Skip to main content
Log in

Mechanisms of endothelial cell migration

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cell migration plays a central role in a variety of physiological and pathological processes during our whole life. Cellular movement is a complex, tightly regulated multistep process. Although the principle mechanisms of migration follow a defined general motility cycle, the cell type and the context of moving influences the detailed mode of migration. Endothelial cells migrate during vasculogenesis and angiogenesis but also in a damaged vessel to restore vessel integrity. Depending on the situation they migrate individually, in chains or sheets and complex signaling, intercellular signals as well as environmental cues modulate the process. Here, the different modes of cell migration, the peculiarities of endothelial cell migration and specific guidance molecules controlling this process will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Arf6:

ADP-ribosylation factor 6

Arp2/3:

Activators of actin related proteins 2/3

DCC:

Deleted in colorectal carcinoma

Dll4:

Delta-like 4

ECM:

Extra cellular matrix

bFGF:

Basic fibroblast growth factor

G-actin:

Globular actin

GAP:

GTPase-activating protein

GEF:

Guanine nucleotide exchange factor

MT1-MMP:

Membrane type 1-matrix metalloprotease

MTOC:

Microtubule-organization center

Nrp:

Neuropilin

PDGF:

Platelet-derived growth factor

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

PI(4,5)P2:

Phosphatidyl-inositol 4,5-bisphosphate

PTEN:

Phosphatase and tensin homolog

Robo:

Roundabout

SDF1:

Stromal cell-derived factor 1

TGFβ:

Transforming growth factor-β

Unc5B:

Unc-5 homolog B

VEGF:

Vascular endothelial growth factor

VEGFR:

VEGF receptor

References

  1. Gail MH, Boone CW (1970) The locomotion of mouse fibroblasts in tissue culture. Biophys J 10:980–993

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Anand-Apte B, Zetter B (1997) Signaling mechanisms in growth factor-stimulated cell motility. Stem Cells 15:259–267

    PubMed  CAS  Google Scholar 

  3. Stoker M, Gherardi E (1991) Regulation of cell movement: the motogenic cytokines. Biochim Biophys Acta 1072:81–102

    PubMed  CAS  Google Scholar 

  4. Li H, Peng W, Zhuang J, Lu Y, Jian W, Wei Y, Li W, Xu Y (2013) Vaspin attenuates high glucose-induced vascular smooth muscle cells proliferation and chemokinesis by inhibiting the MAPK, PI3K/Akt, and NF-kappaB signaling pathways. Atherosclerosis 228:61–68

    PubMed  CAS  Google Scholar 

  5. Seppa H, Grotendorst G, Seppa S, Schiffmann E, Martin GR (1982) Platelet-derived growth factor in chemotactic for fibroblasts. J Cell Biol 92:584–588

    PubMed  CAS  Google Scholar 

  6. Arrieumerlou C, Meyer T (2005) A local coupling model and compass parameter for eukaryotic chemotaxis. Dev Cell 8:215–227

    PubMed  CAS  Google Scholar 

  7. Bourne HR, Weiner O (2002) A chemical compass. Nature 419:21

    PubMed  CAS  Google Scholar 

  8. Carter SB (1965) Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208:1183–1187

    PubMed  CAS  Google Scholar 

  9. Zhao M (2009) Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol 20:674–682

    PubMed  CAS  Google Scholar 

  10. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Aman A, Piotrowski T (2010) Cell migration during morphogenesis. Dev Biol 341:20–33

    PubMed  CAS  Google Scholar 

  12. Iijima M, Devreotes P (2002) Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109:599–610

    PubMed  CAS  Google Scholar 

  13. Weiner OD (2002) Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr Opin Cell Biol 14:196–202

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Benard V, Bohl BP, Bokoch GM (1999) Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 274:13198–13204

    PubMed  CAS  Google Scholar 

  15. Srinivasan S, Wang F, Glavas S, Ott A, Hofmann F, Aktories K, Kalman D, Bourne HR (2003) Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 160:375–385

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    PubMed  CAS  Google Scholar 

  17. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609

    PubMed  CAS  Google Scholar 

  18. Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR (2002) P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 108:809–821

    PubMed  CAS  Google Scholar 

  19. Waterman-Storer CM, Worthylake RA, Liu BP, Burridge K, Salmon ED (1999) Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat Cell Biol 1:45–50

    PubMed  CAS  Google Scholar 

  20. Rooney C, White G, Nazgiewicz A, Woodcock SA, Anderson KI, Ballestrem C, Malliri A (2010) The Rac activator STEF (Tiam2) regulates cell migration by microtubule-mediated focal adhesion disassembly. EMBO Rep 11:292–298

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Etienne-Manneville S (2013) Microtubules in cell migration. Annu Rev Cell Dev Biol 29:471–499

    PubMed  CAS  Google Scholar 

  22. Pankov R, Endo Y, Even-Ram S, Araki M, Clark K, Cukierman E, Matsumoto K, Yamada KM (2005) A Rac switch regulates random versus directionally persistent cell migration. J Cell Biol 170:793–802

    PubMed  CAS  PubMed Central  Google Scholar 

  23. O’Connor K, Chen M (2013) Dynamic functions of RhoA in tumor cell migration and invasion. Small GTPases 4:141–147

    PubMed  PubMed Central  Google Scholar 

  24. Welch MD, Mullins RD (2002) Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–288

    PubMed  CAS  Google Scholar 

  25. Cory GO, Ridley AJ (2002) Cell motility: braking WAVEs. Nature 418:732–733

    PubMed  CAS  Google Scholar 

  26. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    PubMed  CAS  Google Scholar 

  27. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix—cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    PubMed  CAS  Google Scholar 

  28. Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153:881–888

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    PubMed  CAS  Google Scholar 

  30. Jay PY, Pham PA, Wong SA, Elson EL (1995) A mechanical function of myosin II in cell motility. J Cell Sci 108(Pt 1):387–393

    PubMed  CAS  Google Scholar 

  31. Spiering D, Hodgson L (2011) Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adhes Migr 5:170–180

    Google Scholar 

  32. Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133:1403–1415

    PubMed  CAS  Google Scholar 

  33. Gov NS (2009) Traction forces during collective cell motion. HFSP J 3:223–227

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 127:2525–2532

    PubMed  CAS  Google Scholar 

  35. Friedl P, Hegerfeldt Y, Tusch M (2004) Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48:441–449

    PubMed  CAS  Google Scholar 

  36. van Kempen LC, van den Oord JJ, van Muijen GN, Weidle UH, Bloemers HP, Swart GW (2000) Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. Am J Pathol 156:769–774

    PubMed  PubMed Central  Google Scholar 

  37. Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14:570–581

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Vitorino P, Meyer T (2008) Modular control of endothelial sheet migration. Genes Dev 22:3268–3281

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Farooqui R, Fenteany G (2005) Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J Cell Sci 118:51–63

    PubMed  CAS  Google Scholar 

  40. Lecaudey V, Cakan-Akdogan G, Norton WH, Gilmour D (2008) Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development 135:2695–2705

    PubMed  CAS  Google Scholar 

  41. Aman A, Piotrowski T (2008) Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell 15:749–761

    PubMed  CAS  Google Scholar 

  42. Hegerfeldt Y, Tusch M, Brocker EB, Friedl P (2002) Collective cell movement in primary melanoma explants: plasticity of cell–cell interaction, beta1-integrin function, and migration strategies. Cancer Res 62:2125–2130

    PubMed  CAS  Google Scholar 

  43. Valentin G, Haas P, Gilmour D (2007) The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol 17:1026–1031

    PubMed  CAS  Google Scholar 

  44. Kolega J (1981) The movement of cell clusters in vitro: morphology and directionality. J Cell Sci 49:15–32

    PubMed  CAS  Google Scholar 

  45. Friedl P, Noble PB, Walton PA, Laird DW, Chauvin PJ, Tabah RJ, Black M, Zanker KS (1995) Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res 55:4557–4560

    PubMed  CAS  Google Scholar 

  46. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    PubMed  CAS  Google Scholar 

  47. Friedl P, Borgmann S, Brocker EB (2001) Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement. J Leukoc Biol 70:491–509

    PubMed  CAS  Google Scholar 

  48. Solnica-Krezel L (2005) Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15:R213–R228

    PubMed  CAS  Google Scholar 

  49. Le NF, Klein C, Tintu A, Pries A, Buschmann I (2008) Neural guidance molecules, tip cells, and mechanical factors in vascular development. Cardiovasc Res 78:232–241

    Google Scholar 

  50. Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904

    PubMed  CAS  Google Scholar 

  51. Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100:209–219

    PubMed  CAS  Google Scholar 

  52. Boguslavsky S, Grosheva I, Landau E, Shtutman M, Cohen M, Arnold K, Feinstein E, Geiger B, Bershadsky A (2007) p120 catenin regulates lamellipodial dynamics and cell adhesion in cooperation with cortactin. Proc Natl Acad Sci USA 104:10882–10887

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Geisbrecht ER, Montell DJ (2002) Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol 4:616–620

    PubMed  CAS  Google Scholar 

  54. Hofmann UB, Eggert AA, Blass K, Brocker EB, Becker JC (2003) Expression of matrix metalloproteinases in the microenvironment of spontaneous and experimental melanoma metastases reflects the requirements for tumor formation. Cancer Res 63:8221–8225

    PubMed  CAS  Google Scholar 

  55. Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P, Balbin M, Lopez-Otin C, Shapiro S, Inada M, Krane S, Allen E, Chung D, Weiss SJ (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167:769–781

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5:711–719

    PubMed  CAS  Google Scholar 

  58. Ferguson JE III, Kelley RW, Patterson C (2005) Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arterioscler Thromb Vasc Biol 25:2246–2254

    PubMed  CAS  Google Scholar 

  59. Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104:576–588

    PubMed  CAS  Google Scholar 

  60. Noden DM (1988) Interactions and fates of avian craniofacial mesenchyme. Development 103(Suppl):121–140

    PubMed  Google Scholar 

  61. Cleaver O, Krieg PA (1998) VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 125:3905–3914

    PubMed  CAS  Google Scholar 

  62. Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136

    PubMed  CAS  Google Scholar 

  63. Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990

    PubMed  CAS  Google Scholar 

  64. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    PubMed  CAS  Google Scholar 

  65. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    PubMed  CAS  Google Scholar 

  66. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2:a006502

    PubMed  PubMed Central  Google Scholar 

  67. Nakashima Y, Wight TN, Sueishi K (2008) Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res 79:14–23

    PubMed  CAS  Google Scholar 

  68. Weis SM (2008) Vascular permeability in cardiovascular disease and cancer. Curr Opin Hematol 15:243–249

    PubMed  CAS  Google Scholar 

  69. Vitorino P, Hammer M, Kim J, Meyer T (2011) A steering model of endothelial sheet migration recapitulates monolayer integrity and directed collective migration. Mol Cell Biol 31:342–350

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Michaelis UR, Chavakis E, Kruse C, Jungblut B, Kaluza D, Wandzioch K, Manavski Y, Heide H, Santoni MJ, Potente M, Eble JA, Borg JP, Brandes RP (2013) The polarity protein Scrib is essential for directed endothelial cell migration. Circ Res 112:924–934

    PubMed  CAS  Google Scholar 

  71. Carmeliet P, De SF, Loges S, Mazzone M (2009) Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat Rev Clin Oncol 6:315–326

    PubMed  CAS  Google Scholar 

  72. Germain S, Monnot C, Muller L, Eichmann A (2010) Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding. Curr Opin Hematol 17:245–251

    PubMed  CAS  Google Scholar 

  73. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    PubMed  CAS  Google Scholar 

  74. Hellstrom M, Phng LK, Gerhardt H (2007) VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adhes Migr 1:133–136

    Google Scholar 

  75. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104:3219–3224

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Suchting S, Freitas C, Le NF, Benedito R, Breant C, Duarte A, Eichmann A (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 104:3225–3230

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16:196–208

    PubMed  CAS  Google Scholar 

  79. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    PubMed  CAS  PubMed Central  Google Scholar 

  80. De SF, Segura I, De BK, Hohensinner PJ, Carmeliet P (2009) Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol 29:639–649

    Google Scholar 

  81. Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953

    PubMed  CAS  Google Scholar 

  82. Bentley K, Mariggi G, Gerhardt H, Bates PA (2009) Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol 5:e1000549

    PubMed  PubMed Central  Google Scholar 

  83. Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3:a006569

    PubMed  Google Scholar 

  84. Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4:241–246

    PubMed  PubMed Central  Google Scholar 

  85. Kater SB, Rehder V (1995) The sensory-motor role of growth cone filopodia. Curr Opin Neurobiol 5:68–74

    PubMed  CAS  Google Scholar 

  86. Fischer RS, Gardel M, Ma X, Adelstein RS, Waterman CM (2009) Local cortical tension by myosin II guides 3D endothelial cell branching. Curr Biol 19:260–265

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Phng LK, Stanchi F, Gerhardt H (2013) Filopodia are dispensable for endothelial tip cell guidance. Development 140:4031–4040

    PubMed  CAS  Google Scholar 

  88. del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker JS, Larrivee B, Breant C, Duarte A, Takakura N, Fukamizu A, Penninger J, Eichmann A (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116:4025–4033

    PubMed  Google Scholar 

  89. Lu X, Le NF, Yuan L, Jiang Q, De LB, Sugiyama D, Breant C, Claes F, De SF, Thomas JL, Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A (2004) The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432:179–186

    PubMed  CAS  Google Scholar 

  90. Yana I, Sagara H, Takaki S, Takatsu K, Nakamura K, Nakao K, Katsuki M, Taniguchi S, Aoki T, Sato H, Weiss SJ, Seiki M (2007) Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J Cell Sci 120:1607–1614

    PubMed  CAS  Google Scholar 

  91. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    PubMed  CAS  Google Scholar 

  92. Nguyen M, Arkell J, Jackson CJ (2001) Human endothelial gelatinases and angiogenesis. Int J Biochem Cell Biol 33:960–970

    PubMed  CAS  Google Scholar 

  93. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051

    PubMed  CAS  Google Scholar 

  94. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA 97:4052–4057

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151:879–889

    PubMed  CAS  PubMed Central  Google Scholar 

  98. O’Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J, Moses MA (1999) Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274:29568–29571

    PubMed  Google Scholar 

  99. Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaisse J (2000) Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 486:247–251

    PubMed  CAS  Google Scholar 

  100. Hynes RO, Bader BL, Hodivala-Dilke K (1999) Integrins in vascular development. Braz J Med Biol Res 32:501–510

    PubMed  CAS  Google Scholar 

  101. Serini G, Valdembri D, Bussolino F (2006) Integrins and angiogenesis: a sticky business. Exp Cell Res 312:651–658

    PubMed  CAS  Google Scholar 

  102. Kiosses WB, Shattil SJ, Pampori N, Schwartz MA (2001) Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol 3:316–320

    PubMed  CAS  Google Scholar 

  103. Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ, Plow EF (2000) A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 6:851–860

    PubMed  CAS  Google Scholar 

  104. Woodard AS, Garcia-Cardena G, Leong M, Madri JA, Sessa WC, Languino LR (1998) The synergistic activity of alphavbeta3 integrin and PDGF receptor increases cell migration. J Cell Sci 111(Pt 4):469–478

    PubMed  CAS  Google Scholar 

  105. Carlson TR, Hu H, Braren R, Kim YH, Wang RA (2008) Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development 135:2193–2202

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Kim S, Harris M, Varner JA (2000) Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. J Biol Chem 275:33920–33928

    PubMed  CAS  Google Scholar 

  107. Hynes RO (2007) Cell-matrix adhesion in vascular development. J Thromb Haemost 5(Suppl 1):32–40

    PubMed  CAS  Google Scholar 

  108. Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO, Hodivala-Dilke KM (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34

    PubMed  CAS  Google Scholar 

  109. Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105

    PubMed  CAS  Google Scholar 

  110. Goh KL, Yang JT, Hynes RO (1997) Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development 124:4309–4319

    PubMed  CAS  Google Scholar 

  111. van der Flier A, Badu-Nkansah K, Whittaker CA, Crowley D, Bronson RT, Lacy-Hulbert A, Hynes RO (2010) Endothelial alpha5 and alphav integrins cooperate in remodeling of the vasculature during development. Development 137:2439–2449

    PubMed  PubMed Central  Google Scholar 

  112. Legate KR, Wickstrom SA, Fassler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23:397–418

    PubMed  CAS  Google Scholar 

  113. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85:979–1000

    PubMed  CAS  Google Scholar 

  114. Fujiwara H, Kikkawa Y, Sanzen N, Sekiguchi K (2001) Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through alpha3beta1 and alpha6beta1 integrins. J Biol Chem 276:17550–17558

    PubMed  CAS  Google Scholar 

  115. Fujiwara H, Gu J, Sekiguchi K (2004) Rac regulates integrin-mediated endothelial cell adhesion and migration on laminin-8. Exp Cell Res 292:67–77

    PubMed  CAS  Google Scholar 

  116. Talts JF, Sasaki T, Miosge N, Gohring W, Mann K, Mayne R, Timpl R (2000) Structural and functional analysis of the recombinant G domain of the laminin alpha4 chain and its proteolytic processing in tissues. J Biol Chem 275:35192–35199

    PubMed  CAS  Google Scholar 

  117. Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, Sorokin L, Risling M, Cao Y, Tryggvason K (2002) Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol 22:1194–1202

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Sorokin LM, Pausch F, Frieser M, Kroger S, Ohage E, Deutzmann R (1997) Developmental regulation of the laminin alpha5 chain suggests a role in epithelial and endothelial cell maturation. Dev Biol 189:285–300

    PubMed  CAS  Google Scholar 

  119. Estrach S, Cailleteau L, Franco CA, Gerhardt H, Stefani C, Lemichez E, Gagnoux-Palacios L, Meneguzzi G, Mettouchi A (2011) Laminin-binding integrins induce Dll4 expression and Notch signaling in endothelial cells. Circ Res 109:172–182

    PubMed  CAS  Google Scholar 

  120. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107

    PubMed  CAS  Google Scholar 

  121. Arima S, Nishiyama K, Ko T, Arima Y, Hakozaki Y, Sugihara K, Koseki H, Uchijima Y, Kurihara Y, Kurihara H (2011) Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138:4763–4776

    PubMed  CAS  Google Scholar 

  122. Bentley K, Franco CA, Philippides A, Blanco R, Dierkes M, Gebala V, Stanchi F, Jones M, Aspalter IM, Cagna G, Westrom S, Claesson-Welsh L, Vestweber D, Gerhardt H (2014) The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16:309–321

    PubMed  CAS  Google Scholar 

  123. Blum Y, Belting HG, Ellertsdottir E, Herwig L, Luders F, Affolter M (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316:312–322

    PubMed  CAS  Google Scholar 

  124. Lenard A, Ellertsdottir E, Herwig L, Krudewig A, Sauteur L, Belting HG, Affolter M (2013) In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell 25:492–506

    PubMed  CAS  Google Scholar 

  125. Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R, Johnson E, Milbrandt J (2002) Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35:267–282

    PubMed  CAS  Google Scholar 

  126. Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, Ginty DD (2004) A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118:243–255

    PubMed  CAS  Google Scholar 

  127. Munzenmaier DH, Harder DR (2000) Cerebral microvascular endothelial cell tube formation: role of astrocytic epoxyeicosatrienoic acid release. Am J Physiol Heart Circ Physiol 278:H1163–H1167

    PubMed  CAS  Google Scholar 

  128. Michaelis UR, Fisslthaler B, Barbosa-Sicard E, Falck JR, Fleming I, Busse R (2005) Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. J Cell Sci 118:5489–5498

    PubMed  CAS  Google Scholar 

  129. Abdu E, Bruun DA, Yang D, Yang J, Inceoglu B, Hammock BD, Alkayed NJ, Lein PJ (2011) Epoxyeicosatrienoic acids enhance axonal growth in primary sensory and cortical neuronal cell cultures. J Neurochem 117:632–642

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    PubMed  CAS  Google Scholar 

  131. Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 298:1959–1964

    PubMed  CAS  Google Scholar 

  132. Koncina E, Roth L, Gonthier B, Bagnard D (2007) Role of semaphorins during axon growth and guidance. Adv Exp Med Biol 621:50–64

    PubMed  Google Scholar 

  133. Kumanogoh A, Kikutani H (2010) Semaphorins and their receptors: novel features of neural guidance molecules. Proc Jpn Acad Ser B Phys Biol Sci 86:611–620

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Pasterkamp RJ, Giger RJ (2009) Semaphorin function in neural plasticity and disease. Curr Opin Neurobiol 19:263–274

    PubMed  CAS  PubMed Central  Google Scholar 

  135. He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90:739–751

    PubMed  CAS  Google Scholar 

  136. Fujisawa H (2004) Discovery of semaphorin receptors, neuropilin and plexin, and their functions in neural development. J Neurobiol 59:24–33

    PubMed  CAS  Google Scholar 

  137. Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL (2003) Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424:398–405

    PubMed  Google Scholar 

  138. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G (2000) Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. J Biol Chem 275:18040–18045

    PubMed  CAS  Google Scholar 

  139. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745

    PubMed  CAS  Google Scholar 

  140. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902

    PubMed  CAS  Google Scholar 

  141. Jones EA, Yuan L, Breant C, Watts RJ, Eichmann A (2008) Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos. Development 135:2479–2488

    PubMed  CAS  Google Scholar 

  142. Miao HQ, Soker S, Feiner L, Alonso JL, Raper JA, Klagsbrun M (1999) Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol 146:233–242

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Vieira JM, Schwarz Q, Ruhrberg C (2007) Role of the neuropilin ligands VEGF164 and SEMA3A in neuronal and vascular patterning in the mouse. Novartis Found Symp 283:230–235

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Gu C, Yoshida Y, Livet J, Reimert DV, Mann F, Merte J, Henderson CE, Jessell TM, Kolodkin AL, Ginty DD (2005) Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307:265–268

    PubMed  CAS  Google Scholar 

  145. Sakurai A, Gavard J, Annas-Linhares Y, Basile JR, Amornphimoltham P, Palmby TR, Yagi H, Zhang F, Randazzo PA, Li X, Weigert R, Gutkind JS (2010) Semaphorin 3E initiates antiangiogenic signaling through plexin D1 by regulating Arf6 and R-Ras. Mol Cell Biol 30:3086–3098

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Basile JR, Barac A, Zhu T, Guan KL, Gutkind JS (2004) Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res 64:5212–5224

    PubMed  CAS  Google Scholar 

  147. Basile JR, Afkhami T, Gutkind JS (2005) Semaphorin 4D/plexin-B1 induces endothelial cell migration through the activation of PYK2, Src, and the phosphatidylinositol 3-kinase-Akt pathway. Mol Cell Biol 25:6889–6898

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D, Tamagnone L, Comoglio PM (2002) The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4:720–724

    PubMed  CAS  Google Scholar 

  149. Conrotto P, Corso S, Gamberini S, Comoglio PM, Giordano S (2004) Interplay between scatter factor receptors and B plexins controls invasive growth. Oncogene 23:5131–5137

    PubMed  CAS  Google Scholar 

  150. Basile JR, Gavard J, Gutkind JS (2007) Plexin-B1 utilizes RhoA and Rho kinase to promote the integrin-dependent activation of Akt and ERK and endothelial cell motility. J Biol Chem 282:34888–34895

    PubMed  CAS  Google Scholar 

  151. Binmadi NO, Proia P, Zhou H, Yang YH, Basile JR (2011) Rho-mediated activation of PI(4)P5K and lipid second messengers is necessary for promotion of angiogenesis by Semaphorin 4D. Angiogenesis 14:309–319

    PubMed  CAS  Google Scholar 

  152. Fazzari P, Penachioni J, Gianola S, Rossi F, Eickholt BJ, Maina F, Alexopoulou L, Sottile A, Comoglio PM, Flavell RA, Tamagnone L (2007) Plexin-B1 plays a redundant role during mouse development and in tumour angiogenesis. BMC Dev Biol 7:55

    PubMed  PubMed Central  Google Scholar 

  153. Artigiani S, Conrotto P, Fazzari P, Gilestro GF, Barberis D, Giordano S, Comoglio PM, Tamagnone L (2004) Plexin-B3 is a functional receptor for semaphorin 5A. EMBO Rep 5:710–714

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Fiore R, Rahim B, Christoffels VM, Moorman AF, Puschel AW (2005) Inactivation of the Sema5a gene results in embryonic lethality and defective remodeling of the cranial vascular system. Mol Cell Biol 25:2310–2319

    PubMed  CAS  PubMed Central  Google Scholar 

  155. Toyofuku T, Zhang H, Kumanogoh A, Takegahara N, Suto F, Kamei J, Aoki K, Yabuki M, Hori M, Fujisawa H, Kikutani H (2004) Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2. Genes Dev 18:435–447

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Palmer A, Klein R (2003) Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Genes Dev 17:1429–1450

    PubMed  CAS  Google Scholar 

  157. Chrencik JE, Brooun A, Kraus ML, Recht MI, Kolatkar AR, Han GW, Seifert JM, Widmer H, Auer M, Kuhn P (2006) Structural and biophysical characterization of the EphB4*ephrinB2 protein–protein interaction and receptor specificity. J Biol Chem 281:28185–28192

    PubMed  CAS  Google Scholar 

  158. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10:165–180

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Drescher U, Kremoser C, Handwerker C, Loschinger J, Noda M, Bonhoeffer F (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82:359–370

    PubMed  CAS  Google Scholar 

  160. Cheng HJ, Nakamoto M, Bergemann AD, Flanagan JG (1995) Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82:371–381

    PubMed  CAS  Google Scholar 

  161. Augustin HG, Reiss Y (2003) EphB receptors and ephrinB ligands: regulators of vascular assembly and homeostasis. Cell Tissue Res 314:25–31

    PubMed  CAS  Google Scholar 

  162. Adams RH (2003) Molecular control of arterial-venous blood vessel identity. J Anat 202:105–112

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Aitsebaomo J, Portbury AL, Schisler JC, Patterson C (2008) Brothers and sisters: molecular insights into arterial-venous heterogeneity. Circ Res 103:929–939

    PubMed  CAS  PubMed Central  Google Scholar 

  164. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    PubMed  CAS  PubMed Central  Google Scholar 

  165. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    PubMed  CAS  Google Scholar 

  166. Salvucci O, Tosato G (2012) Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Adv Cancer Res 114:21–57

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, Acker-Palmer A (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465:487–491

    PubMed  CAS  Google Scholar 

  168. Fuller T, Korff T, Kilian A, Dandekar G, Augustin HG (2003) Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci 116:2461–2470

    PubMed  Google Scholar 

  169. Hamada K, Oike Y, Ito Y, Maekawa H, Miyata K, Shimomura T, Suda T (2003) Distinct roles of ephrin-B2 forward and EphB4 reverse signaling in endothelial cells. Arterioscler Thromb Vasc Biol 23:190–197

    PubMed  CAS  Google Scholar 

  170. Steinle JJ, Meininger CJ, Forough R, Wu G, Wu MH, Granger HJ (2002) Eph B4 receptor signaling mediates endothelial cell migration and proliferation via the phosphatidylinositol 3-kinase pathway. J Biol Chem 277:43830–43835

    PubMed  CAS  Google Scholar 

  171. Pandey A, Shao H, Marks RM, Polverini PJ, Dixit VM (1995) Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science 268:567–569

    PubMed  CAS  Google Scholar 

  172. Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB (2000) The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19:6043–6052

    PubMed  CAS  Google Scholar 

  173. Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78:425–435

    PubMed  CAS  Google Scholar 

  174. Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78:409–424

    PubMed  CAS  Google Scholar 

  175. Stein E, Schoecklmann H, Daniel TO (1997) Eph family receptors and ligands in vascular cell targeting and assembly. Trends Cardiovasc Med 7:329–334

    PubMed  CAS  Google Scholar 

  176. Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (1999) A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97:927–941

    PubMed  CAS  Google Scholar 

  177. Leonardo ED, Hinck L, Masu M, Keino-Masu K, Ackerman SL, Tessier-Lavigne M (1997) Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 386:833–838

    PubMed  CAS  Google Scholar 

  178. Lejmi E, Leconte L, Pedron-Mazoyer S, Ropert S, Raoul W, Lavalette S, Bouras I, Feron JG, Maitre-Boube M, Assayag F, Feumi C, Alemany M, Jie TX, Merkulova T, Poupon MF, Ruchoux MM, Tobelem G, Sennlaub F, Plouet J (2008) Netrin-4 inhibits angiogenesis via binding to neogenin and recruitment of Unc5B. Proc Natl Acad Sci USA 105:12491–12496

    PubMed  CAS  PubMed Central  Google Scholar 

  179. Bouvree K, Larrivee B, Lv X, Yuan L, DeLafarge B, Freitas C, Mathivet T, Breant C, Tessier-Lavigne M, Bikfalvi A, Eichmann A, Pardanaud L (2008) Netrin-1 inhibits sprouting angiogenesis in developing avian embryos. Dev Biol 318:172–183

    PubMed  CAS  Google Scholar 

  180. Wilson BD, Ii M, Park KW, Suli A, Sorensen LK, Larrieu-Lahargue F, Urness LD, Suh W, Asai J, Kock GA, Thorne T, Silver M, Thomas KR, Chien CB, Losordo DW, Li DY (2006) Netrins promote developmental and therapeutic angiogenesis. Science 313:640–644

    PubMed  CAS  PubMed Central  Google Scholar 

  181. Nguyen A, Cai H (2006) Netrin-1 induces angiogenesis via a DCC-dependent ERK1/2-eNOS feed-forward mechanism. Proc Natl Acad Sci USA 103:6530–6535

    PubMed  CAS  PubMed Central  Google Scholar 

  182. Park KW, Crouse D, Lee M, Karnik SK, Sorensen LK, Murphy KJ, Kuo CJ, Li DY (2004) The axonal attractant Netrin-1 is an angiogenic factor. Proc Natl Acad Sci USA 101:16210–16215

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Yang Y, Zou L, Wang Y, Xu KS, Zhang JX, Zhang JH (2007) Axon guidance cue Netrin-1 has dual function in angiogenesis. Cancer Biol Ther 6:743–748

    PubMed  CAS  Google Scholar 

  184. Larrieu-Lahargue F, Welm AL, Thomas KR, Li DY (2011) Netrin-4 activates endothelial integrin {alpha}6{beta}1. Circ Res 109:770–774

    PubMed  CAS  PubMed Central  Google Scholar 

  185. Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T (1999) Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96:795–806

    PubMed  CAS  Google Scholar 

  186. Li HS, Chen JH, Wu W, Fagaly T, Zhou L, Yuan W, Dupuis S, Jiang ZH, Nash W, Gick C, Ornitz DM, Wu JY, Rao Y (1999) Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96:807–818

    PubMed  CAS  Google Scholar 

  187. Wang KH, Brose K, Arnott D, Kidd T, Goodman CS, Henzel W, Tessier-Lavigne M (1999) Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96:771–784

    PubMed  CAS  Google Scholar 

  188. Long H, Sabatier C, Ma L, Plump A, Yuan W, Ornitz DM, Tamada A, Murakami F, Goodman CS, Tessier-Lavigne M (2004) Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 42:213–223

    PubMed  CAS  Google Scholar 

  189. Chedotal A (2007) Slits and their receptors. Adv Exp Med Biol 621:65–80

    PubMed  Google Scholar 

  190. Bedell VM, Yeo SY, Park KW, Chung J, Seth P, Shivalingappa V, Zhao J, Obara T, Sukhatme VP, Drummond IA, Li DY, Ramchandran R (2005) Roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci USA 102:6373–6378

    PubMed  CAS  PubMed Central  Google Scholar 

  191. Kaur S, Castellone MD, Bedell VM, Konar M, Gutkind JS, Ramchandran R (2006) Robo4 signaling in endothelial cells implies attraction guidance mechanisms. J Biol Chem 281:11347–11356

    PubMed  CAS  Google Scholar 

  192. Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY (2003) Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 261:251–267

    PubMed  CAS  Google Scholar 

  193. Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, Lindblom P, Seth P, Frias A, Nishiya N, Ginsberg MH, Gerhardt H, Zhang K, Li DY (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14:448–453

    PubMed  CAS  PubMed Central  Google Scholar 

  194. Jones CA, Nishiya N, London NR, Zhu W, Sorensen LK, Chan AC, Lim CJ, Chen H, Zhang Q, Schultz PG, Hayallah AM, Thomas KR, Famulok M, Zhang K, Ginsberg MH, Li DY (2009) Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat Cell Biol 11:1325–1331

    PubMed  CAS  PubMed Central  Google Scholar 

  195. Koch AW, Mathivet T, Larrivee B, Tong RK, Kowalski J, Pibouin-Fragner L, Bouvree K, Stawicki S, Nicholes K, Rathore N, Scales SJ, Luis E, del Toro R, Freitas C, Breant C, Michaud A, Corvol P, Thomas JL, Wu Y, Peale F, Watts RJ, Tessier-Lavigne M, Bagri A, Eichmann A (2011) Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 20:33–46

    PubMed  CAS  Google Scholar 

  196. Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JG (2003) Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4:19–29

    PubMed  Google Scholar 

  197. Dunaway CM, Hwang Y, Lindsley CW, Cook RS, Wu JY, Boothby M, Chen J, Brantley-Sieders DM (2011) Cooperative signaling between Slit2 and Ephrin-A1 regulates a balance between angiogenesis and angiostasis. Mol Cell Biol 31:404–416

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Excellence Cluster Pulmonary System (ECCPS) and the DFG SFB834 TP A10. The author thanks Ralf P. Brandes for editorial suggestions during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ruth Michaelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michaelis, U.R. Mechanisms of endothelial cell migration. Cell. Mol. Life Sci. 71, 4131–4148 (2014). https://doi.org/10.1007/s00018-014-1678-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1678-0

Keywords

Navigation