Skip to main content

Advertisement

Log in

Viral genes as oncolytic agents for cancer therapy

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53

    CAS  PubMed  Google Scholar 

  2. Grimm S, Noteborn M (2010) Anticancer genes: inducers of tumour-specific cell death signalling. Trends Mol Med 16(2):88–96

    CAS  PubMed  Google Scholar 

  3. Everett H, McFadden G (1999) Apoptosis: an innate immune response to virus infection. Trends Mirobiol 7(4):160–165

    CAS  Google Scholar 

  4. Teodoro JG, Branton PE (1997) Regulation of apoptosis by viral gene products. J Virol 71(3):1739

    PubMed Central  CAS  PubMed  Google Scholar 

  5. O’Brien V (1998) Viruses and apoptosis. J Gen Virol 79(8):1833–1845

    PubMed  Google Scholar 

  6. Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A (1993) Epstein–Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci 90(18):8479–8483

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Han J, Sabbatini P, Perez D, Rao L, Modha D, White E (1996) The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Dev 10(4):461–477

    CAS  PubMed  Google Scholar 

  8. Cuconati A, White E (2002) Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev 16(19):2465–2478

    CAS  PubMed  Google Scholar 

  9. Kepp O, Senovilla L, Galluzzi L, Panaretakis T, Tesniere A, Schlemmer F, Madeo F, Zitvogel L, Kroemer G (2009) Viral subversion of immunogenic cell death. Cell Cycle 8(6):860–869

    CAS  PubMed  Google Scholar 

  10. Lechner MS, Laimins LA (1994) Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol 68(7):4262–4273

    PubMed Central  CAS  PubMed  Google Scholar 

  11. King KL, Cidlowski JA (1998) Cell cycle regulation and apoptosis 1. Annu Rev Physiol 60(1):601–617

    CAS  PubMed  Google Scholar 

  12. Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53(1):577–628

    CAS  PubMed  Google Scholar 

  13. Marcellus RC, Teodoro JG, Wu T, Brough DE, Ketner G, Shore GC, Branton PE (1996) Adenovirus type 5 early region 4 is responsible for E1A-induced p53-independent apoptosis. J Virol 70(9):6207–6215

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Webster K, Taylor A, Gaston K (2001) Oestrogen and progesterone increase the levels of apoptosis induced by the human papillomavirus type 16 E2 and E7 proteins. J Gen Virol 82(1):201–213

    CAS  PubMed  Google Scholar 

  15. Noteborn MH (2004) Chicken anemia virus induced apoptosis: underlying molecular mechanisms. Vet Mirobiol 98(2):89–94

    CAS  Google Scholar 

  16. Perry SW, Norman JP, Litzburg A, Zhang D, Dewhurst S, Gelbard HA (2005) HIV-1 transactivator of transcription protein induces mitochondrial hyperpolarization and synaptic stress leading to apoptosis. J Immunol 174(7):4333–4344

    CAS  PubMed  Google Scholar 

  17. Hristov G, Kramer M, Li J, El-Andaloussi N, Mora R, Daeffler L, Zentgraf H, Rommelaere J, Marchini A (2010) Through its nonstructural protein NS1, parvovirus H-1 induces apoptosis via accumulation of reactive oxygen species. J Virol 84(12):5909–5922

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Ravindra PV, Tiwari AK, Sharma B, Rajawat YS, Ratta B, Palia S, Sundaresan NR, Chaturvedi U, Aruna Kumar GB, Chindera K, Saxena M, Subudhi PK, Rai A, Chauhan RS (2008) HN protein of Newcastle disease virus causes apoptosis in chicken embryo fibroblast cells. Arch Virol 153(4):749–754

    CAS  PubMed  Google Scholar 

  19. Decaro N, Buonavoglia C (2012) Canine parvovirus—a review of epidemiological and diagnostic aspects, with emphasis on type 2c. Vet Microbiol 155(1):1–12

    CAS  PubMed  Google Scholar 

  20. Doley J, Singh LV, Kumar GR, Sahoo AP, Saxena L, Chaturvedi U, Saxena S, Kumar R, Singh PK, Rajmani RS, Santra L, Palia SK, Tiwari S, Harish DR, Kumar A, Desai GS, Gupta S, Gupta SK, Tiwari AK (2014) Canine parvovirus type 2a (CPV-2a)-induced apoptosis in MDCK involves both extrinsic and intrinsic pathways. Appl Biochem Biotechnol 172(1):497–508

    CAS  PubMed  Google Scholar 

  21. Rommelaere J, Geletneky K, Angelova AL, Daeffler L, Dinsart C, Kiprianova I, Schlehofera JR, Raykova Z (2010) Oncolytic parvoviruses as cancer therapeutics. Cytokine Growth Factor Rev 21(2):185–195

    CAS  PubMed  Google Scholar 

  22. Geletneky K, Huesing J, Rommelaere J, Schlehofer JR, Leuchs B, Dahm M, Krebs O, Doeberitz MVK, Huber B, Hajda J (2012) Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol. BMC Cancer 12(1):99

    PubMed Central  PubMed  Google Scholar 

  23. Bauder B, Suchy A, Gabler C, Weissenböck H (2000) Apoptosis in feline panleukopenia and canine parvovirus enteritis. J Vet Med 47(10):775–784

    CAS  Google Scholar 

  24. Bar S, Rommelaere J, Nuesch JP (2013) Vesicular transport of progeny parvovirus particles through ER and Golgi regulates maturation and cytolysis. PLoS Pathog 9:e1003605

    PubMed Central  PubMed  Google Scholar 

  25. Nuesch JP, Rommelaere J (2006) NS1 interaction with CKII alpha: novel protein complex mediating parvovirus-induced cytotoxicity. J Virol 80:4729–4739

    PubMed Central  PubMed  Google Scholar 

  26. Di Piazza M, Mader C, Geletneky K, Herrero Y, Calle M, Weber E, Schlehofer J, Deleu L, Rommelaere J (2007) Cytosolic activation of cathepsins mediates parvovirus H-1-induced killing of cisplatin and TRAIL-resistant glioma cells. J Virol 81:4186–4198

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Cotmore SF, Tattersall P (2007) Parvoviral host range and cell entry mechanisms. Adv Virus Res 70:183–232

    CAS  PubMed  Google Scholar 

  28. Krady JK, Ward DC (2007) Transcriptional activation by the parvoviral nonstructural protein NS-1 is mediated via a direct interaction with Sp1. Mol Cell Biol 15:524–533

    Google Scholar 

  29. Lorson C, Pearson J, Burger L, Pintel DJ (1998) An Sp1-binding site and TATA element are sufficient to support full transactivation by proximally bound NS1 protein of minute virus of mice. Virology 240:326–337

    CAS  PubMed  Google Scholar 

  30. Marks F, Gschwendt M (1996) Protein kinase C. In: Protein phosphorylation, pp 81–116

  31. Caillet-Fauquet P, Perros M, Brandenburger A, Spegelaere P, Rommelaere J (1990) Programmed killing of human cells by means of an inducible clone of parvoviral genes encoding non-structural proteins. EMBO J 9:2989–2995

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Mousset S, Ouadrhiri Y, Caillet-Fauquet P, Rommelaere J (1994) The cytotoxicity of the autonomous parvovirus minute virus of mice nonstructural proteins in FR3T3 rat cells depends on oncogene expression. J Virol 68:6446–6453

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Op De Beeck A, Anouja F, Mousset S, Rommelaere J, Caillet-Fauquet P (1995) The nonstructural proteins of the autonomous parvovirus minute virus of mice interfere with the cell cycle, inducing accumulation in G2. Cell Growth Differ 6:781–787

    CAS  PubMed  Google Scholar 

  34. Bashir T, Rommelaere J, Cziepluch C (2001) In vivo accumulation of cyclin A and cellular replication factors in autonomous parvovirus minute virus of mice-associated replication bodies. J Virol 75(9):4394–4398

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Ruiz Z, Mihaylov IS, Cotmore SF, Tattersall P (2011) Recruitment of DNA replication and damage response proteins to viral replication centers during infection with NS2 mutants of minute virus of mice (MVM). Virology 410(2):375–384

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Anouja F, Wattiez R, Mousset S, Caillet-Fauquet P (1997) The cytotoxicity of the parvovirus minute virus of mice nonstructural protein NS1 is related to changes in the synthesis and phosphorylation of cell proteins. J Virol 71(6):4671–4678

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Corbau R, Duverger V, Rommelaere J, Nüesch JP (2000) Regulation of MVM NS1 by protein kinase C: impact of mutagenesis at consensus phosphorylation sites on replicative functions and cytopathic effects. Virology 278(1):151–167

    CAS  PubMed  Google Scholar 

  38. Nüesch JP, Christensen J, Rommelaere J (2001) Initiation of minute virus of mice DNA replication is regulated at the level of origin unwinding by atypical protein kinase C phosphorylation of NS1. J Virol 75(13):5730–5739

    PubMed Central  PubMed  Google Scholar 

  39. Lachmann S, Rommeleare J, Nüesch JP (2003) Novel PKCη is required to activate replicative functions of the major nonstructural protein NS1 of minute virus of mice. J Virol 77(14):8048–8060

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Nüesch JP, Rommelaere J (2007) A viral adaptor protein modulating casein kinase II activity induces cytopathic effects in permissive cells. Proc Natl Acad Sci 104(30):12482–12487

    PubMed Central  PubMed  Google Scholar 

  41. Nüesch JP, Lachmann S, Corbau R, Rommelaere J (2003) Regulation of minute virus of mice NS1 replicative functions by atypical PKCλ in vivo. J Virol 77(1):433–442

    PubMed Central  PubMed  Google Scholar 

  42. Lachmann S, Bär S, Rommelaere J, Nüesch JP (2008) Parvovirus interference with intracellular signalling: mechanism of PKCη activation in MVM-infected A9 fibroblasts. Cell Mirobiol 10(3):755–769

    CAS  Google Scholar 

  43. Nüesch JP, Bär S, Lachmann S, Rommelaere J (2009) Ezrin–radixin–moesin family proteins are involved in parvovirus replication and spreading. J Virol 83(11):5854–5863

    PubMed Central  PubMed  Google Scholar 

  44. De Beeck AO, Sobczak-Thepot J, Sirma H, Bourgain F, Brechot C, Caillet-Fauquet P (2001) NS1-and minute virus of mice-induced cell cycle arrest: involvement of p53 and p21 cip1. J Virol 75(22):11071–11078

    Google Scholar 

  45. Ohshima T, Yoshida E, Nakajima T, Yagami KI, Fukamizu A (2001) Effects of interaction between parvovirus minute virus of mice NS1 and coactivator CBP on NS1-and p53-transactivation. Int J Mol Med 7(1):49–103

    CAS  PubMed  Google Scholar 

  46. Mincberg M, Gopas J, Tal J (2011) Minute virus of mice (MVMp) infection and NS1 expression induce p53 independent apoptosis in transformed rat fibroblast cells. Virology 412(1):233–243

    CAS  PubMed  Google Scholar 

  47. Adeyemi RO, Pintel DJ (2012) Replication of minute virus of mice in murine cells is facilitated by virally induced depletion of p21. J Virol 86(15):8328–8332

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Christensen J, Tattersall P (2002) Parvovirus initiator protein NS1 and RPA coordinate replication fork progression in a reconstituted DNA replication system. J Virol 76(13):6518–6531

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Nüesch JP, Lachmann S, Rommelaere J (2005) Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice. Virology 331(1):159–174

    PubMed  Google Scholar 

  50. Bär S, Daeffler L, Rommelaere J, Nüesch JP (2008) Vesicular egress of non-enveloped lytic parvoviruses depends on gelsolin functioning. PLoS Pathog 4(8):e1000126

    PubMed Central  PubMed  Google Scholar 

  51. Bhattacharya B et al (1990) Tropomyosins of human mammary epithelial cells: consistent defects of expression in mammary carcinoma cell lines. Cancer Res 50(7):2105–2112

    CAS  PubMed  Google Scholar 

  52. Wizla P, Begue A, Loison I, Richard A, Caillet-Fauquet P, Stéhelin D (2010) Ectopic expression of H-1 parvovirus NS1 protein induces alterations in actin filaments and cell death in human normal MRC-5 and transformed MRC-5 SV2 cells. Arch Virol 155(5):771–775

    CAS  PubMed  Google Scholar 

  53. Rayet B, Lopez-Guerrero JA, Rommelaere J, Dinsart C (1998) Induction of programmed cell death by parvovirus H-1 in U937 cells: connection with the tumor necrosis factor alpha signalling pathway. J Virol 72:8893–8903

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Ohshima T, Iwama M, Ueno Y, Sugiyama F, Nakajima T, Fukamizu A, Yagami KI (1998) Induction of apoptosis in vitro and in vivo by H-1 parvovirus infection. J Gen Virol 79(12):3067–3071

    CAS  PubMed  Google Scholar 

  55. Ran ZH, Rayet B, Rommelaere J, Faisst S (1999) Parvovirus H-1-induced cell death: influence of intracellular NAD consumption on the regulation of necrosis and apoptosis. Virus Res 65(2):161–174

    CAS  PubMed  Google Scholar 

  56. Moehler M, Blechacz B, Weiskopf N, Zeidler M, Stremmel W, Rommelaere J et al (2001) Effective infection, apoptotic cell killing and gene transfer of human hepatoma cells but not primary hepatocytes by parvovirus H1 and derived vectors. Cancer Gene Ther 8:158–167

    CAS  PubMed  Google Scholar 

  57. Zhao D, Cai C, Wang Y, Xiao S, Zheng Q (2014) Specific anti-gastric cancer effects of a recombinant plasmid expressing nonstructural protein 1 of parvovirus H1. Sau Med J 35(4):336–345

    Google Scholar 

  58. Wang YY, Liu J, Zheng Q, Ran ZH, Salome N, Vogel M, Rommelaere J, Xiao SD, Wang Z (2012) Effect of the parvovirus H-1 non-structural protein NS1 on the tumorigenicity of human gastric cancer cells. J Dig Dis 13(7):366–373

    PubMed  Google Scholar 

  59. Nüesch JP, Lacroix J, Marchini A, Rommelaere J (2012) Molecular pathways: rodent parvoviruses—mechanisms of oncolysis and prospects for clinical cancer treatment. Clin Cancer Res 18(13):3516–3523

    PubMed  Google Scholar 

  60. Nüesch JP, Rommelaere J (2014) Tumor suppressing properties of rodent parvovirus NS1 proteins and their derivatives. In: Anticancer genes. Springer, London, pp 99–124

  61. Brown KE, Young NS, Liu JM (1994) Molecular, cellular and clinical aspects of parvovirus B19 infection. Crit Rev Oncol/Haematol 16(1):1–31

    CAS  Google Scholar 

  62. Young NS, Brown KE (2004) Parvovirus B19. N Engl J Med 350(6):586–597

    CAS  PubMed  Google Scholar 

  63. Alvarez-Lafuente R, Fernandez-Gutierrez B, Jover JA, Judez E, Loza E, Clemente D, Garcia-asenjo JA, Lamas JR (2005) Human parvovirus B19, varicella zoster virus, and human herpes virus 6 in temporal artery biopsy specimens of patients with giant cell arteritis: analysis with quantitative real time polymerase chain reaction. Ann Rheum Dis 64(5):780–782

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Scheurlen W, Ramasubbu K, Wachowski O, Hemauer A, Modrow S (2001) Chronic autoimmune thrombopenia/neutropenia in a boy with persistent parvovirus B19 infection. J Clin Virol 20(3):173–178

    CAS  PubMed  Google Scholar 

  65. Yaegashi N, Shiraishi H, Takeshita T, Nakamura M, Yajima A, Sugamura K (1989) Propagation of human parvovirus B19 in primary culture of erythroid lineage cells derived from fetal liver. J Virol 63(6):2422–2426

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Ozawa K, Ayub J, Kajigaya S, Shimada T, Young N (1988) The gene encoding the nonstructural protein of B19 (human) parvovirus may be lethal in transfected cells. J Virol 62(8):2884–2889

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Caillet-Fauquet P, Giambattista MD, Draps ML, Sandras F, Branckaert T, Launoit YD, Laub R (2004) Continuous-flow UVC irradiation: a new, effective, protein activity-preserving system for inactivating bacteria and viruses, including erythrovirus B19. J Virol Methods 118(2):131–139

    CAS  PubMed  Google Scholar 

  68. Moffatt S, Yaegashi N, Tada K, Tanaka N, Sugamura K (1998) Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. J Virol 72(4):3018–3028

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Chen AY, Zhang EY, Guan W, Cheng F, Kleiboeker S, Yankee TM, Qiu J (2010) The small 11 kDa nonstructural protein of human parvovirus B19 plays a key role in inducing apoptosis during B19 virus infection of primary erythroid progenitor cells. Blood 115(5):1070–1080

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Morita E, Tada K, Chisaka H, Asao H, Sato H, Yaegashi N, Sugamura K (2001) Human parvovirus B19 induces cell cycle arrest at G2 phase with accumulation of mitotic cyclins. J Virol 75(16):7555–7563

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Luo Y, Kleiboeker S, Deng X, Qiu J (2013) Human parvovirus B19 infection causes cell cycle arrest of human erythroid progenitors at late S phase that favors viral DNA replication. J Virol 87(23):12766–12775

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Morita E, Nakashima A, Asao H, Sato H, Sugamura K (2003) Human parvovirus B19 nonstructural protein (NS1) induces cell cycle arrest at G1 phase. J Virol 77(5):2915–2921

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Luo Y, Lou S, Deng X, Liu Z, Li Y, Kleiboeker S, Qiu J (2011) Parvovirus B19 infection of human primary erythroid progenitor cells triggers ATR-Chk1 signaling, which promotes B19 virus replication. J Virol 85(16):8046–8055

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Lou S, Luo Y, Cheng F, Huang Q, Shen W, Kleiboeker S, Tisdale JF, Liu Z, Qiu J (2012) Human parvovirus B19 DNA replication induces a DNA damage response that is dispensable for cell cycle arrest at phase G2/M. J Virol 86(19):10748–10758

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Wan Z, Zhi N, Wong S, Keyvanfar K, Liu D, Raghavachari N, Munson PJ, Su S, Malide D, Kajigaya S, Young NS (2010) Human parvovirus B19 causes cell cycle arrest of human erythroid progenitors via deregulation of the E2F family of transcription factors. J Clin Investi 120(10):3530–3544

    CAS  Google Scholar 

  76. Adeyemi RO, Landry S, Davis ME, Weitzman MD, Pintel DJ (2010) Parvovirus minute virus of mice induces a DNA damage response that facilitates viral replication. PLoS Pathog 6(10):e1001141

    PubMed Central  PubMed  Google Scholar 

  77. Sol N, Le Junter J, Vassias I, Freyssinier JM, Thomas A, Prigent AF, Rudkin BB, Fichelson S, Morinet F (1999) Possible interactions between the NS-1 protein and tumor necrosis factor alpha pathways in erythroid cell apoptosis induced by human parvovirus B19. J Virol 73(10):8762–8770

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Nakashima A, Morita E, Saito S, Sugamura K (2004) Human Parvovirus B19 nonstructural protein transactivates the p21/WAF1 through Sp1. Virology 329(2):493–504

    CAS  PubMed  Google Scholar 

  79. Kivovich V, Gilbert L, Vuento M, Naides SJ (2012) The putative metal coordination motif in the endonuclease domain of human parvovirus B19 NS1 is critical for NS1 induced S phase arrest and DNA damage. Inter J Biol Sci 8(1):79

    CAS  Google Scholar 

  80. Poole BD, Kivovich V, Gilbert L, Naides SJ (2011) Parvovirus B19 nonstructural protein-induced damage of cellular DNA and resultant apoptosis. Int J Biol Sci 8(2):88

    CAS  Google Scholar 

  81. Hsu TC, Wu WJ, Chen MC, Tsay GJ (2004) Human parvovirus B19 non-structural protein (NS1) induces apoptosis through mitochondria cell death pathway in COS-7 cells. Scand J Infect Dis 36(8):570–577

    CAS  PubMed  Google Scholar 

  82. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17(6):1675–1687

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Sprick MR, Walczak H (2004) The interplay between the Bcl-2 family and death receptor-mediated apoptosis. BBA Mol Cell Res 1644(2):125–132

    CAS  Google Scholar 

  84. Thammasri K, Rauhamäki S, Wang L, Filippou A, Kivovich V, Marjomäki V, Naides RJ, Gilbert L (2013) Human parvovirus B19 induced apoptotic bodies contain altered self-antigens that are phagocytosed by antigen presenting cells. PLoS ONE 8(6):e67179

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Poole BD, Karetnyi YV, Naides SJ (2004) Parvovirus B19-induced apoptosis of hepatocytes. J Virol 78(14):7775–7783

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Poole BD, Zhou J, Grote A, Schiffenbauer A, Naides SJ (2006) Apoptosis of liver-derived cells induced by parvovirus B19 nonstructural protein. J Virol 80(8):4114–4121

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Nykky J, Tuusa JE, Kirjavainen S, Vuento M, Gilbert L (2010) Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine. Int J Nanomed 5:417

    CAS  Google Scholar 

  88. Saxena L, Kumar GR, Saxena S, Chaturvedi U, Sahoo AP, Singh LV, Santra L, Palia SK, Desai GS, Tiwari AK (2013) Apoptosis induced by NS1 gene of canine parvovirus-2 is caspase dependent and p53 independent. Virus Res 173(2):426–430

    CAS  PubMed  Google Scholar 

  89. Pan H, Zhong F, Pan S, Li X, Zhang F, Zhang K, Chen H (2012) Non-structural protein NS1 of canine parvovirus induces the apoptosis of cells. Wei sheng wu xue bao 52(3):367–373

    CAS  PubMed  Google Scholar 

  90. Santra L, Rajmani RS, Ravi Kumar GVPPS, Saxena S, Dhara SK, Kumar A, Sahoo AP, Singh LV, Desai GS, Chaturvedi U, Kumar S, Tiwari AK (2014) Non-structural protein 1 (NS1) gene of canine parvovirus-2 regresses chemically induced skin tumors in Wistar rats. Res Vet Sci. doi:10.1016/j.rvsc.2014.07.024

    PubMed  Google Scholar 

  91. Noteborn MH, Koch G (1995) Chicken anaemia virus infection: molecular basis of pathogenicity. Avian Pathol 24(1):11–31

    CAS  PubMed  Google Scholar 

  92. Adair BM (2000) Immunopathogenesis of chicken anemia virus infection. Dev Comp Immunol 24(2):247–255

    CAS  PubMed  Google Scholar 

  93. Hoerr FJ (2010) Clinical aspects of immunosuppression in poultry. Avian Dis 54(1):2–15

    PubMed  Google Scholar 

  94. Jeurissen SH, Wagenaar F, Pol JM, Van der Eb AJ, Noteborn MH (1992) Chicken anemia virus causes apoptosis of thymocytes after in vivo infection and of cell lines after in vitro infection. J Virol 66(12):7383–7388

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Noteborn MH, De Boer GF, Van Roozelaar DJ, Karreman C, Kranenburg O, Vos JG, Jeurissen SH, Hoeben RC, Zantema A, Koch G (1991) Characterization of cloned chicken anemia virus DNA that contains all elements for the infectious replication cycle. J Virol 65(6):3131–3139

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Danen-Van Oorschot AAAM, Fischer DF, Grimbergen JE, Klein B, Zhuang SM, Falkenburg JHF, Backendorf C, Quax PHA, Vandereb AJ, Noteborn MHM (1997) Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells. Proc Natl Acad Sci 94(11):5843–5847

    CAS  PubMed  Google Scholar 

  97. Noteborn MH, Danen-van Oorschot AA, van der Eb AJ (1998) Chicken anemia virus: induction of apoptosis by a single protein of a single-stranded DNA virus. In: Seminars in virology, vol 8, no 6. Academic Press, pp 497–504

  98. Oro C, Jans DA (2004) The tumour specific pro-apoptotic factor apoptin (Vp3) from chicken anaemia virus. Curr Drug Targets 5(2):179–190

    CAS  PubMed  Google Scholar 

  99. Tavassoli M, Guelen L, Luxon BA, Gaken J (2005) Apoptin: specific killer of tumor cells? Apoptosis 10:717–724

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Danen-van Oorschot AA, Zhang YH, Leliveld SR, Rohn JL, Seelen MC, Bolk MW, Zon AV, Erkeland SJ, Abrahams JP, Mumberg D, Noteborn MHM (2003) Importance of nuclear localization of apoptin for tumor-specific induction of apoptosis. J Biol Chem 278(30):27729–27736

    CAS  PubMed  Google Scholar 

  101. Heilman DW, Teodoro JG, Green MR (2006) Apoptin nucleocytoplasmic shuttling is required for cell type-specific localization, apoptosis, and recruitment of the anaphase-promoting complex/cyclosome to PML bodies. J Virol 80(15):7535–7545

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Poon IK, Oro C, Dias MM, Zhang J, Jans DA (2005) Apoptin nuclear accumulation is modulated by a CRM1-recognized nuclear export signal that is active in normal but not in tumor cells. Cancer Res 65(16):7059–7064

    CAS  PubMed  Google Scholar 

  103. Zhang YH, Leliveld SR, Kooistra K, Molenaar C, Rohn JL, Tanke HJ, Abrahams JP, Noteborn MHM (2003) Recombinant apoptin multimers kill tumor cells but are nontoxic and epitope-shielded in a normal-cell-specific fashion. Exp Cell Res 289(1):36–46

    CAS  PubMed  Google Scholar 

  104. Rohn JL, Zhang YH, Aalbers RI, Otto N, Den Hertog J, Henriquez NV, Van De Velde CJ, Kuppen PJ, Mumberg D, Donner P, Noteborn MHM (2002) A tumor-specific kinase activity regulates the viral death protein apoptin. J Biol Chem 277(52):50820–50827

    CAS  PubMed  Google Scholar 

  105. Wang QM, Fan GC, Chen JZ, Chen HP, He FC (2004) A putative NES mediates cytoplasmic localization of apoptin in normal cells. Acta Biochem Biophys Sin 36(12):817–823

    CAS  Google Scholar 

  106. Huo DH, Yi LN, Yang J (2008) Interaction with Ppil3 leads to the cytoplasmic localization of apoptin in tumor cells. Biochem Biophys Res Commun 372(1):14–18

    CAS  PubMed  Google Scholar 

  107. Guelen L, Paterson H, Gäken J, Meyers M, Farzaneh F, Tavassoli M (2004) TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells. Oncogene 23:1153–1165

    CAS  PubMed  Google Scholar 

  108. Rohn JL, Zhang YH, Leliveld SR, Danen-van Oorschot AAAM, Henriquez NV, Abrahams JP, Noteborn MHM (2005) Relevance of apoptin’s integrity for its functional behavior. J Virol 79(2):1337–1338

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Lee YH, Cheng CM, Chang YF, Wang TY, Yuo CY (2007) Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization but partially affects its apoptotic activity. Biochem Biophys Res Commun 354:391–395

    CAS  PubMed  Google Scholar 

  110. Janssen K, Hofmann TG, Jans DA, Hay RT, Schulze-Osthoff K, Fischer U (2006) Apoptin is modified by SUMO conjugation and targeted to promyelocytic leukemia protein nuclear bodies. Oncogene 26(11):1557–1566

    PubMed  Google Scholar 

  111. Lanz HL, Florea BI, Noteborn MH, Backendorf C (2012) Development and application of an in vitro apoptin kinase assay. Anal Biochem 421(1):68–74

    CAS  PubMed  Google Scholar 

  112. Leliveld SR, Dame RT, Rohn JL, Noteborn MHM, Abrahams JP (2004) Apoptin’s functional N-and C-termini independently bind DNA. FEBS Lett 557(1):155–158

    CAS  PubMed  Google Scholar 

  113. Maddika S, Bay GH, Kroczak TJ, Ande SR, Wiechec E, Gibson SB, Los M (2007) Akt is transferred to the nucleus of cells treated with apoptin, and it participates in apoptin-induced cell death. Cell Prolif 40(6):835–848

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Maddika S, Panigrahi S, Wiechec E, Wesselborg S, Fischer U, Schulze-Osthoff K, Los M (2009) Unscheduled Akt-triggered activation of cyclin-dependent kinase 2 as a key effector mechanism of apoptin’s anticancer toxicity. Mol Cell Biol 29(5):1235–1248

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Maddika S, Wiechec E, Ande SR, Poon IK, Fischer U, Wesselborg S, Jan DA, Schulze-Osthoff K, Los M (2007) Interaction with PI3-kinase contributes to the cytotoxic activity of apoptin. Oncogene 27(21):3060–3065

    PubMed Central  PubMed  Google Scholar 

  116. Chen K, Luo Z, Tang J, Zheng SJ (2011) A critical role of heat shock cognate protein 70 in Apoptin-induced phosphorylation of Akt. Biochem Biophys Res Commun 409(2):200–204

    CAS  PubMed  Google Scholar 

  117. Bullenkamp J, Tavassoli M (2014) Signalling of apoptin. In: Anticancer genes. Springer, London, pp 11–37

  118. Los M, Maddika S, Erb B, Schulze-Osthoff K (2009) Switching Akt: from survival signaling to deadly response. BioEssays 31(5):492–495

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Maddika S, Ande SR, Wiechec E, Hansen LL, Wesselborg S, Los M (2008) Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J Cell Sci 121(7):979–988

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Kucharski TJ, Gamache I, Gjoerup O, Teodoro JG (2011) DNA damage response signaling triggers nuclear localization of the chicken anemia virus protein apoptin. J Virol 85(23):12638–12649

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Jiang J, Cole D, Westwood N, Macpherson L, Farzaneh F, Mufti G, Tavassoli M, Gäken J (2010) Crucial roles for protein kinase C isoforms in tumor-specific killing by apoptin. Cancer Res 70(18):7242–7252

    CAS  PubMed  Google Scholar 

  122. Martelli AM, Faenza I, Billi AM, Fala F, Cocco L, Manzoli L (2003) Nuclear protein kinase C isoforms: key players in multiple cell functions? Histol Histopathol 18:1301–1312

    CAS  PubMed  Google Scholar 

  123. Redig AJ, Platanias LC (2007) The protein kinase C (PKC) family of proteins in cytokine signaling in hematopoiesis. J Interferon Cytokine Res 27:623–636

    CAS  PubMed  Google Scholar 

  124. Zimmerman R, Peng DJ, Lanz H, Zhang YH, Danen-van Oorschot A, Qu S, Backendorf C, Noteborn M (2012) PP2A inactivation is a crucial step in triggering apoptin-induced tumor-selective cell killing. Cell Death Dis 3(4):e291

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Zhuang SM, Landegent JE, Verschueren CA, Falkenburg JH, Van Ormondt H, Van der Eb AJ, Noteborn MH (1995) Apoptin, a protein encoded by chicken anemia virus, induces cell death in various human hematologic malignant cells in vitro. Leukemia 9:S118–S120

    PubMed  Google Scholar 

  126. Danen-van Oorschot AAAM, van Der Eb AJ, Noteborn MHM (2000) The chicken anemia virus-derived protein apoptin requires activation of caspases for induction of apoptosis in human tumor cells. J Virol 74(15):7072–7078

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Maddika S, Booy EP, Johar D, Gibson SB, Ghavami S, Los M (2005) Cancer-specific toxicity of apoptin is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell-death mediators by a Nur77-dependent pathway. J Cell Sci 118(19):4485–4493

    CAS  PubMed  Google Scholar 

  128. Burek M, Maddika S, Burek CJ, Daniel PT, Schulze-Osthoff K, Los M (2005) Apoptin-induced cell death is modulated by Bcl-2 family members and is Apaf-1 dependent. Oncogene 25(15):2213–2222

    Google Scholar 

  129. Erster S, Moll UM (2004) Stress-induced p53 runs a direct mitochondrial death program: its role in physiologic and pathophysiologic stress responses in vivo. Cell Cycle 3:86–89

    Google Scholar 

  130. Jeong JH, Park JS, Moon B, Kim MC, Kim JK, Lee S, Suh H, Kim ND, Kim JM, Park YC, Yoo YH (2003) Orphan nuclear receptor Nur77 translocates to mitochondria in the early phase of apoptosis induced by synthetic chenodeoxycholic acid derivatives in human stomach cancer cell line SNU-1. Ann N Y Acad Sci 1010:171–177

    CAS  PubMed  Google Scholar 

  131. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (2004) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116(4):527–540

    CAS  PubMed  Google Scholar 

  132. Kolluri SK, Zhu X, Zhou X, Lin B, Chen Y, Sun K, Tian X, Town J, Cao X, Lin F, Zhai D, Kitada S, Luciano F, O’donnell E, Cao F, He F, Lin J, Reed JC, Satterthwait AC, Zhang XK (2008) A short Nur77-derived peptide converts Bcl-2 from a protector to a killer. Cancer Cell 14(4):285–298

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Li Q, Zhang H, Tan C, Peng W, Ren G, Jia B, He Y, Wang P, Zhou X, Xiang T (2013) AdHu5-apoptin induces G2/M arrest and apoptosis in p53-mutated human gastric cancer SGC-7901 cells. Tum Biol 34(6):3569–3577

    CAS  Google Scholar 

  134. Danen-Van Oorschot AA, van der Eb AJ, Noteborn MH (1999) BCL-2 stimulates Apoptin®-induced apoptosis. In: Drug resistance in leukemia and lymphoma III. Springer US, pp 245–249

  135. Schoop RA, Kooistra K, de Jong B, Robert J, Noteborn MH (2004) Bcl-xL inhibits p53-but not apoptin-induced apoptosis in head and neck squamous cell carcinoma cell line. Inter J Can 109(1):38–42

    CAS  Google Scholar 

  136. Teodoro JG, Heilman DW, Parker AE, Green MR (2004) The viral protein apoptin associates with the anaphase-promoting complex to induce G2/M arrest and apoptosis in the absence of p53. Genes Dev 18(16):1952–1957

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Yuan L, Zhang L, Dong X, Zhao H, Li S, Han D, Liu X (2013) Apoptin selectively induces the apoptosis of tumor cells by suppressing the transcription of HSP70. Tumor Biol 34(1):577–585

    CAS  Google Scholar 

  138. Lanz HL, Zimmerman RME, Brouwer J, Noteborn MHM, Backendorf C (2013) Mitotic catastrophe triggered in human cancer cells by the viral protein apoptin. Cell Death Dis 4(2):e487

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Cheng CM, Huang SP, Chang YF, Chung WY, Yuo CY (2003) The viral death protein Apoptin interacts with Hippi, the protein interactor of Huntingtin-interacting protein 1. Biochem Biophys Res Commun 305(2):359–364

    CAS  PubMed  Google Scholar 

  140. Danen-van Oorschot AAAM, Voskamp P, Seelen MCMJ, Van Miltenburg MHAM, Bolk MW, Tait SW, Boesen-de Cock JGR, Rohn JL, Borst J, Noteborn MHM (2004) Human death effector domain-associated factor interacts with the viral apoptosis agonist apoptin and exerts tumor-preferential cell killing. Cell Death Differ 11(5):564–573

    CAS  PubMed  Google Scholar 

  141. Janssen K, Hofmann TG, Jans DA, Hay RT, Schulze-Osthoff, Fischer U (2007) Apoptin is modified by SUMO conjugation and targeted to promyelocytic leukemia protein nuclear bodies. Oncogene 26:1557–1566

    CAS  PubMed  Google Scholar 

  142. Sun GJ, Tong X, Dong Y, Mei ZZ, Sun ZX (2002) Identification of a protein interacting with apoptin from human leucocyte cDNA library by using yeast two-hybrid screening. Sheng wu hua xue yu sheng wu wu li xue bao 34(3):369–372

    CAS  PubMed  Google Scholar 

  143. Müller U, Roberts MP, Engel DA, Doerfler W, Shenk T (1989) Induction of transcription factor AP-1 by adenovirus E1A protein and cAMP. Genes Dev 3(12a):1991–2002

    PubMed  Google Scholar 

  144. Kleinberger T, Shenk T (1993) Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription. J Virol 67:7556–7560

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Bondesson M, Ohman K, Mannervik M, Fan S, Akusjarvi G (1996) Adenovirus E4 open reading 4 protein autoregulates E4 transcription by inhibiting E1A transactivation of the E4 promoter. J Virol 70:3844–3851

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Estmer Nilsson C, Petersen-Mahrt S, Durot C, Shtrichman R, Krainer AR, Kleinberger T, Akusjarvi G (2001) The adenovirus E4-ORF4 splicing enhancer protein interacts with a subset of phosphorylated SR proteins. EMBO J 20:864–871

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Marcellus RC, Lavoie JN, Boivin D, Shore GC, Ketner G, Branton PE (1998) The early region 4 orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J Virol 72:7144–7153

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Lavoie JN, Nguyen M, Marcellus RC, Branton PE, Shore GC (1998) E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J Cell Biol 140:637–645

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Shtrichman R, Kleinberger T (1998) Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J Virol 72:2975–2982

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Robert A, Miron MJ, Champagne C, Gingras MC, Branton PE, Lavoie JN (2002) Distinct cell death pathways triggered by the adenovirus early region 4 ORF 4 protein. J Cell Biol 158(3):519–528

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Livne A, Shtrichman R, Kleinberger T (2001) Caspase activation by adenovirus E4orf4 protein is cell line-specific and is mediated by the death receptor pathway. J Virol 75:789–798

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Lavoie JN, Champagne C, Gingras M-C, Robert A (2000) Adenovirus E4 open reading frame 4-induced apoptosis involves dysregulation of Src family kinases. J Cell Biol 150:1037–1055

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Shtrichman R, Sharf R, Barr H, Dobner T, Kleinberger T (1999) Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. Proc Natl Acad Sci USA 96:10080–10085

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Champagne C, Landry MC, Gingras MC, Lavoie JN (2004) Activation of adenovirus type 2 early region 4 ORF4 cytoplasmic death function by direct binding to Src kinase domain. J Biol Chem 279(24):25905–25915

    CAS  PubMed  Google Scholar 

  155. Gingras MC, Champagne C, Roy M, Lavoie JN (2002) Cytoplasmic death signal triggered by SRC-mediated phosphorylation of the adenovirus E4orf4 protein. Mol Cell Biol 22:41–56

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Mui MZ, Kucharski M, Miron MJ, Hur WS, Berghuis AM, Blanchette P, Branton PE (2013) Identification of the adenovirus E4orf4 protein binding site on the B55α and Cdc55 regulatory subunits of PP2A: implications for PP2A function, tumor cell killing and viral replication. PLoS Pathog 9(11):e1003742

    PubMed Central  PubMed  Google Scholar 

  157. Kornitzer D, Sharf R, Kleinberger T (2001) Adenovirus E4orf4 protein induces PP2A- dependent growth arrest in S. cerevisiae and interacts with the anaphase promoting com- plex/cyclosome. J Cell Biol 154:331–344

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Roopchand DE, Lee JM, Shahinian S, Paquette D, Bussey H, Branton PE (2001) Toxicity of human adenovirus E4orf4 protein in Saccharomyces cerevisiae results from interactions with the Cdc55 regulatory B subunit of PP2A. Oncogene 20:5279–5290

    CAS  PubMed  Google Scholar 

  159. Ossareh-Nazari B, Bachelerie F, Dargemont C (1997) Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278(5335):141–144

    CAS  PubMed  Google Scholar 

  160. Branton PE, Roopchand DE (2001) The role of adenovirus E4orf4 protein in viral replication and cell killing. Oncogene 20(54):7855–7865

    CAS  PubMed  Google Scholar 

  161. Miron MJ, Gallouzi IE, Lavoie JN, Branton PE (2004) Nuclear localization of the adenovirus E4orf4 protein is mediated through an arginine-rich motif and correlates with cell death. Oncogene 23(45):7458–7468

    CAS  PubMed  Google Scholar 

  162. Brestovitsky A, Sharf R, Mittelman K, Kleinberger T (2011) The adenovirus E4orf4 protein targets PP2A to the ACF chromatin-remodeling factor and induces cell death through regulation of SNF2h-containing complexes. Nucleic Acids Res, gkr231

  163. Li S, Szymborski A, Miron MJ, Marcellus R, Binda O, Lavoie JN, Branton PE (2008) The adenovirus E4orf4 protein induces growth arrest and mitotic catastrophe in H1299 human lung carcinoma cells. Oncogene 28:390–400

    PubMed  Google Scholar 

  164. Li S, Brignole C, Marcellus R, Thirlwell S, Binda O, McQuoid MJ, Branton PE (2009) The adenovirus E4orf4 protein induces G2/M arrest and cell death by blocking protein phosphatase 2A activity regulated by the B55 subunit. J Virol 83(17):8340–8352

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Cabon L, Sriskandarajah N, Mui MZ, Teodoro JG, Blanchette P, Branton PE (2013) Adenovirus E4orf4 protein-induced death of p53−/− H1299 human cancer cells follows a G1 arrest of both tetraploid and diploid cells due to a failure to initiate DNA synthesis. J Virol 87(24):13168–13178

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Avital-Shacham M, Sharf R, Kleinberger T (2014) NTPDASE4 gene products cooperate with the adenovirus E4orf4 protein through PP2A-dependent and-independent mechanisms and contribute to induction of cell death. J Virol 88(11):6318–6328

    PubMed Central  PubMed  Google Scholar 

  167. Bocchia M, Bronte V, Colombo MP, De Vincentiis A, Di Nicola M, Forni G, Lanata L, Lemoli RM, Massaia M, Rondelli D, Zanon P, Tura S (2000) Antitumor vaccination: where we stand. Haematologica 85(11):1172–1206

    CAS  PubMed  Google Scholar 

  168. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19(1):47–64

    CAS  PubMed  Google Scholar 

  170. Moehler MH, Zeidler M, Wilsberg V, Cornelis JJ, Woelfel T, Rommelaere J, Galle PR, Heike M (2005) Parvovirus H-1-induced tumor cell death enhances human immune response in vitro via increased phagocytosis, maturation, and cross-presentation by dendritic cells. Hum Gene Ther 16(8):996–1005

    CAS  PubMed  Google Scholar 

  171. Blachère NE, Darnell RB, Albert ML (2005) Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. PLoS Biol 3(6):e185

    PubMed Central  PubMed  Google Scholar 

  172. Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20(1):621–667

    CAS  PubMed  Google Scholar 

  173. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392(6671):86–89

    CAS  PubMed  Google Scholar 

  174. Albert ML, Pearce SFA, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N (1998) Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188(7):1359–1368

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Chen Z, Moyana T, Saxena A, Warrington R, Jia Z, Xiang J (2001) Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int J Cancer 93(4):539–548

    CAS  PubMed  Google Scholar 

  176. Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. BBA Bioenergetics 1757(9):1371–1387

    CAS  PubMed  Google Scholar 

  177. Binder RJ, Kelly JB, Vatner RE, Srivastava PK (2007) Specific immunogenicity of heat shock protein gp96 derives from chaperoned antigenic peptides and not from contaminating proteins. J Immunol 179(11):7254–7261

    CAS  PubMed  Google Scholar 

  178. Giodini A, Cresswell P (2008) Hsp90-mediated cytosolic refolding of exogenous proteins internalized by dendritic cells. EMBO J 27(1):201–211

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Pietersen AM, Van der Eb MM, Rademaker HJ, Van den Wollenberg DJM, Rabelink MJWE, Kuppen PJK, & Noteborn. MH (1999) Specific tumor-cell killing with adenovirus vectors containing the apoptin gene. Gene Ther 6(5):882–892

    CAS  PubMed  Google Scholar 

  180. Zhang M, Wang J, Li C, Hu N, Wang K, Ji H, He D, Quan C, Li X, Li Y (2013) Potent growth-inhibitory effect of a dual cancer-specific oncolytic adenovirus expressing apoptin on prostate carcinoma. Inter J Oncolo 42(3):1052–1060

    CAS  Google Scholar 

  181. Xiao L, Yan L, Zhongmei W, Chang L, Huijun L, Mingyao T, Kuoshi J, Sun L, Pegn G, Yan E, Xiaohong X, Shifu K, Zhuoyue W, Yuhang W, Ningyi J (2010) Potent anti-tumor effects of a dual specific oncolytic adenovirus expressing apoptin in vitro and in vivo. Mol Can 9(1):1–12

    Google Scholar 

  182. Qi Y, Guo H, Hu N, He D, Zhang S, Chu Y, Huang Y, Li X, Jin N (2014) Preclinical pharmacology and toxicology study of Ad-hTERT-E1a-Apoptin, a novel dual cancer-specific oncolytic adenovirus. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2014.08.008

    Google Scholar 

  183. Liu L, Wu W, Zhu G, Liu L, Guan G, Li X, Jin N, Chi B (2012) Therapeutic efficacy of an hTERT promoter-driven oncolytic adenovirus that expresses apoptin in gastric carcinoma. Int J Mol Med 30(4):747

    CAS  PubMed  Google Scholar 

  184. Wang C, Wang W, Wang J, Zhan H, Jiang L, Yan R, Hou Z, Zhu H, Yu L, Shi Y, Ding M, Ke C (2013) Apoptin induces apoptosis in nude mice allograft model of human bladder cancer by altering multiple bladder tumor-associated gene expression profiles. Tum Biol 34(3):1667–1678

    CAS  Google Scholar 

  185. van der Eb MM, Pietersen AM, Speetjens FM, Kuppen PJ, van de Velde CJ, Noteborn MH, Hoeben RC (2002) Gene therapy with apoptin induces regression of xenografted human hepatomas. Cancer Gene Ther 9(1):53–61

    PubMed  Google Scholar 

  186. Liu X, Elojeimy S, El-Zawahry AM, Holman DH, Bielawska A, Bielawski J, Rubinchik S, Guo GW, Dong JY, Keane T, Hannun YA, Tavassoli M, Norris JS (2006) Modulation of ceramide metabolism enhances viral protein apoptin’s cytotoxicity in prostate cancer. Mol Ther 14(5):637–646

    CAS  PubMed  Google Scholar 

  187. Schoop RA, de Jong RJB, Noteborn MH (2008) Apoptin induces apoptosis in an oral cancer mouse model. Cancer Biol Ther 7(9):1368–1373

    CAS  PubMed  Google Scholar 

  188. Harvey BG, Hackett NR, El-Sawy T, Rosengart TK, Hirschowitz EA, Lieberman MD, Lesser ML, Crystal RG (1999) Variability of human systemic humoral immune responses to adenovirus gene transfer vectors administered to different organs. J Virol 73(8):6729–6742

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Ye F, Zhong B, Dan G, Jiang F, Sai Y, Zhao J, Sun H, Zou Z (2013) Therapeutic anti-tumor effect of exogenous apoptin driven by human survivin gene promoter in a lentiviral construct. Arch Med Sci 9(3):561–568

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Han SX, Zhao J, Ma JL, Huang C, Lü Y, Ou W, Jia X (2010) The effect of the fused gene of SP-TAT-Apoptin transfected by lentivirus on HepG2 cells. Xi bao yu fen zi mian yi xue za zhi 26(4):310–312

    CAS  PubMed  Google Scholar 

  191. Han SX, Ma JL, Lv Y, Huang C, Liang HH, Duan KM (2008) Secretory Transactivating Transcription-apoptin fusion protein induces apoptosis in hepatocellular carcinoma HepG2 cells. World J Gastroenterol 14(23):3642

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Ma JL, Han SX, Zhao J, Zhang D, Wang L, Li YD, Zhu Q (2012) Systemic delivery of lentivirus-mediated secretable TAT-apoptin eradicates hepatocellular carcinoma xenografts in nude mice. Int J Oncol 41(3):1013–1020

    CAS  PubMed  Google Scholar 

  193. Pan Y, Fang L, Fan H, Luo R, Zhao Q, Chen H, Xiao S (2010) Antitumor effects of a recombinant pseudotype baculovirus expressing apoptin in vitro and in vivo. Int J Can 126(11):2741–2751

    CAS  Google Scholar 

  194. Strauss R, Hüser A, Ni S, Tuve S, Kiviat N, Sow PS, Hofmann C, Lieber A (2007) Baculovirus-based vaccination vectors allow for efficient induction of immune responses against Plasmodium falciparum circumsporozoite protein. Mol Ther 15(1):193–202

    CAS  PubMed  Google Scholar 

  195. Olijslagers S, Dege AY, Dinsart C, Voorhoeve M, Rommelaere J, Noteborn MH, Cornelis JJ (2001) Potentiation of a recombinant oncolytic parvovirus by expression of apoptin. Cancer Gene Ther 8(12):958–965

    CAS  PubMed  Google Scholar 

  196. Li X, Jin N, Mi Z, Lian H, Sun L, Li X, Zheng H (2006) Antitumor effects of a recombinant fowlpox virus expressing apoptin in vivo and in vitro. Int J Cancer 119(12):2948–2957

    CAS  PubMed  Google Scholar 

  197. Wu Y, Zhang X, Wang X, Wang L, Hu S, Liu X, Meng S (2011) Apoptin enhances the oncolytic properties of Newcastle disease virus. Intervirology 55(4):276–286

    PubMed  Google Scholar 

  198. Kochneva GV, Babkina IN, Lupan TA, Grazhdantseva AA, Yudin PV, Sivolobova GF, Shvalov AN, Popov EG, Babkin IV, Netesov SV, Chumakov PM (2013) Apoptin enhances the oncolytic activity of vaccinia virus in vitro. Mol Biol 47(5):733–742

    CAS  Google Scholar 

  199. Shoae-Hassani A, Keyhanvar P, Seifalian AM, Mortazavi-Tabatabaei SA, Ghaderi N, Issazadeh K, Amirmozafari N, Verdi J (2013) λ Phage nanobioparticle expressing apoptin efficiently suppress human breast carcinoma tumor growth in vivo. PLoS ONE 8(11):e79907

    PubMed Central  PubMed  Google Scholar 

  200. Cao HD, Yang YX, Lü L, Liu SN, Wang PL, Tao XH, Wang LJ, Xiang TX (2010) Attenuated Salmonella typhimurium carrying TRAIL and VP3 genes inhibits the growth of gastric cancer cells in vitro and in vivo. Tumori 96(2):296

    CAS  PubMed  Google Scholar 

  201. Guan GF, Zhao M, Liu LM, Jin CS, Sun K, Zhang DJ, Yu DJ, Cao HW, Lu YQ, Wen LJ (2013) Salmonella typhimurium mediated delivery of apoptin in human laryngeal cancer. Int J Med Sci 10(12):1639

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Natesan S, Kataria JM, Dhama K, Bhardwaj N, Sylvester A (2006) Anti-neoplastic effect of chicken anemia virus VP3 protein (apoptin) in Rous sarcoma virus-induced tumours in chicken. J Gen Virol 87(10):2933–2940

    CAS  PubMed  Google Scholar 

  203. Mitrus I, Missol-Kolka EWA, Plucienniczak A, Szala S (2005) Tumour therapy with genes encoding apoptin and E4orf4. Anticancer Res 25(2A):1087–1090

    CAS  PubMed  Google Scholar 

  204. Lian H, Jin N, Li X, Mi Z, Zhang J, Sun L, Li X, Zheng H, Li P (2007) Induction of an effective anti-tumor immune response and tumor regression by combined administration of IL-18 and apoptin. Cancer Immunol Immunother 56(2):181–192

    CAS  PubMed  Google Scholar 

  205. An S, Nam K, Choi S, Bai CZ, Lee Y, Park JS (2013) Nonviral gene therapy in vivo with PAM-RG4/apoptin as a potential brain tumor therapeutic. Int J Nanomed 8:821

    Google Scholar 

  206. Pennant WA, An S, Gwak SJ, Choi S, Banh DT, Nguyen AB, Song HY, Ha Y, Park JS (2013) Local non-viral gene delivery of apoptin delays the onset of paresis in an experimental model of intramedullary spinal cord tumor. Spinal Cord 52:3–8

    PubMed  Google Scholar 

  207. Sun J, Yan Y, Wang XT, Liu XW, Peng DJ, Wang M, Tian J, Zong YQ, Zhang YH, Noteborn MHM, Qu S (2009) PTD4-apoptin protein therapy inhibits tumor growth in vivo. Inter J Can 124(12):2973–2981

    CAS  Google Scholar 

  208. Jin JL, Gong J, Yin TJ, Lu YJ, Xia JJ, Xie YY, Di Y, He L, Guo JL, Sun J, Noteborn MHM, Qu S (2011) PTD4-apoptin protein and dacarbazine show a synergistic antitumor effect on B16-F1 melanoma in vitro and in vivo. Eur J Pharmacol 654(1):17–25

    CAS  PubMed  Google Scholar 

  209. Wang DM, Zhou Y, Xie HJ, Ma XL, Wang X, Chen H, Huang BR (2006) Cytotoxicity of a recombinant fusion protein of adenovirus early region 4 open reading frame 4 (E4orf4) and human epidermal growth factor on p53-deficient tumor cells. Anticancer Drugs 17(5):527–537

    CAS  PubMed  Google Scholar 

  210. Zhou Y, Chen H, Ma XL, Xie HJ, Wang CL, Zhang SH, Wang X, Huang BR (2009) Fusion protein of adenovirus E4orf4 and human epidermal growth factor inhibits tumor cell growth. Int J Cancer 125(5):1186–1192

    CAS  PubMed  Google Scholar 

  211. Galioot A, Godet AN, Maire V, Falanga PB, Cayla X, Baron B, England P (1830) Garcia A (2013) Transducing properties of a pre-structured α-helical DPT-peptide containing a short canine adenovirus type 2 E4orf4 PP2A1-binding sequence. BBA Gen Subjects 6:3578–3583

    Google Scholar 

  212. Wolkersdörfer GW, Morris JC, Ehninger G, Ramsey WJ (2004) Trans-complementing adenoviral vectors for oncolytic therapy of malignant melanoma. J Gene Med 6(6):652–662

    PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to those researchers whose important work we were not able to cite because of space limitations.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Gandham, R.K., Sahoo, A.P. et al. Viral genes as oncolytic agents for cancer therapy. Cell. Mol. Life Sci. 72, 1073–1094 (2015). https://doi.org/10.1007/s00018-014-1782-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1782-1

Keywords

Navigation