Skip to main content

Advertisement

Log in

Eukaryotic enhancers: common features, regulation, and participation in diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Enhancers are positive DNA regulatory sequences controlling temporal and tissue-specific gene expression. These elements act independently of their orientation and distance relative to the promoters of target genes. Enhancers act through a variety of transcription factors that ensure their correct match with target promoters and consequent gene activation. There is a growing body of evidence on association of enhancers with transcription factors, co-activators, histone chromatin marks, and lncRNAs. Alterations in enhancers lead to misregulation of gene expression, causing a number of human diseases. In this review, we focus on the common characteristics of enhancers required for transcription stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buecker C, Wysocka J (2012) Enhancers as information integration hubs in development: lessons from genomics. Trends Genet 28(6):276–284. doi:10.1016/j.tig.2012.02.008

    CAS  PubMed  Google Scholar 

  2. Bulger M, Groudine M (2011) Functional and mechanistic diversity of distal transcription enhancers. Cell 144(3):327–339. doi:10.1016/j.cell.2011.01.024

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Banerji J, Rusconi S, Schaffner W (1981) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27:299–308

    CAS  PubMed  Google Scholar 

  4. Benoist C, Chambon P (1981) In vivo sequence requirements of the SV40 early promotor region. Nature 290(5804):304–310

    CAS  PubMed  Google Scholar 

  5. Chepelev I, Wei G, Wangsa D, Tang Q, Zhao K (2012) Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization. Cell Res 22(3):490–503. doi:10.1038/cr.2012.15

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Birnbaum RY, Clowney EJ, Agamy O, Kim MJ, Zhao J, Yamanaka T, Pappalardo Z, Clarke SL, Wenger AM, Nguyen L, Gurrieri F, Everman DB, Schwartz CE, Birk OS, Bejerano G, Lomvardas S, Ahituv N (2012) Coding exons function as tissue-specific enhancers of nearby genes. Genome Res 22(6):1059–1068. doi:10.1101/gr.133546.111

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Ritter DI, Dong Z, Guo S, Chuang JH (2012) Transcriptional enhancers in protein-coding exons of vertebrate developmental genes. PLoS ONE 7(5):e35202. doi:10.1371/journal.pone.0035202

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Kim A, Dean A (2012) Chromatin loop formation in the beta-globin locus and its role in globin gene transcription. Mol Cells 34(1):1–5. doi:10.1007/s10059-012-0048-8

    PubMed Central  PubMed  Google Scholar 

  9. Smith E, Shilatifard A (2014) Enhancer biology and enhanceropathies. Nat Struct Mol Biol 21(3):210–219. doi:10.1038/nsmb.2784

    CAS  PubMed  Google Scholar 

  10. Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13(9):613–626. doi:10.1038/nrg3207

    CAS  PubMed  Google Scholar 

  11. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82. doi:10.1038/nature11232

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Wu C, Wong YC, Elgin SC (1979) The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell 16(4):807–814

    CAS  PubMed  Google Scholar 

  13. Xi H, Shulha HP, Lin JM, Vales TR, Fu Y, Bodine DM, McKay RD, Chenoweth JG, Tesar PJ, Furey TS, Ren B, Weng Z, Crawford GE (2007) Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet 3(8):e136. doi:10.1371/journal.pgen.0030136

    PubMed Central  PubMed  Google Scholar 

  14. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. doi:10.1016/j.cell.2007.05.009

    CAS  PubMed  Google Scholar 

  15. Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K, Felsenfeld G (2009) H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat Genet 41(8):941–945. doi:10.1038/ng.409

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903. doi:10.1038/ng.154

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21(12):1519–1529. doi:10.1101/gad.1547707

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Butler JE, Kadonaga JT (2001) Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. Genes Dev 15(19):2515–2519. doi:10.1101/gad.924301

    PubMed Central  CAS  PubMed  Google Scholar 

  19. van Arensbergen J, van Steensel B, Bussemaker HJ (2014) In search of the determinants of enhancer-promoter interaction specificity. Trends Cell Biol. doi:10.1016/j.tcb.2014.07.004

    PubMed  Google Scholar 

  20. Zabidi MA, Arnold CD, Schernhuber K, Pagani M, Rath M, Frank O, Stark A (2014) Enhancer–core-promoter specificity separates developmental and housekeeping gene regulation. Nature. doi:10.1038/nature13994

    PubMed  Google Scholar 

  21. Chetverina D, Aoki T, Erokhin M, Georgiev P, Schedl P (2014) Making connections: insulators organize eukaryotic chromosomes into independent cis-regulatory networks. BioEssays 36(2):163–172. doi:10.1002/bies.201300125

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Core LJ, Lis JT (2009) Paused Pol II captures enhancer activity and acts as a potent insulator. Genes Dev 23(14):1606–1612. doi:10.1101/gad.1827709

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Gorkin DU, Leung D, Ren B (2014) The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14(6):762–775. doi:10.1016/j.stem.2014.05.017

    CAS  PubMed  Google Scholar 

  24. Kyrchanova O, Georgiev P (2014) Chromatin insulators and long-distance interactions in Drosophila. FEBS Lett 588(1):8–14. doi:10.1016/j.febslet.2013.10.039

    CAS  PubMed  Google Scholar 

  25. Ciabrelli F, Cavalli G (2014) Chromatin-driven behavior of topologically associating domains. J Mol Biol. doi:10.1016/j.jmb.2014.09.013

    PubMed  Google Scholar 

  26. Schwarzer W, Spitz F (2014) The architecture of gene expression: integrating dispersed cis-regulatory modules into coherent regulatory domains. Curr Opin Genet Dev 27:74–82. doi:10.1016/j.gde.2014.03.014

    CAS  PubMed  Google Scholar 

  27. Shlyueva D, Stampfel G, Stark A (2014) Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 15(4):272–286. doi:10.1038/nrg3682

    CAS  PubMed  Google Scholar 

  28. Wang C, Zhang MQ, Zhang Z (2013) Computational identification of active enhancers in model organisms. Genomics Proteomics Bioinf 11(3):142–150. doi:10.1016/j.gpb.2013.04.002

    CAS  Google Scholar 

  29. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. doi:10.1038/nature11247

    Google Scholar 

  30. Heintzman ND, Ren B (2009) Finding distal regulatory elements in the human genome. Curr Opin Genet Dev 19(6):541–549. doi:10.1016/j.gde.2009.09.006

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Smale ST, Tarakhovsky A, Natoli G (2014) Chromatin contributions to the regulation of innate immunity. Annu Rev Immunol 32:489–511. doi:10.1146/annurev-immunol-031210-101303

    CAS  PubMed  Google Scholar 

  32. Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25(21):2227–2241. doi:10.1101/gad.176826.111

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49(5):825–837. doi:10.1016/j.molcel.2013.01.038

    CAS  PubMed  Google Scholar 

  34. Serandour AA, Avner S, Percevault F, Demay F, Bizot M, Lucchetti-Miganeh C, Barloy-Hubler F, Brown M, Lupien M, Metivier R, Salbert G, Eeckhoute J (2011) Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res 21(4):555–565. doi:10.1101/gr.111534.110

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Xu J, Pope SD, Jazirehi AR, Attema JL, Papathanasiou P, Watts JA, Zaret KS, Weissman IL, Smale ST (2007) Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc Natl Acad Sci USA 104(30):12377–12382. doi:10.1073/pnas.0704579104

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Xu J, Watts JA, Pope SD, Gadue P, Kamps M, Plath K, Zaret KS, Smale ST (2009) Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes Dev 23(24):2824–2838. doi:10.1101/gad.1861209

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, Gregory L, Lonie L, Chew A, Wei CL, Ragoussis J, Natoli G (2010) Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32(3):317–328. doi:10.1016/j.immuni.2010.02.008

    CAS  PubMed  Google Scholar 

  38. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589. doi:10.1016/j.molcel.2010.05.004

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Hoogenkamp M, Lichtinger M, Krysinska H, Lancrin C, Clarke D, Williamson A, Mazzarella L, Ingram R, Jorgensen H, Fisher A, Tenen DG, Kouskoff V, Lacaud G, Bonifer C (2009) Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood 114(2):299–309. doi:10.1182/blood-2008-11-191890

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Liber D, Domaschenz R, Holmqvist PH, Mazzarella L, Georgiou A, Leleu M, Fisher AG, Labosky PA, Dillon N (2010) Epigenetic priming of a pre-B cell-specific enhancer through binding of Sox2 and Foxd3 at the ESC stage. Cell Stem Cell 7(1):114–126. doi:10.1016/j.stem.2010.05.020

    CAS  PubMed  Google Scholar 

  41. Yin JW, Wang G (2014) The Mediator complex: a master coordinator of transcription and cell lineage development. Development 141(5):977–987. doi:10.1242/dev.098392

    CAS  PubMed  Google Scholar 

  42. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435. doi:10.1038/nature09380

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494(7438):497–501. doi:10.1038/nature11884

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Park SW, Li G, Lin YP, Barrero MJ, Ge K, Roeder RG, Wei LN (2005) Thyroid hormone-induced juxtaposition of regulatory elements/factors and chromatin remodeling of Crabp1 dependent on MED1/TRAP220. Mol Cell 19(5):643–653. doi:10.1016/j.molcel.2005.08.008

    CAS  PubMed  Google Scholar 

  45. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153(2):307–319. doi:10.1016/j.cell.2013.03.035

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Ansari SA, Morse RH (2013) Mechanisms of Mediator complex action in transcriptional activation. Cell Mol Life Sci 70(15):2743–2756. doi:10.1007/s00018-013-1265-9

    CAS  PubMed  Google Scholar 

  47. Malik S, Roeder RG (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11(11):761–772. doi:10.1038/nrg2901

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Poss ZC, Ebmeier CC, Taatjes DJ (2013) The Mediator complex and transcription regulation. Crit Rev Biochem Mol Biol 48(6):575–608. doi:10.3109/10409238.2013.840259

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Szutorisz H, Dillon N, Tora L (2005) The role of enhancers as centres for general transcription factor recruitment. Trends Biochem Sci 30(11):593–599. doi:10.1016/j.tibs.2005.08.006

    CAS  PubMed  Google Scholar 

  50. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155(4):934–947. doi:10.1016/j.cell.2013.09.053

    CAS  PubMed  Google Scholar 

  51. Bedford DC, Kasper LH, Fukuyama T, Brindle PK (2010) Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics 5(1):9–15

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Holmqvist PH, Mannervik M (2013) Genomic occupancy of the transcriptional co-activators p300 and CBP. Transcription 4(1):18–23. doi:10.4161/trns.22601

    PubMed Central  PubMed  Google Scholar 

  53. Wang L, Tang Y, Cole PA, Marmorstein R (2008) Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 18(6):741–747. doi:10.1016/j.sbi.2008.09.004

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Ramos YF, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, van Galen M, van Dam H, van Ommen GJ, den Dunnen JT, Zantema A, t Hoen PA (2010) Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res 38(16):5396–5408. doi:10.1093/nar/gkq184

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138(5):1019–1031. doi:10.1016/j.cell.2009.06.049

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318. doi:10.1038/ng1966

    CAS  PubMed  Google Scholar 

  57. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187. doi:10.1038/nature09033

    PubMed Central  CAS  PubMed  Google Scholar 

  58. May D, Blow MJ, Kaplan T, McCulley DJ, Jensen BC, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Afzal V, Simpson PC, Rubin EM, Black BL, Bristow J, Pennacchio LA, Visel A (2012) Large-scale discovery of enhancers from human heart tissue. Nat Genet 44(1):89–93. doi:10.1038/ng.1006

    CAS  Google Scholar 

  59. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457(7231):854–858. doi:10.1038/nature07730

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Holmqvist PH, Boija A, Philip P, Crona F, Stenberg P, Mannervik M (2012) Preferential genome targeting of the CBP co-activator by Rel and Smad proteins in early Drosophila melanogaster embryos. PLoS Genet 8(6):e1002769. doi:10.1371/journal.pgen.1002769

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Negre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, Kheradpour P, Eaton ML, Loriaux P, Sealfon R, Li Z, Ishii H, Spokony RF, Chen J, Hwang L, Cheng C, Auburn RP, Davis MB, Domanus M, Shah PK, Morrison CA, Zieba J, Suchy S, Senderowicz L, Victorsen A, Bild NA, Grundstad AJ, Hanley D, MacAlpine DM, Mannervik M, Venken K, Bellen H, White R, Gerstein M, Russell S, Grossman RL, Ren B, Posakony JW, Kellis M, White KP (2011) A cis-regulatory map of the Drosophila genome. Nature 471(7339):527–531. doi:10.1038/nature09990

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459(7243):108–112. doi:10.1038/nature07829

    PubMed Central  CAS  PubMed  Google Scholar 

  63. McCord RP, Zhou VW, Yuh T, Bulyk ML (2011) Distant cis-regulatory elements in human skeletal muscle differentiation. Genomics 98(6):401–411. doi:10.1016/j.ygeno.2011.08.003

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30(2):249–262. doi:10.1038/emboj.2010.318

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanik V, Zlobin A, Diaz MO, Scacheri PC, Harte PJ (2009) CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136(18):3131–3141. doi:10.1242/dev.037127

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107(50):21931–21936. doi:10.1073/pnas.1016071107

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Nord AS, Blow MJ, Attanasio C, Akiyama JA, Holt A, Hosseini R, Phouanenavong S, Plajzer-Frick I, Shoukry M, Afzal V, Rubenstein JL, Rubin EM, Pennacchio LA, Visel A (2013) Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155(7):1521–1531. doi:10.1016/j.cell.2013.11.033

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Kawamura T, Ono K, Morimoto T, Wada H, Hirai M, Hidaka K, Morisaki T, Heike T, Nakahata T, Kita T, Hasegawa K (2005) Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes. J Biol Chem 280(20):19682–19688. doi:10.1074/jbc.M412428200

    CAS  PubMed  Google Scholar 

  69. Yamagata T, Mitani K, Oda H, Suzuki T, Honda H, Asai T, Maki K, Nakamoto T, Hirai H (2000) Acetylation of GATA-3 affects T-cell survival and homing to secondary lymphoid organs. EMBO J 19(17):4676–4687. doi:10.1093/emboj/19.17.4676

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Bai Y, Srinivasan L, Perkins L, Atchison ML (2005) Protein acetylation regulates both PU.1 transactivation and Ig kappa 3′ enhancer activity. J Immunol 175(8):5160–5169

    CAS  PubMed  Google Scholar 

  71. Krebs AR, Karmodiya K, Lindahl-Allen M, Struhl K, Tora L (2011) SAGA and ATAC histone acetyl transferase complexes regulate distinct sets of genes and ATAC defines a class of p300-independent enhancers. Mol Cell 44(3):410–423. doi:10.1016/j.molcel.2011.08.037

    CAS  PubMed  Google Scholar 

  72. Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49(5):773–782. doi:10.1016/j.molcel.2013.02.011

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Smallwood A, Ren B (2013) Genome organization and long-range regulation of gene expression by enhancers. Curr Opin Cell Biol 25(3):387–394. doi:10.1016/j.ceb.2013.02.005

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10(6):1453–1465

    CAS  PubMed  Google Scholar 

  75. de Wit E, de Laat W (2012) A decade of 3C technologies: insights into nuclear organization. Genes Dev 26(1):11–24. doi:10.1101/gad.179804.111

    PubMed Central  PubMed  Google Scholar 

  76. Ghavi-Helm Y, Klein FA, Pakozdi T, Ciglar L, Noordermeer D, Huber W, Furlong EE (2014) Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512(7512):96–100. doi:10.1038/nature13417

    CAS  PubMed  Google Scholar 

  77. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680. doi:10.1016/j.cell.2014.11.021

    CAS  PubMed  Google Scholar 

  78. Sanyal A, Lajoie BR, Jain G, Dekker J (2012) The long-range interaction landscape of gene promoters. Nature 489(7414):109–113. doi:10.1038/nature11279

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Kieffer-Kwon KR, Tang Z, Mathe E, Qian J, Sung MH, Li G, Resch W, Baek S, Pruett N, Grontved L, Vian L, Nelson S, Zare H, Hakim O, Reyon D, Yamane A, Nakahashi H, Kovalchuk AL, Zou J, Joung JK, Sartorelli V, Wei CL, Ruan X, Hager GL, Ruan Y, Casellas R (2013) Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 155(7):1507–1520. doi:10.1016/j.cell.2013.11.039

    CAS  PubMed  Google Scholar 

  80. Hakim O, Sung MH, Voss TC, Splinter E, John S, Sabo PJ, Thurman RE, Stamatoyannopoulos JA, de Laat W, Hager GL (2011) Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res 21(5):697–706. doi:10.1101/gr.111153.110

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Eijkelenboom A, Mokry M, de Wit E, Smits LM, Polderman PE, van Triest MH, van Boxtel R, Schulze A, de Laat W, Cuppen E, Burgering BM (2013) Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Mol Syst Biol 9:638. doi:10.1038/msb.2012.74

    PubMed Central  PubMed  Google Scholar 

  82. Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen CA, Schmitt AD, Espinoza CA, Ren B (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503(7475):290–294. doi:10.1038/nature12644

    CAS  PubMed  Google Scholar 

  83. Wei Z, Gao F, Kim S, Yang H, Lyu J, An W, Wang K, Lu W (2013) Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell Stem Cell 13(1):36–47. doi:10.1016/j.stem.2013.05.010

    CAS  PubMed  Google Scholar 

  84. Negre N, Brown CD, Shah PK, Kheradpour P, Morrison CA, Henikoff JG, Feng X, Ahmad K, Russell S, White RA, Stein L, Henikoff S, Kellis M, White KP (2010) A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 6(1):e1000814. doi:10.1371/journal.pgen.1000814

    PubMed Central  PubMed  Google Scholar 

  85. Drissen R, Palstra RJ, Gillemans N, Splinter E, Grosveld F, Philipsen S, de Laat W (2004) The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev 18(20):2485–2490. doi:10.1101/gad.317004

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, Groudine M, Weiss MJ, Dekker J, Blobel GA (2005) Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell 17(3):453–462. doi:10.1016/j.molcel.2004.12.028

    CAS  PubMed  Google Scholar 

  87. Levasseur DN, Wang J, Dorschner MO, Stamatoyannopoulos JA, Orkin SH (2008) Oct4 dependence of chromatin structure within the extended Nanog locus in ES cells. Genes Dev 22(5):575–580. doi:10.1101/gad.1606308

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Dorsett D (2011) Cohesin: genomic insights into controlling gene transcription and development. Curr Opin Genet Dev 21(2):199–206. doi:10.1016/j.gde.2011.01.018

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Remeseiro S, Cuadrado A, Losada A (2013) Cohesin in development and disease. Development 140(18):3715–3718. doi:10.1242/dev.090605

    CAS  PubMed  Google Scholar 

  90. Ebmeier CC, Taatjes DJ (2010) Activator-Mediator binding regulates Mediator-cofactor interactions. Proc Natl Acad Sci USA 107(25):11283–11288. doi:10.1073/pnas.0914215107

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Zhang H, Jiao W, Sun L, Fan J, Chen M, Wang H, Xu X, Shen A, Li T, Niu B, Ge S, Li W, Cui J, Wang G, Sun J, Fan X, Hu X, Mrsny RJ, Hoffman AR, Hu JF (2013) Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 13(1):30–35. doi:10.1016/j.stem.2013.05.012

    CAS  PubMed  Google Scholar 

  92. Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, Schmierer B, Jolma A, Kivioja T, Taipale M, Taipale J (2013) Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 154(4):801–813. doi:10.1016/j.cell.2013.07.034

    CAS  PubMed  Google Scholar 

  93. Schaaf CA, Kwak H, Koenig A, Misulovin Z, Gohara DW, Watson A, Zhou Y, Lis JT, Dorsett D (2013) Genome-wide control of RNA polymerase II activity by cohesin. PLoS Genet 9(3):e1003382. doi:10.1371/journal.pgen.1003382

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Apostolou E, Ferrari F, Walsh RM, Bar-Nur O, Stadtfeld M, Cheloufi S, Stuart HT, Polo JM, Ohsumi TK, Borowsky ML, Kharchenko PV, Park PJ, Hochedlinger K (2013) Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 12(6):699–712. doi:10.1016/j.stem.2013.04.013

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Chien R, Zeng W, Kawauchi S, Bender MA, Santos R, Gregson HC, Schmiesing JA, Newkirk DA, Kong X, Ball AR Jr, Calof AL, Lander AD, Groudine MT, Yokomori K (2011) Cohesin mediates chromatin interactions that regulate mammalian beta-globin expression. J Biol Chem 286(20):17870–17878. doi:10.1074/jbc.M110.207365

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Seitan VC, Hao B, Tachibana-Konwalski K, Lavagnolli T, Mira-Bontenbal H, Brown KE, Teng G, Carroll T, Terry A, Horan K, Marks H, Adams DJ, Schatz DG, Aragon L, Fisher AG, Krangel MS, Nasmyth K, Merkenschlager M (2011) A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 476(7361):467–471. doi:10.1038/nature10312

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. doi:10.1126/science.1063127

    CAS  PubMed  Google Scholar 

  98. Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermuller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaoz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Loytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Program NCS, Baylor College of Medicine Human Genome Sequencing C, Washington University Genome Sequencing C, Broad I, Children’s Hospital Oakland Research I, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Zhang X, Xu M, Haidar JN, Yu Y, Ruan Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrimsdottir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816. doi:10.1038/nature05874

    Google Scholar 

  99. Koch CM, Andrews RM, Flicek P, Dillon SC, Karaoz U, Clelland GK, Wilcox S, Beare DM, Fowler JC, Couttet P, James KD, Lefebvre GC, Bruce AW, Dovey OM, Ellis PD, Dhami P, Langford CF, Weng Z, Birney E, Carter NP, Vetrie D, Dunham I (2007) The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res 17(6):691–707. doi:10.1101/gr.5704207

    PubMed Central  CAS  PubMed  Google Scholar 

  100. He HH, Meyer CA, Shin H, Bailey ST, Wei G, Wang Q, Zhang Y, Xu K, Ni M, Lupien M, Mieczkowski P, Lieb JD, Zhao K, Brown M, Liu XS (2010) Nucleosome dynamics define transcriptional enhancers. Nat Genet 42(4):343–347. doi:10.1038/ng.545

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, Ren B (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488(7409):116–120. doi:10.1038/nature11243

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, Imbert J, Andrau JC, Ferrier P, Spicuglia S (2011) H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J 30(20):4198–4210. doi:10.1038/emboj.2011.295

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczynski B, Riddell A, Furlong EE (2012) Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44(2):148–156. doi:10.1038/ng.1064

    CAS  PubMed  Google Scholar 

  104. Hu D, Gao X, Morgan MA, Herz HM, Smith ER, Shilatifard A (2013) The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol 33(23):4745–4754. doi:10.1128/MCB.01181-13

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, Voets O, Verrijzer CP, Shilatifard A (2012) Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26(23):2604–2620. doi:10.1101/gad.201327.112

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W, Ge K (2013) H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2:e01503. doi:10.7554/eLife.01503

  107. Tie F, Banerjee R, Saiakhova AR, Howard B, Monteith KE, Scacheri PC, Cosgrove MS, Harte PJ (2014) Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing. Development 141(5):1129–1139. doi:10.1242/dev.102392

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Ardehali MB, Mei A, Zobeck KL, Caron M, Lis JT, Kusch T (2011) Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J 30(14):2817–2828. doi:10.1038/emboj.2011.194

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Hallson G, Hollebakken RE, Li T, Syrzycka M, Kim I, Cotsworth S, Fitzpatrick KA, Sinclair DA, Honda BM (2012) dSet1 is the main H3K4 di- and tri-methyltransferase throughout Drosophila development. Genetics 190(1):91–100. doi:10.1534/genetics.111.135863

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Mohan M, Herz HM, Smith ER, Zhang Y, Jackson J, Washburn MP, Florens L, Eissenberg JC, Shilatifard A (2011) The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol 31(21):4310–4318. doi:10.1128/MCB.06092-11

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Wu M, Wang PF, Lee JS, Martin-Brown S, Florens L, Washburn M, Shilatifard A (2008) Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol 28(24):7337–7344. doi:10.1128/MCB.00976-08

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, Sabo PJ, Larschan E, Gorchakov AA, Gu T, Linder-Basso D, Plachetka A, Shanower G, Tolstorukov MY, Luquette LJ, Xi R, Jung YL, Park RW, Bishop EP, Canfield TK, Sandstrom R, Thurman RE, MacAlpine DM, Stamatoyannopoulos JA, Kellis M, Elgin SC, Kuroda MI, Pirrotta V, Karpen GH, Park PJ (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471(7339):480–485. doi:10.1038/nature09725

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Collis P, Antoniou M, Grosveld F (1990) Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J 9(1):233–240

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Ashe HL, Monks J, Wijgerde M, Fraser P, Proudfoot NJ (1997) Intergenic transcription and transinduction of the human beta-globin locus. Genes Dev 11(19):2494–2509

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Tuan D, Kong S, Hu K (1992) Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc Natl Acad Sci USA 89(23):11219–11223

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Kong S, Bohl D, Li C, Tuan D (1997) Transcription of the HS2 enhancer toward a cis-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol Cell Biol 17(7):3955–3965

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Ling J, Baibakov B, Pi W, Emerson BM, Tuan D (2005) The HS2 enhancer of the beta-globin locus control region initiates synthesis of non-coding, polyadenylated RNAs independent of a cis-linked globin promoter. J Mol Biol 350(5):883–896. doi:10.1016/j.jmb.2005.05.039

    CAS  PubMed  Google Scholar 

  118. Johnson KD, Christensen HM, Zhao B, Bresnick EH (2001) Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter. Mol Cell 8(2):465–471

    CAS  PubMed  Google Scholar 

  119. Johnson KD, Grass JA, Park C, Im H, Choi K, Bresnick EH (2003) Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain. Mol Cell Biol 23(18):6484–6493

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. doi:10.1038/nature11233

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227. doi:10.1038/nature07672

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488. doi:10.1126/science.1138341

    CAS  PubMed  Google Scholar 

  123. Zhang Y, Yang L, Chen LL (2013) Life without A tail: New formats of long noncoding RNAs. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2013.10.009

    Google Scholar 

  124. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39 (Database issue):D146–D151. doi:10.1093/nar/gkq1138

  125. De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8(5):e1000384. doi:10.1371/journal.pbio.1000384

    PubMed Central  PubMed  Google Scholar 

  126. Hah N, Murakami S, Nagari A, Danko CG, Kraus WL (2013) Enhancer transcripts mark active estrogen receptor binding sites. Genome Res 23(8):1210–1223. doi:10.1101/gr.152306.112

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Koch F, Fenouil R, Gut M, Cauchy P, Albert TK, Zacarias-Cabeza J, Spicuglia S, de la Chapelle AL, Heidemann M, Hintermair C, Eick D, Gut I, Ferrier P, Andrau JC (2011) Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat Struct Mol Biol 18(8):956–963. doi:10.1038/nsmb.2085

    CAS  PubMed  Google Scholar 

  128. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58. doi:10.1016/j.cell.2010.09.001

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT (2014) Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat Genet 46(12):1311–1320. doi:10.1038/ng.3142

    CAS  PubMed  Google Scholar 

  130. Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, Kraus WL (2011) A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 145(4):622–634. doi:10.1016/j.cell.2011.03.042

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, Oude Vrielink JA, Elkon R, Melo SA, Leveille N, Kalluri R, de Laat W, Agami R (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49(3):524–535. doi:10.1016/j.molcel.2012.11.021

    CAS  PubMed  Google Scholar 

  132. Mousavi K, Zare H, Dell’orso S, Grontved L, Gutierrez-Cruz G, Derfoul A, Hager GL, Sartorelli V (2013) eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51(5):606–617. doi:10.1016/j.molcel.2013.07.022

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Onoguchi M, Hirabayashi Y, Koseki H, Gotoh Y (2012) A noncoding RNA regulates the neurogenin1 gene locus during mouse neocortical development. Proc Natl Acad Sci USA 109(42):16939–16944. doi:10.1073/pnas.1202956109

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Ponjavic J, Oliver PL, Lunter G, Ponting CP (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet 5(8):e1000617. doi:10.1371/journal.pgen.1000617

    PubMed Central  PubMed  Google Scholar 

  135. Lam MT, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y, Benner C, Kaikkonen MU, Kim AS, Kosaka M, Lee CY, Watt A, Grossman TR, Rosenfeld MG, Evans RM, Glass CK (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498(7455):511–515. doi:10.1038/nature12209

    CAS  PubMed  Google Scholar 

  136. Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X, Oh S, Kim HS, Glass CK, Rosenfeld MG (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498(7455):516–520. doi:10.1038/nature12210

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, Qiu J, Liu W, Kaikkonen MU, Ohgi KA, Glass CK, Rosenfeld MG, Fu XD (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474(7351):390–394. doi:10.1038/nature10006

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Lin YC, Benner C, Mansson R, Heinz S, Miyazaki K, Miyazaki M, Chandra V, Bossen C, Glass CK, Murre C (2012) Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol 13(12):1196–1204. doi:10.1038/ni.2432

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Bertani S, Sauer S, Bolotin E, Sauer F (2011) The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 43(6):1040–1046. doi:10.1016/j.molcel.2011.08.019

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell 152(4):743–754. doi:10.1016/j.cell.2013.01.015

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124. doi:10.1038/nature09819

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Gummalla M, Maeda RK, Castro Alvarez JJ, Gyurkovics H, Singari S, Edwards KA, Karch F, Bender W (2012) abd-A regulation by the iab-8 noncoding RNA. PLoS Genet 8(5):e1002720. doi:10.1371/journal.pgen.1002720

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Petruk S, Sedkov Y, Riley KM, Hodgson J, Schweisguth F, Hirose S, Jaynes JB, Brock HW, Mazo A (2006) Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127(6):1209–1221. doi:10.1016/j.cell.2006.10.039

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Erokhin M, Davydova A, Parshikov A, Studitsky VM, Georgiev P, Chetverina D (2013) Transcription through enhancers suppresses their activity in Drosophila. Epigenetics Chromatin 6(1):31. doi:10.1186/1756-8935-6-31

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Saxena A, Carninci P (2011) Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. BioEssays 33(11):830–839. doi:10.1002/bies.201100084

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106(28):11667–11672. doi:10.1073/pnas.0904715106

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470(7333):279–283. doi:10.1038/nature09692

    CAS  PubMed  Google Scholar 

  148. Zentner GE, Tesar PJ, Scacheri PC (2011) Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res 21(8):1273–1283. doi:10.1101/gr.122382.111

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Curtin P, Pirastu M, Kan YW, Gobert-Jones JA, Stephens AD, Lehmann H (1985) A distant gene deletion affects beta-globin gene function in an atypical gamma delta beta-thalassemia. J Clin Investig 76(4):1554–1558. doi:10.1172/JCI112136

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Driscoll MC, Dobkin CS, Alter BP (1989) Gamma delta beta-thalassemia due to a de novo mutation deleting the 5′ beta-globin gene activation-region hypersensitive sites. Proc Natl Acad Sci USA 86(19):7470–7474

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Kioussis D, Vanin E, deLange T, Flavell RA, Grosveld FG (1983) Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 306(5944):662–666

    CAS  PubMed  Google Scholar 

  152. Anderson E, Peluso S, Lettice LA, Hill RE (2012) Human limb abnormalities caused by disruption of hedgehog signaling. Trends Genet 28(8):364–373. doi:10.1016/j.tig.2012.03.012

    CAS  PubMed  Google Scholar 

  153. Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, Portnoy ME, Cutler DJ, Green ED, Chakravarti A (2005) A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434(7035):857–863. doi:10.1038/nature03467

    CAS  PubMed  Google Scholar 

  154. Fernandez RM, Bleda M, Luzon-Toro B, Garcia-Alonso L, Arnold S, Sribudiani Y, Besmond C, Lantieri F, Doan B, Ceccherini I, Lyonnet S, Hofstra RM, Chakravarti A, Antinolo G, Dopazo J, Borrego S (2013) Pathways systematically associated to Hirschsprung’s disease. Orphanet J Rare Dis 8:187. doi:10.1186/1750-1172-8-187

    PubMed Central  PubMed  Google Scholar 

  155. Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, Dioszegi M, Dikkers FG, Hildering P, Willems PJ, Verheij JB, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (2002) Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 39(2):91–97

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, Gardner JC, Galas D, Schatzman RC, Beighton P, Papapoulos S, Hamersma H, Brunkow ME (2002) A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 110(2):144–152. doi:10.1002/ajmg.10401

    PubMed  Google Scholar 

  157. Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D, Plajzer-Frick I, Rubin EM (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15(7):928–935. doi:10.1101/gr.3437105

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Collette NM, Genetos DC, Economides AN, Xie L, Shahnazari M, Yao W, Lane NE, Harland RM, Loots GG (2012) Targeted deletion of Sost distal enhancer increases bone formation and bone mass. Proc Natl Acad Sci USA 109(35):14092–14097. doi:10.1073/pnas.1207188109

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Tawil R (2008) Facioscapulohumeral muscular dystrophy. Neurotherapeutics 5(4):601–606. doi:10.1016/j.nurt.2008.07.005

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Wijmenga C, Hewitt JE, Sandkuijl LA, Clark LN, Wright TJ, Dauwerse HG, Gruter AM, Hofker MH, Moerer P, Williamson R et al (1992) Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 2(1):26–30

    CAS  PubMed  Google Scholar 

  161. van Deutekom JC, Wijmenga C, van Tienhoven EA, Gruter AM, Hewitt JE, Padberg GW, van Ommen GJ, Hofker MH, Frants RR (1993) FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum Mol Genet 2(12):2037–2042

    PubMed  Google Scholar 

  162. Petrov A, Pirozhkova I, Laoudj D, Carnac G, Lipinski M, Vassetzky YS (2006) Chromatin loop domain organization within the 4q35 locus in facioscapulohumeral dystrophy patients versus normal human myoblasts. Proc Natl Acad Sci USA 103:6982–6987

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Petrov AP, Laoudj D, Vassetzky YS (2003) Genetics and epigenetics of progressive fascioscapulohumeral (landouzy-dejerine) muscular dystrophy. Genetics (Moscow) 39(2):147–151

    CAS  Google Scholar 

  164. Petrov AV, Allinne J, Pirozhkova IV, Laoudj D, Lipinski M, Vassetzky YS (2008) A nuclear matrix attachment site in the 4q35 locus has an enhancer-blocking activity in vivo: implications for the facio-scapulo-humeral dystrophy. Genome Res 18(1):39–45

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Gabriels J, Beckers MC, Ding H, De Vriese A, Plaisance S, van der Maarel SM, Padberg GW, Frants RR, Hewitt JE, Collen D, Belayew A (1999) Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. Gene 236(1):25–32

    CAS  PubMed  Google Scholar 

  166. van Geel M, Heather LJ, Lyle R, Hewitt JE, Frants RR, de Jong PJ (1999) The FSHD region on human chromosome 4q35 contains potential coding regions among pseudogenes and a high density of repeat elements. Genomics 61(1):55–65

    PubMed  Google Scholar 

  167. Dmitriev P, Lipinski M, Vassetzky YS (2009) Pearls in the junk: dissecting the molecular pathogenesis of facioscapulohumeral muscular dystrophy. Neuromuscul Disord 19:17–20. doi:10.1016/j.nmd.2008.09.004

    PubMed  Google Scholar 

  168. Tawil R, van der Maarel SM, Tapscott SJ (2014) Facioscapulohumeral dystrophy: the path to consensus on pathophysiology. Skelet Muscle 4:12. doi:10.1186/2044-5040-4-12

    PubMed Central  PubMed  Google Scholar 

  169. Dmitriev P, Petrov A, Ansseau E, Charron S, Coppée F, Belayew A, Carnac G, Turki A, Laoudj D, Lipinski M, Vassetzky YS (2011) The Krüppel-like factor KLF15 is a key actor in upregulation of the 4q35 genes DUX4c and FRG2 in FSHD muscles. J Biol Chem. doi:10.1074/jbc.M1111.254052

  170. Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D (2012) A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149(4):819–831. doi:10.1016/j.cell.2012.03.035

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Dmitriev P, Stankevicins L, Ansseau E, Petrov A, Barat A, Dessen P, Robert T, Turki A, Lazar V, Labourer E, Belayew A, Carnac G, Laoudj-Chenivesse D, Lipinski M, Vassetzky YS (2013) Defective regulation of microRNA target genes in myoblasts from facioscapulohumeral dystrophy patients. J Biol Chem 288(49):34989–35002. doi:10.1074/jbc.M113.504522

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Bhatia S, Bengani H, Fish M, Brown A, Divizia MT, de Marco R, Damante G, Grainger R, van Heyningen V, Kleinjan DA (2013) Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am J Hum Genet 93(6):1126–1134. doi:10.1016/j.ajhg.2013.10.028

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Ghiasvand NM, Rudolph DD, Mashayekhi M, Brzezinski JAt, Goldman D, Glaser T (2011) Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat Neurosci 14(5):578–586. doi:10.1038/nn.2798

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Sabherwal N, Bangs F, Roth R, Weiss B, Jantz K, Tiecke E, Hinkel GK, Spaich C, Hauffa BP, van der Kamp H, Kapeller J, Tickle C, Rappold G (2007) Long-range conserved non-coding SHOX sequences regulate expression in developing chicken limb and are associated with short stature phenotypes in human patients. Hum Mol Genet 16(2):210–222. doi:10.1093/hmg/ddl470

    CAS  PubMed  Google Scholar 

  175. Volkmann BA, Zinkevich NS, Mustonen A, Schilter KF, Bosenko DV, Reis LM, Broeckel U, Link BA, Semina EV (2011) Potential novel mechanism for Axenfeld–Rieger syndrome: deletion of a distant region containing regulatory elements of PITX2. Invest Ophthalmol Vis Sci 52(3):1450–1459. doi:10.1167/iovs.10-6060

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu XD, Topol EJ, Rosenfeld MG, Frazer KA (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature 470(7333):264–268. doi:10.1038/nature09753

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Zhang X, Cowper-Sal-lari R, Bailey SD, Moore JH, Lupien M (2012) Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res 22(8):1437–1446. doi:10.1101/gr.135665.111

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Hsu AP, Johnson KD, Falcone EL, Sanalkumar R, Sanchez L, Hickstein DD, Cuellar-Rodriguez J, Lemieux JE, Zerbe CS, Bresnick EH, Holland SM (2013) GATA2 haploinsufficiency caused by mutations in a conserved intronic element leads to MonoMAC syndrome. Blood 121(19):3830–3837, S3831–3837. doi:10.1182/blood-2012-08-452763

  179. Sklyar I, Iarovaia OI, Lipinski M, Vassetzky YS (2014) Translocations affecting human immunoglobulin heavy chain locus. Biopolym Cell 30(2):91–95. doi:10.7124/bc.000886

    Google Scholar 

  180. Gostissa M, Yan CT, Bianco JM, Cogne M, Pinaud E, Alt FW (2009) Long-range oncogenic activation of Igh-c-myc translocations by the Igh 3′ regulatory region. Nature 462(7274):803–807. doi:10.1038/nature08633

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Allinne J, Pichugin A, Iarovaia O, Klibi M, Barat A, Zlotek-Zlotkiewicz E, Markozashvili D, Petrova N, Camara-Clayette V, Ioudinkova E, Wiels J, Razin SV, Ribrag V, Lipinski M, Vassetzky YS (2014) Perinucleolar relocalization and nucleolin as crucial events in the transcriptional activation of key genes in mantle cell lymphoma. Blood 123(13):2044–2053. doi:10.1182/blood-2013-06-510511

    CAS  PubMed  Google Scholar 

  182. Tsfasman T, Klibi M, Pichugin A, Lipinski M, Vassetzky YS (2012) HIV: implication in Burkitt lymphoma. Biopolym Cell 28:285–288. doi:10.7124/bc.00005B

    CAS  Google Scholar 

  183. Speck NA, Renjifo B, Golemis E, Fredrickson TN, Hartley JW, Hopkins N (1990) Mutation of the core or adjacent LVb elements of the Moloney murine leukemia virus enhancer alters disease specificity. Genes Dev 4(2):233–242

    CAS  PubMed  Google Scholar 

  184. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073. doi:10.1038/nature09534

    Google Scholar 

  185. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, Kaul R, Stamatoyannopoulos JA (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337(6099):1190–1195. doi:10.1126/science.1222794

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jorgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki H, Hayashizaki Y, Muller F, Consortium F, Forrest AR, Carninci P, Rehli M, Sandelin A (2014) An atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461. doi:10.1038/nature12787

  187. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345):43–49. doi:10.1038/nature09906

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, Raychaudhuri S (2013) Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 45(2):124–130. doi:10.1038/ng.2504

    CAS  PubMed  Google Scholar 

  189. Akhtar-Zaidi B, Cowper-Sal-lari R, Corradin O, Saiakhova A, Bartels CF, Balasubramanian D, Myeroff L, Lutterbaugh J, Jarrar A, Kalady MF, Willis J, Moore JH, Tesar PJ, Laframboise T, Markowitz S, Lupien M, Scacheri PC (2012) Epigenomic enhancer profiling defines a signature of colon cancer. Science 336(6082):736–739. doi:10.1126/science.1217277

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Corradin O, Saiakhova A, Akhtar-Zaidi B, Myeroff L, Willis J, Cowper-Sal-lari R, Lupien M, Markowitz S, Scacheri PC (2014) Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res 24(1):1–13. doi:10.1101/gr.164079.113

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307. doi:10.1016/j.cell.2013.02.012

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to N.A. Gorgolyuk for his help in preparing the manuscript. This study was supported by RFBR 15-04-04208-a to D.C., RFBR 15-04-03973-a to M.E., RFBR 13-04-93106-CNRS_a to P.G., and the MEGAFSHD grant from the Association Française contre les Myopathies (AFM) to Y.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darya Chetverina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erokhin, M., Vassetzky, Y., Georgiev, P. et al. Eukaryotic enhancers: common features, regulation, and participation in diseases. Cell. Mol. Life Sci. 72, 2361–2375 (2015). https://doi.org/10.1007/s00018-015-1871-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1871-9

Keywords

Navigation