Skip to main content

Advertisement

Log in

Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Glutamate is the predominant excitatory neurotransmitter in the central nervous system. Excitatory amino acid transporter 2 (EAAT2) is primarily responsible for clearance of extracellular glutamate to prevent neuronal excitotoxicity and hyperexcitability. EAAT2 plays a critical role in regulation of synaptic activity and plasticity. In addition, EAAT2 has been implicated in the pathogenesis of many central nervous system disorders. In this review, we summarize current understanding of EAAT2, including structure, pharmacology, physiology, and functions, as well as disease relevancy, such as in stroke, Parkinson’s disease, epilepsy, amyotrophic lateral sclerosis, Alzheimer’s disease, major depressive disorder, and addiction. A large number of studies have demonstrated that up-regulation of EAAT2 protein provides significant beneficial effects in many disease models suggesting EAAT2 activation is a promising therapeutic approach. Several EAAT2 activators have been identified. Further understanding of EAAT2 regulatory mechanisms could improve development of drug-like compounds that spatiotemporally regulate EAAT2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NF-kB:

Nuclear factor kappa B

Sp1:

Specificity protein 1

NFAT:

Nuclear factor of activated T-cells

YY1:

Yin Yang 1

EGF:

Epidermal growth factor

TGF-alpha:

Transforming growth factor alpha

EGR:

Early growth response protein

References

  1. Beart PM, O’Shea RD (2007) Transporters for l-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    CAS  PubMed  Google Scholar 

  3. Grewer C et al (2014) SLC1 glutamate transporters. Pflugers Arch 466:3–24

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Grewer C, Rauen T (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol 203:1–20

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657

    CAS  PubMed  Google Scholar 

  6. Holmseth S et al (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32:6000–6013

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Rothstein JD et al (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    CAS  PubMed  Google Scholar 

  8. Lehre KP et al (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853

    CAS  PubMed  Google Scholar 

  9. Dehnes Y et al (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18:3606–3619

    CAS  PubMed  Google Scholar 

  10. Yamada K et al (1996) EAAT4 is a post-synaptic glutamate transporter at Purkinje cell synapses. Neuroreport 7:2013–2017

    CAS  PubMed  Google Scholar 

  11. Arriza JL et al (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Massie A et al (2008) High-affinity Na+/K+-dependent glutamate transporter EAAT4 is expressed throughout the rat fore- and midbrain. J Comp Neurol 511:155–172

    CAS  PubMed  Google Scholar 

  13. Bjornsen LP et al (2014) The GLT-1 (EAAT2; slc1a2) glutamate transporter is essential for glutamate homeostasis in the neocortex of the mouse. J Neurochem 128:641–649

    CAS  PubMed  Google Scholar 

  14. Rothstein JD et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    CAS  PubMed  Google Scholar 

  15. Haugeto O et al (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271:27715–27722

    CAS  PubMed  Google Scholar 

  16. Tanaka K et al (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    CAS  PubMed  Google Scholar 

  17. Kim SY et al (2003) Cloning and characterization of the 3′-untranslated region of the human excitatory amino acid transporter 2 transcript. J Neurochem 86:1458–1467

    CAS  PubMed  Google Scholar 

  18. Maragakis NJ et al (2004) Altered expression of the glutamate transporter EAAT2b in neurological disease. Ann Neurol 55:469–477

    CAS  PubMed  Google Scholar 

  19. Bassan M et al (2008) Interaction between the glutamate transporter GLT1b and the synaptic PDZ domain protein PICK1. Eur J Neurosci 27:66–82

    PubMed Central  PubMed  Google Scholar 

  20. Sogaard R et al (2013) Functional modulation of the glutamate transporter variant GLT1b by the PDZ domain protein PICK1. J Biol Chem 288:20195–20207

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Chen W et al (2002) Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci 22:2142–2152

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Chaudhry FA et al (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711–720

    CAS  PubMed  Google Scholar 

  23. Furness DN et al (2008) A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157:80–94

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Holmseth S et al (2009) The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 162:1055–1071

    CAS  PubMed  Google Scholar 

  25. Kugler P, Schmitt A (2003) Complementary neuronal and glial expression of two high-affinity glutamate transporter GLT1/EAAT2 forms in rat cerebral cortex. Histochem Cell Biol 119:425–435

    CAS  PubMed  Google Scholar 

  26. Schmitt A et al (2002) A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience 109:45–61

    CAS  PubMed  Google Scholar 

  27. Reye P et al (2002) Distribution of two splice variants of the glutamate transporter GLT-1 in rat brain and pituitary. Glia 38:246–255

    PubMed  Google Scholar 

  28. Sullivan R et al (2004) Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: implications for CNS glutamate homeostasis. Glia 45:155–169

    PubMed  Google Scholar 

  29. Chen W et al (2004) The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J Neurosci 24:1136–1148

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Berger UV et al (2005) Cellular and subcellular mRNA localization of glutamate transporter isoforms GLT1a and GLT1b in rat brain by in situ hybridization. J Comp Neurol 492:78–89

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Rauen T et al (2004) A new GLT1 splice variant: cloning and immunolocalization of GLT1c in the mammalian retina and brain. Neurochem Int 45:1095–1106

    CAS  PubMed  Google Scholar 

  32. Figiel M, Engele J (2000) Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuron-derived peptide regulating glial glutamate transport and metabolism. J Neurosci 20:3596–3605

    CAS  PubMed  Google Scholar 

  33. Karki P et al (2013) cAMP response element-binding protein (CREB) and nuclear factor kappaB mediate the tamoxifen-induced up-regulation of glutamate transporter 1 (GLT-1) in rat astrocytes. J Biol Chem 288:28975–28986

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Karki P et al (2014) Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes. Glia 62:1270–1283

    PubMed Central  PubMed  Google Scholar 

  35. Lee E et al (2012) GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. J Biol Chem 287:26817–26828

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Sitcheran R et al (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 24:510–520

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Su ZZ et al (2003) Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc Natl Acad Sci USA 100:1955–1960

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Ghosh M et al (2011) Nuclear factor-kappaB contributes to neuron-dependent induction of glutamate transporter-1 expression in astrocytes. J Neurosci 31:9159–9169

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Zelenaia O et al (2000) Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol 57:667–678

    CAS  PubMed  Google Scholar 

  40. Lee SG et al (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283:13116–13123

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Rothstein JD et al (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    CAS  PubMed  Google Scholar 

  42. Gegelashvili G et al (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69:2612–2615

    CAS  PubMed  Google Scholar 

  43. Schlag BD et al (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    CAS  PubMed  Google Scholar 

  44. Yang Y et al (2009) Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 61:880–894

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Fumagalli E et al (2008) Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol 578:171–176

    CAS  PubMed  Google Scholar 

  46. Liu AY et al (2011) Neuroprotective drug riluzole amplifies the heat shock factor 1 (HSF1)- and glutamate transporter 1 (GLT1)-dependent cytoprotective mechanisms for neuronal survival. J Biol Chem 286:2785–2794

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Perisic T et al (2010) Valproate and amitriptyline exert common and divergent influences on global and gene promoter-specific chromatin modifications in rat primary astrocytes. Neuropsychopharmacology 35:792–805

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Karki P et al (2014) Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol 34:1280–1289

    PubMed Central  PubMed  Google Scholar 

  49. Perisic T et al (2012) The CpG island shore of the GLT-1 gene acts as a methylation-sensitive enhancer. Glia 60:1345–1355

    PubMed  Google Scholar 

  50. Yang Y et al (2010) Epigenetic regulation of neuron-dependent induction of astroglial synaptic protein GLT1. Glia 58:277–286

    PubMed Central  PubMed  Google Scholar 

  51. Tian G et al (2007) Translational control of glial glutamate transporter EAAT2 expression. J Biol Chem 282:1727–1737

    CAS  PubMed  Google Scholar 

  52. Morel L et al (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288:7105–7116

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Carmona MA et al (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci USA 106:12524–12529

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Filosa A et al (2009) Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12:1285–1292

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Colton CK et al (2010) Identification of translational activators of glial glutamate transporter EAAT2 through cell-based high-throughput screening: an approach to prevent excitotoxicity. J Biomol Screen 15:653–662

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Kong Q et al (2014) Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J Clin Invest 124:1255–1267

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Xing X et al (2011) Structure-activity relationship study of pyridazine derivatives as glutamate transporter EAAT2 activators. Bioorg Med Chem Lett 21:5774–5777

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Huang K et al (2010) Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiol Dis 40:207–215

    CAS  PubMed  Google Scholar 

  59. Foran E et al (2014) Sumoylation of the astroglial glutamate transporter EAAT2 governs its intracellular compartmentalization. Glia 62:1241–1253

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Garcia-Tardon N et al (2012) Protein kinase C (PKC)-promoted endocytosis of glutamate transporter GLT-1 requires ubiquitin ligase Nedd4-2-dependent ubiquitination but not phosphorylation. J Biol Chem 287:19177–19187

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Gonzalez-Gonzalez IM et al (2008) PKC-dependent endocytosis of the GLT1 glutamate transporter depends on ubiquitylation of lysines located in a C-terminal cluster. Glia 56:963–974

    PubMed  Google Scholar 

  62. Sheldon AL et al (2008) Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter, GLT-1. Neurochem Int 53:296–308

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Tian G et al (2010) Increased expression of cholesterol 24S-hydroxylase results in disruption of glial glutamate transporter EAAT2 association with lipid rafts: a potential role in Alzheimer’s disease. J Neurochem 113:978–989

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Benediktsson AM et al (2012) Neuronal activity regulates glutamate transporter dynamics in developing astrocytes. Glia 60:175–188

    PubMed Central  PubMed  Google Scholar 

  65. Poitry-Yamate CL et al (2002) Neuronal-induced and glutamate-dependent activation of glial glutamate transporter function. J Neurochem 82:987–997

    CAS  PubMed  Google Scholar 

  66. Fontana AC et al (2007) Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom. Mol Pharmacol 72:1228–1237

    CAS  PubMed  Google Scholar 

  67. Fontana AC et al (2003) Purification of a neuroprotective component of Parawixia bistriata spider venom that enhances glutamate uptake. Br J Pharmacol 139:1297–1309

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Bridges RJ, Esslinger CS (2005) The excitatory amino acid transporters: pharmacological insights on substrate and inhibitor specificity of the EAAT subtypes. Pharmacol Ther 107:271–285

    CAS  PubMed  Google Scholar 

  69. Bunch L et al (2009) Excitatory amino acid transporters as potential drug targets. Expert Opin Ther Targets 13:719–731

    CAS  PubMed  Google Scholar 

  70. Arriza JL et al (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569

    CAS  PubMed  Google Scholar 

  71. Fairman WA et al (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    CAS  PubMed  Google Scholar 

  72. Griffiths R et al (1994) l-Trans-pyrrolidine-2,4-dicarboxylate and cis-1-aminocyclobutane-1,3-dicarboxylate behave as transportable, competitive inhibitors of the high-affinity glutamate transporters. Biochem Pharmacol 47:267–274

    CAS  PubMed  Google Scholar 

  73. Rauen T et al (1992) Comparative analysis of sodium-dependent l-glutamate transport of synaptosomal and astroglial membrane vesicles from mouse cortex. FEBS Lett 312:15–20

    CAS  PubMed  Google Scholar 

  74. Shimamoto K et al (1998) dl-Threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 53:195–201

    CAS  PubMed  Google Scholar 

  75. Shimamoto K et al (2004) Characterization of novel L-threo-beta-benzyloxyaspartate derivatives, potent blockers of the glutamate transporters. Mol Pharmacol 65:1008–1015

    CAS  PubMed  Google Scholar 

  76. Dunlop J et al (2005) Characterization of novel aryl-ether, biaryl, and fluorene aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT2. Mol Pharmacol 68:974–982

    CAS  PubMed  Google Scholar 

  77. Greenfield A et al (2005) Synthesis and biological activities of aryl-ether-, biaryl-, and fluorene-aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT-2. Bioorg Med Chem Lett 15:4985–4988

    CAS  PubMed  Google Scholar 

  78. Callender R et al (2012) Mechanism of inhibition of the glutamate transporter EAAC1 by the conformationally constrained glutamate analogue (+)-HIP-B. Biochemistry 51:5486–5495

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Colleoni S et al (2008) Neuroprotective effects of the novel glutamate transporter inhibitor (-)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]-isoxazole-4-carboxylic acid, which preferentially inhibits reverse transport (glutamate release) compared with glutamate reuptake. J Pharmacol Exp Ther 326:646–656

    CAS  PubMed  Google Scholar 

  80. Abrahamsen B et al (2013) Allosteric modulation of an excitatory amino acid transporter: the subtype-selective inhibitor UCPH-101 exerts sustained inhibition of EAAT1 through an intramonomeric site in the trimerization domain. J Neurosci 33:1068–1087

    CAS  PubMed  Google Scholar 

  81. Erichsen MN et al (2010) Structure-activity relationship study of first selective inhibitor of excitatory amino acid transporter subtype 1: 2-Amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chrom ene-3-carbonitrile (UCPH-101). J Med Chem 53:7180–7191

    CAS  PubMed  Google Scholar 

  82. Jensen AA et al (2009) Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1. J Med Chem 52:912–915

    CAS  PubMed  Google Scholar 

  83. Jiang J, Amara SG (2011) New views of glutamate transporter structure and function: advances and challenges. Neuropharmacology 60:172–181

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Boudker O et al (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445:387–393

    CAS  PubMed  Google Scholar 

  85. Reyes N et al (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462:880–885

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Yernool D et al (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    CAS  PubMed  Google Scholar 

  87. Gendreau S et al (2004) A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J Biol Chem 279:39505–39512

    CAS  PubMed  Google Scholar 

  88. Nothmann D et al (2011) Hetero-oligomerization of neuronal glutamate transporters. J Biol Chem 286:3935–3943

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Danbolt NC et al (1992) An [Na+ + K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51:295–310

    CAS  PubMed  Google Scholar 

  90. Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27:9736–9741

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Otis TS, Jahr CE (1998) Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosci 18:7099–7110

    CAS  PubMed  Google Scholar 

  92. Tong G, Jahr CE (1994) Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13:1195–1203

    CAS  PubMed  Google Scholar 

  93. Wadiche JI, Kavanaugh MP (1998) Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci 18:7650–7661

    CAS  PubMed  Google Scholar 

  94. Diamond JS, Jahr CE (1997) Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 17:4672–4687

    CAS  PubMed  Google Scholar 

  95. Otis TS, Kavanaugh MP (2000) Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J Neurosci 20:2749–2757

    CAS  PubMed  Google Scholar 

  96. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8:935–947

    CAS  PubMed  Google Scholar 

  97. Wadiche JI et al (1995) Kinetics of a human glutamate transporter. Neuron 14:1019–1027

    CAS  PubMed  Google Scholar 

  98. Lozovaya NA et al (1999) Enhancement of glutamate release uncovers spillover-mediated transmission by N-methyl-d-aspartate receptors in the rat hippocampus. Neuroscience 91:1321–1330

    CAS  PubMed  Google Scholar 

  99. Pita-Almenar JD et al (2012) Relationship between increase in astrocytic GLT-1 glutamate transport and late-LTP. Learn Mem 19:615–626

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82:279–293

    CAS  PubMed  Google Scholar 

  102. Lai TW et al (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    CAS  PubMed  Google Scholar 

  103. Hertz L (1979) Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog Neurobiol 13:277–323

    CAS  PubMed  Google Scholar 

  104. van den Berg CJ, Garfinkel D (1971) A stimulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218

    PubMed  Google Scholar 

  105. Kam K, Nicoll R (2007) Excitatory synaptic transmission persists independently of the glutamate–glutamine cycle. J Neurosci 27:9192–9200

    CAS  PubMed  Google Scholar 

  106. Tani H et al (2014) A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron 81:888–900

    PubMed Central  CAS  PubMed  Google Scholar 

  107. McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol (Lausanne) 4:191

    Google Scholar 

  108. Hertz L, Hertz E (2003) Cataplerotic TCA cycle flux determined as glutamate-sustained oxygen consumption in primary cultures of astrocytes. Neurochem Int 43:355–361

    CAS  PubMed  Google Scholar 

  109. McKenna MC (2012) Substrate competition studies demonstrate oxidative metabolism of glucose, glutamate, glutamine, lactate and 3-hydroxybutyrate in cortical astrocytes from rat brain. Neurochem Res 37:2613–2626

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Sonnewald U et al (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182

    CAS  PubMed  Google Scholar 

  111. Genda EN et al (2011) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31:18275–18288

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Grewer C et al (2008) Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life 60:609–619

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Szatkowski M et al (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446

    CAS  PubMed  Google Scholar 

  114. Rossi DJ et al (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    CAS  PubMed  Google Scholar 

  115. Petralia RS et al (2010) Organization of NMDA receptors at extrasynaptic locations. Neuroscience 167:68–87

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Gouix E et al (2009) Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation. Mol Cell Neurosci 40:463–473

    CAS  PubMed  Google Scholar 

  117. Blitzblau R et al (1996) The glutamate transport inhibitor l-trans-pyrrolidine-2,4-dicarboxylate indirectly evokes NMDA receptor mediated neurotoxicity in rat cortical cultures. Eur J Neurosci 8:1840–1852

    CAS  PubMed  Google Scholar 

  118. Volterra A et al (1996) The competitive transport inhibitor l-trans-pyrrolidine-2, 4-dicarboxylate triggers excitotoxicity in rat cortical neuron-astrocyte co-cultures via glutamate release rather than uptake inhibition. Eur J Neurosci 8:2019–2028

    CAS  PubMed  Google Scholar 

  119. Zhou Y et al (2014) EAAT2 (GLT-1; slc1a2) glutamate transporters reconstituted in liposomes argues against heteroexchange being substantially faster than net uptake. J Neurosci 34:13472–13485

    PubMed Central  PubMed  Google Scholar 

  120. Billups B et al (1996) Anion conductance behavior of the glutamate uptake carrier in salamander retinal glial cells. J Neurosci 16:6722–6731

    CAS  PubMed  Google Scholar 

  121. Grewer C et al (2000) Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc Natl Acad Sci USA 97:9706–9711

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Mim C et al (2005) The glutamate transporter subtypes EAAT4 and EAATs 1-3 transport glutamate with dramatically different kinetics and voltage dependence but share a common uptake mechanism. J Gen Physiol 126:571–589

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Gameiro A et al (2011) The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5. Biophys J 100:2623–2632

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Veruki ML et al (2006) Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat Neurosci 9:1388–1396

    CAS  PubMed  Google Scholar 

  125. Lozano R et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2128

    PubMed  Google Scholar 

  126. Murray CJ et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223

    PubMed  Google Scholar 

  127. Donnan GA et al (2008) Stroke. Lancet 371:1612–1623

    CAS  PubMed  Google Scholar 

  128. Brown AM et al (2004) Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int 45:529–536

    CAS  PubMed  Google Scholar 

  129. Dawson LA et al (2000) Characterization of transient focal ischemia-induced increases in extracellular glutamate and aspartate in spontaneously hypertensive rats. Brain Res Bull 53:767–776

    CAS  PubMed  Google Scholar 

  130. Mitani A et al (1990) Gerbil hippocampal extracellular glutamate and neuronal activity after transient ischemia. Brain Res Bull 25:319–324

    CAS  PubMed  Google Scholar 

  131. Globus MY et al (1988) Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 51:1455–1464

    CAS  PubMed  Google Scholar 

  132. Hagberg H et al (1985) Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J Cereb Blood Flow Metab 5:413–419

    CAS  PubMed  Google Scholar 

  133. Drejer J et al (1985) Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 45:145–151

    CAS  PubMed  Google Scholar 

  134. Benveniste H et al (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    CAS  PubMed  Google Scholar 

  135. Weller ML et al (2008) Selective overexpression of excitatory amino acid transporter 2 (EAAT2) in astrocytes enhances neuroprotection from moderate but not severe hypoxia-ischemia. Neuroscience 155:1204–1211

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Chu K et al (2007) Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke 38:177–182

    CAS  PubMed  Google Scholar 

  137. Hu YY et al (2015) Ceftriaxone modulates uptake activity of glial glutamate transporter-1 against global brain ischemia in rats. J Neurochem 132:194–205

    CAS  PubMed  Google Scholar 

  138. Inui T et al (2013) Neuroprotective effect of ceftriaxone on the penumbra in a rat venous ischemia model. Neuroscience 242:1–10

    CAS  PubMed  Google Scholar 

  139. Ouyang YB et al (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27:4253–4260

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Thone-Reineke C et al (2008) The beta-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke. J Hypertens 26:2426–2435

    PubMed  Google Scholar 

  141. Verma R et al (2010) Pharmacological evaluation of glutamate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury. Eur J Pharmacol 638:65–71

    CAS  PubMed  Google Scholar 

  142. Amalric M (2015) Targeting metabotropic glutamate receptors (mGluRs) in Parkinson’s disease. Curr Opin Pharmacol 20:29–34

    CAS  PubMed  Google Scholar 

  143. Blandini F et al (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62:63–88

    CAS  PubMed  Google Scholar 

  144. Gardoni F, Di Luca M (2015) Targeting glutamatergic synapses in Parkinson’s disease. Curr Opin Pharmacol 20:24–28

    CAS  PubMed  Google Scholar 

  145. Chung EK et al (2008) Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol 511:421–437

    CAS  PubMed  Google Scholar 

  146. Holmer HK et al (2005) l-dopa-induced reversal in striatal glutamate following partial depletion of nigrostriatal dopamine with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 136:333–341

    CAS  PubMed  Google Scholar 

  147. Bisht R et al (2014) Ceftriaxone mediated rescue of nigral oxidative damage and motor deficits in MPTP model of Parkinson’s disease in rats. Neurotoxicology 44:71–79

    CAS  PubMed  Google Scholar 

  148. Chotibut T et al (2014) Ceftriaxone increases glutamate uptake and reduces striatal tyrosine hydroxylase loss in 6-OHDA Parkinson’s model. Mol Neurobiol 49:1282–1292

    CAS  PubMed  Google Scholar 

  149. Ho SC et al (2014) Effects of ceftriaxone on the behavioral and neuronal changes in an MPTP-induced Parkinson’s disease rat model. Behav Brain Res 268:177–184

    CAS  PubMed  Google Scholar 

  150. Hsu CY et al (2015) Ceftriaxone prevents and reverses behavioral and neuronal deficits in an MPTP-induced animal model of Parkinson’s disease dementia. Neuropharmacology 91:43–56

    CAS  PubMed  Google Scholar 

  151. Kelsey JE, Neville C (2014) The effects of the beta-lactam antibiotic, ceftriaxone, on forepaw stepping and L-DOPA-induced dyskinesia in a rodent model of Parkinson’s disease. Psychopharmacology 231:2405–2415

    CAS  PubMed  Google Scholar 

  152. Leung TC et al (2012) Ceftriaxone ameliorates motor deficits and protects dopaminergic neurons in 6-hydroxydopamine-lesioned rats. ACS Chem Neurosci 3:22–30

    PubMed Central  CAS  PubMed  Google Scholar 

  153. McNamara JO et al (2006) Molecular signaling mechanisms underlying epileptogenesis. Sci STKE 2006:re12

    PubMed  Google Scholar 

  154. Pitkanen A, Lukasiuk K (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10:173–186

    PubMed  Google Scholar 

  155. Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226

    PubMed Central  PubMed  Google Scholar 

  156. Jabs R et al (2008) Astrocytic function and its alteration in the epileptic brain. Epilepsia 49(Suppl 2):3–12

    CAS  PubMed  Google Scholar 

  157. Cavus I et al (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57:226–235

    CAS  PubMed  Google Scholar 

  158. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    CAS  PubMed  Google Scholar 

  159. Bjornsen LP et al (2007) Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures. Neurobiol Dis 25:319–330

    CAS  PubMed  Google Scholar 

  160. Mathern GW et al (1999) Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52:453–472

    CAS  PubMed  Google Scholar 

  161. Proper EA et al (2002) Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125:32–43

    CAS  PubMed  Google Scholar 

  162. Sarac S et al (2009) Excitatory amino acid transporters EAAT-1 and EAAT-2 in temporal lobe and hippocampus in intractable temporal lobe epilepsy. APMIS 117:291–301

    CAS  PubMed  Google Scholar 

  163. Tessler S et al (1999) Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience 88:1083–1091

    CAS  PubMed  Google Scholar 

  164. Benarroch EE (2009) Astrocyte-neuron interactions: implications for epilepsy. Neurology 73:1323–1327

    PubMed  Google Scholar 

  165. Binder DK, Steinhauser C (2006) Functional changes in astroglial cells in epilepsy. Glia 54:358–368

    PubMed  Google Scholar 

  166. Tian GF et al (2005) An astrocytic basis of epilepsy. Nat Med 11:973–981

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Wetherington J et al (2008) Astrocytes in the epileptic brain. Neuron 58:168–178

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Jelenkovic AV et al (2008) Beneficial effects of ceftriaxone against pentylenetetrazole-evoked convulsions. Exp Biol Med (Maywood) 233:1389–1394

    CAS  Google Scholar 

  169. Zeng LH et al (2010) Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of Tuberous Sclerosis complex. Neurobiol Dis 37:764–771

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Goodrich GS et al (2013) Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J Neurotrauma 30:1434–1441

    PubMed Central  PubMed  Google Scholar 

  171. Kong Q et al (2012) Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol Dis 47:145–154

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Kiernan MC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    CAS  PubMed  Google Scholar 

  173. Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9

    CAS  PubMed  Google Scholar 

  174. Rothstein JD et al (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    CAS  PubMed  Google Scholar 

  175. Bendotti C et al (2001) Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. J Neurochem 79:737–746

    CAS  PubMed  Google Scholar 

  176. Bruijn LI et al (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338

    CAS  PubMed  Google Scholar 

  177. Howland DS et al (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci USA 99:1604–1609

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Guo H et al (2003) Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet 12:2519–2532

    CAS  PubMed  Google Scholar 

  179. Cudkowicz ME et al (2014) Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial. Lancet Neurol 13:1083–1091

    CAS  PubMed  Google Scholar 

  180. Bell KF et al (2007) Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J Neurosci 27:10810–10817

    CAS  PubMed  Google Scholar 

  181. Jacob CP et al (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis 11:97–116

    CAS  PubMed  Google Scholar 

  182. Kashani A et al (2008) Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol Aging 29:1619–1630

    CAS  PubMed  Google Scholar 

  183. Kirvell SL et al (2006) Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer’s disease. J Neurochem 98:939–950

    CAS  PubMed  Google Scholar 

  184. Masliah E et al (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40:759–766

    CAS  PubMed  Google Scholar 

  185. Scott HA et al (2011) Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiol Aging 32:553 e1–553 e11

    PubMed  Google Scholar 

  186. Sokolow S et al (2012) Preferential accumulation of amyloid-beta in presynaptic glutamatergic terminals (VGluT1 and VGluT2) in Alzheimer’s disease cortex. Neurobiol Dis 45:381–387

    PubMed Central  CAS  PubMed  Google Scholar 

  187. Bordji K et al (2010) Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-β production. J Neurosci 30:15927–15942

    CAS  PubMed  Google Scholar 

  188. Kim SH et al (2010) Group II metabotropic glutamate receptor stimulation triggers production and release of Alzheimer’s amyloid(beta)42 from isolated intact nerve terminals. J Neurosci 30:3870–3875

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Lesne S et al (2005) NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J Neurosci 25:9367–9377

    CAS  PubMed  Google Scholar 

  190. Chin JH et al (2007) Amyloid beta protein modulates glutamate-mediated neurotransmission in the rat basal forebrain: involvement of presynaptic neuronal nicotinic acetylcholine and metabotropic glutamate receptors. J Neurosci 27:9262–9269

    CAS  PubMed  Google Scholar 

  191. Kabogo D et al (2010) β-amyloid-related peptides potentiate K+-evoked glutamate release from adult rat hippocampal slices. Neurobiol Aging 31:1164–1172

    CAS  PubMed  Google Scholar 

  192. Talantova M et al (2013) Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA 110:E2518–E2527

    PubMed Central  CAS  PubMed  Google Scholar 

  193. Li S et al (2009) Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62:788–801

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Li S et al (2011) Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 31:6627–6638

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Shankar GM et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    PubMed Central  CAS  PubMed  Google Scholar 

  196. Wang Q et al (2004) Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci 24:3370–3378

    CAS  PubMed  Google Scholar 

  197. Bechtholt-Gompf AJ et al (2010) Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 35:2049–2059

    PubMed Central  CAS  PubMed  Google Scholar 

  198. Heo S et al (2012) Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the Multiple T-maze in C57BL/6J mice. Brain Struct Funct 217:363–378

    CAS  PubMed  Google Scholar 

  199. Li S et al (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56:901–911

    CAS  PubMed  Google Scholar 

  200. Takahashi K et al (2015) Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease. J Exp Med 212:319–332

    CAS  PubMed  Google Scholar 

  201. Alonso J et al (2004) Prevalence of mental disorders in Europe: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. Acta Psychiatr Scand 109(Suppl 420):21–27

    Google Scholar 

  202. Kessler RC et al (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62:593–602

    PubMed  Google Scholar 

  203. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442

    PubMed Central  PubMed  Google Scholar 

  204. Hamilton JP et al (2012) Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of base line activation and neural response data. Am J Psychiatry 169:693–703

    PubMed  Google Scholar 

  205. Siegle GJ et al (2007) Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry 61:198–209

    PubMed  Google Scholar 

  206. Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236

    PubMed Central  CAS  PubMed  Google Scholar 

  207. Sanacora G, Banasr M (2013) From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry 73:1172–1179

    PubMed Central  CAS  PubMed  Google Scholar 

  208. Bowley MP et al (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52:404–412

    PubMed  Google Scholar 

  209. Cotter D et al (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12:386–394

    PubMed  Google Scholar 

  210. Cotter D et al (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58:545–553

    CAS  PubMed  Google Scholar 

  211. Gittins RA, Harrison PJ (2011) A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. J Affect Disord 133:328–332

    PubMed  Google Scholar 

  212. Ongur D et al (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95:13290–13295

    PubMed Central  CAS  PubMed  Google Scholar 

  213. Rajkowska G et al (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098

    CAS  PubMed  Google Scholar 

  214. Altshuler LL et al (2010) Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord 12:541–549

    PubMed  Google Scholar 

  215. Choudary PV et al (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 102:15653–15658

    PubMed Central  CAS  PubMed  Google Scholar 

  216. Miguel-Hidalgo JJ et al (2010) Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 127:230–240

    PubMed Central  CAS  PubMed  Google Scholar 

  217. Si X et al (2004) Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology 29:2088–2096

    PubMed Central  CAS  PubMed  Google Scholar 

  218. Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64:863–870

    PubMed Central  PubMed  Google Scholar 

  219. Czeh B et al (2006) Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 31:1616–1626

    CAS  PubMed  Google Scholar 

  220. Banasr M et al (2010) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 15:501–511

    PubMed Central  CAS  PubMed  Google Scholar 

  221. Sanacora G et al (2007) Preliminary evidence of riluzole efficacy in antidepressant-treated patients with residual depressive symptoms. Biol Psychiatry 61:822–825

    CAS  PubMed  Google Scholar 

  222. Takahashi K et al (2011) Riluzole rapidly attenuates hyperemotional responses in olfactory bulbectomized rats, an animal model of depression. Behav Brain Res 216:46–52

    CAS  PubMed  Google Scholar 

  223. Zarate CA Jr et al (2004) An open-label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiatry 161:171–174

    PubMed  Google Scholar 

  224. Gilad GM et al (1990) Region-selective stress-induced increase of glutamate uptake and release in rat forebrain. Brain Res 525:335–338

    CAS  PubMed  Google Scholar 

  225. Musazzi L et al (2010) Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS One 5:e8566

    PubMed Central  PubMed  Google Scholar 

  226. Satoh E, Shimeki S (2010) Acute restraint stress enhances calcium mobilization and glutamate exocytosis in cerebrocortical synaptosomes from mice. Neurochem Res 35:693–701

    CAS  PubMed  Google Scholar 

  227. Autry AE et al (2006) Glucocorticoid regulation of GLT-1 glutamate transporter isoform expression in the rat hippocampus. Neuroendocrinology 83:371–379

    CAS  PubMed  Google Scholar 

  228. Fontella FU et al (2004) Repeated restraint stress alters hippocampal glutamate uptake and release in the rat. Neurochem Res 29:1703–1709

    CAS  PubMed  Google Scholar 

  229. Reagan LP et al (2004) Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc Natl Acad Sci USA 101:2179–2184

    CAS  PubMed  Google Scholar 

  230. Zschocke J et al (2005) Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J Biol Chem 280:34924–34932

    CAS  PubMed  Google Scholar 

  231. Parihar VK et al (2011) Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Mol Psychiatry 16:171–183

    PubMed Central  CAS  PubMed  Google Scholar 

  232. Suo L et al (2013) Predictable chronic mild stress in adolescence increases resilience in adulthood. Neuropsychopharmacology 38:1387–1400

    PubMed Central  CAS  PubMed  Google Scholar 

  233. Chen JX et al (2014) Glutamate transporter 1-mediated antidepressant-like effect in a rat model of chronic unpredictable stress. J Huazhong Univ Sci Technolog Med Sci 34:838–844

    PubMed  Google Scholar 

  234. Zink M et al (2010) Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology 58:465–473

    CAS  PubMed  Google Scholar 

  235. John CS et al (2012) Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology 37:2467–2475

    PubMed Central  CAS  PubMed  Google Scholar 

  236. Lee Y et al (2007) Glia mechanisms in mood regulation: a novel model of mood disorders. Psychopharmacology 191:55–65

    PubMed  Google Scholar 

  237. Cui W et al (2014) Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance. J Neurosci 34:16273–16285

    PubMed  Google Scholar 

  238. Mineur YS et al (2007) Antidepressant-like effects of ceftriaxone in male C57BL/6J mice. Biol Psychiatry 61:250–252

    CAS  PubMed  Google Scholar 

  239. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652

    PubMed Central  PubMed  Google Scholar 

  240. Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572

    CAS  PubMed  Google Scholar 

  241. Gass JT et al (2011) Alcohol-seeking behavior is associated with increased glutamate transmission in basolateral amygdala and nucleus accumbens as measured by glutamate-oxidase-coated biosensors. Addict Biol 16:215–228

    PubMed Central  CAS  PubMed  Google Scholar 

  242. Gipson CD et al (2013) Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. Proc Natl Acad Sci USA 110:9124–9129

    PubMed Central  CAS  PubMed  Google Scholar 

  243. LaLumiere RT, Kalivas PW (2008) Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 28:3170–3177

    CAS  PubMed  Google Scholar 

  244. McFarland K et al (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23:3531–3537

    CAS  PubMed  Google Scholar 

  245. Kalivas PW, Volkow ND (2011) New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry 16:974–986

    PubMed Central  CAS  PubMed  Google Scholar 

  246. Fischer-Smith KD et al (2012) Differential effects of cocaine access and withdrawal on glutamate type 1 transporter expression in rat nucleus accumbens core and shell. Neuroscience 210:333–339

    PubMed Central  CAS  PubMed  Google Scholar 

  247. Knackstedt LA et al (2010) Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol Psychiatry 67:81–84

    PubMed Central  CAS  PubMed  Google Scholar 

  248. Shen HW et al (2014) Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse. J Neurosci 34:5649–5657

    PubMed Central  PubMed  Google Scholar 

  249. Abulseoud OA et al (2014) Attenuation of ethanol withdrawal by ceftriaxone-induced upregulation of glutamate transporter EAAT2. Neuropsychopharmacology 39:1674–1684

    CAS  PubMed  Google Scholar 

  250. Alhaddad H et al (2014) Effects of ceftriaxone on ethanol intake: a possible role for xCT and GLT-1 isoforms modulation of glutamate levels in P rats. Psychopharmacology 231:4049–4057

    PubMed Central  CAS  PubMed  Google Scholar 

  251. Qrunfleh AM et al (2013) Ceftriaxone, a beta-lactam antibiotic, attenuates relapse-like ethanol-drinking behavior in alcohol-preferring rats. J Psychopharmacol 27:541–549

    PubMed Central  PubMed  Google Scholar 

  252. Sari Y et al (2011) Ceftriaxone, a beta-lactam antibiotic, reduces ethanol consumption in alcohol-preferring rats. Alcohol Alcohol 46:239–246

    PubMed Central  CAS  PubMed  Google Scholar 

  253. Rawls SM et al (2010) beta-Lactam antibiotic inhibits development of morphine physical dependence in rats. Behav Pharmacol 21:161–164

    PubMed Central  CAS  PubMed  Google Scholar 

  254. Sari Y et al (2009) Upregulation of GLT1 attenuates cue-induced reinstatement of cocaine-seeking behavior in rats. J Neurosci 29:9239–9243

    PubMed Central  CAS  PubMed  Google Scholar 

  255. Sondheimer I, Knackstedt LA (2011) Ceftriaxone prevents the induction of cocaine sensitization and produces enduring attenuation of cue- and cocaine-primed reinstatement of cocaine-seeking. Behav Brain Res 225:252–258

    PubMed Central  CAS  PubMed  Google Scholar 

  256. Trantham-Davidson H et al (2012) Ceftriaxone normalizes nucleus accumbens synaptic transmission, glutamate transport, and export following cocaine self-administration and extinction training. J Neurosci 32:12406–12410

    PubMed Central  CAS  PubMed  Google Scholar 

  257. Reissner KJ et al (2014) Chronic administration of the methylxanthine propentofylline impairs reinstatement to cocaine by a GLT-1-dependent mechanism. Neuropsychopharmacology 39:499–506

    PubMed Central  CAS  PubMed  Google Scholar 

  258. Abulseoud OA et al (2012) Ceftriaxone upregulates the glutamate transporter in medial prefrontal cortex and blocks reinstatement of methamphetamine seeking in a condition place preference paradigm. Brain Res 1456:14–21

    PubMed Central  CAS  PubMed  Google Scholar 

  259. Alajaji M et al (2013) Effects of the beta-lactam antibiotic ceftriaxone on nicotine withdrawal and nicotine-induced reinstatement of preference in mice. Psychopharmacology 228:419–426

    CAS  PubMed  Google Scholar 

  260. Lauriat TL, McInnes LA (2007) EAAT2 regulation and splicing: relevance to psychiatric and neurological disorders. Mol Psychiatry 12:1065–1078

    CAS  PubMed  Google Scholar 

  261. Nakagawa T, Kaneko S (2013) SLC1 glutamate transporters and diseases: psychiatric diseases and pathological pain. Curr Mol Pharmacol 6:66–73

    CAS  PubMed  Google Scholar 

  262. Melone M et al (2009) GLT-1 up-regulation enhances the effect of PCP on prepulse inhibition of the startle reflex in adult rats. Schizophr Res 109:196–197

    PubMed  Google Scholar 

  263. Lin CL et al (2012) Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem 4:1689–1700

    PubMed Central  CAS  PubMed  Google Scholar 

  264. Yi JH, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48:394–403

    CAS  PubMed  Google Scholar 

  265. Cui C et al (2014) Neuroprotective effect of ceftriaxone in a rat model of traumatic brain injury. Neurol Sci 35:695–700

    PubMed  Google Scholar 

  266. Maragakis NJ, Rothstein JD (2004) Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 15:461–473

    CAS  PubMed  Google Scholar 

  267. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    PubMed Central  CAS  PubMed  Google Scholar 

  268. Miller BR et al (2008) Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience 153:329–337

    PubMed Central  CAS  PubMed  Google Scholar 

  269. Gegelashvili G, Bjerrum OJ (2014) High-affinity glutamate transporters in chronic pain: an emerging therapeutic target. J Neurochem 131:712–730

    CAS  PubMed  Google Scholar 

  270. Hu Y et al (2010) An anti-nociceptive role for ceftriaxone in chronic neuropathic pain in rats. Pain 148:284–301

    CAS  PubMed  Google Scholar 

  271. Ramos KM et al (2010) Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: therapeutic efficacy in a range of experimental nervous system disorders. Neuroscience 169:1888–1900

    PubMed Central  CAS  PubMed  Google Scholar 

  272. Stepanovic-Petrovic RM et al (2014) Antihyperalgesic/antinociceptive effects of ceftriaxone and its synergistic interactions with different analgesics in inflammatory pain in rodents. Anesthesiology 120:737–750

    CAS  PubMed  Google Scholar 

  273. Robert SM, Sontheimer H (2014) Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 71:1839–1854

    PubMed Central  CAS  PubMed  Google Scholar 

  274. Melzer N et al (2008) A beta-lactam antibiotic dampens excitotoxic inflammatory CNS damage in a mouse model of multiple sclerosis. PLoS One 3:e3149

    PubMed Central  PubMed  Google Scholar 

  275. Autism Genome Project C et al (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39:319–328

    Google Scholar 

  276. Purcell AE et al (2001) Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 57:1618–1628

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review article was supported by US National Institutes of Health grants R01NS064275 and U01NS074601, the BrightFocus Foundation, the Alzheimer’s Drug Discovery Foundation, and the Thome Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Liang Glenn Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, K., Foster, J.B. & Lin, CL.G. Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell. Mol. Life Sci. 72, 3489–3506 (2015). https://doi.org/10.1007/s00018-015-1937-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1937-8

Keywords

Navigation