Google Scholar 

  176. Liu T et al (1994) Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 25(7):1481–1488

    PubMed  CAS  Google Scholar 

  177. Rieckmann P et al (1995) Tumor necrosis factor-alpha messenger RNA expression in patients with relapsing–remitting multiple sclerosis is associated with disease activity. Ann Neurol 37(1):82–88

    PubMed  CAS  Google Scholar 

  178. Alvarez A et al (2007) Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol Aging 28(4):533–536

    PubMed  CAS  Google Scholar 

  179. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45

    PubMed  PubMed Central  Google Scholar 

  180. He P et al (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178(5):829–841

    PubMed  CAS  PubMed Central  Google Scholar 

  181. McCoy MK et al (2006) Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci 26(37):9365–9375

    PubMed  CAS  PubMed Central  Google Scholar 

  182. McCoy MK et al (2008) Intranigral lentiviral delivery of dominant-negative TNF attenuates neurodegeneration and behavioral deficits in hemiparkinsonian rats. Mol Ther 16(9):1572–1579

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Cox FF et al (2012) CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav Immun 26(5):789–796

    PubMed  CAS  Google Scholar 

  184. Minami SS et al (2012) Selective targeting of microglia by quantum dots. J Neuroinflammation 9:22

    PubMed  CAS  PubMed Central  Google Scholar 

  185. Priller J et al (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7(12):1356–1361

    PubMed  CAS  Google Scholar 

  186. Derecki NC et al (2012) Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484(7392):105–109

    PubMed  CAS  PubMed Central  Google Scholar 

  187. Sawada M et al (1998) Brain-specific gene expression by immortalized microglial cell-mediated gene transfer in the mammalian brain. FEBS Lett 433(1–2):37–40

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Oldriska Chutna, Pedro Antas and Maria Salomé Gomes for critical editing and reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa F. Pais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, A., Miller-Fleming, L. & Pais, T.F. Microglia and inflammation: conspiracy, controversy or control?. Cell. Mol. Life Sci. 71, 3969–3985 (2014). https://doi.org/10.1007/s00018-014-1670-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1670-8

Keywords

Navigation