Skip to main content

Advertisement

Log in

The helicase-like transcription factor (HLTF) in cancer: loss of function or oncomorphic conversion of a tumor suppressor?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The Helicase-like Transcription Factor (HLTF) belongs to the SWI/SNF family of proteins involved in chromatin remodeling. In addition to its role in gene transcription, HLTF has been implicated in DNA repair, which suggests that this protein acts as a tumor suppressor. Accumulating evidence indicates that HLTF expression is altered in various cancers via two mechanisms: gene silencing through promoter hypermethylation or alternative mRNA splicing, which leads to the expression of truncated proteins that lack DNA repair domains. In either case, the alteration of HLTF expression in cancer has a poor prognosis. In this review, we gathered published clinical and molecular data on HLTF. Our purposes are (a) to address whether HLTF alterations could be considered as cancer drivers or passengers and (b) to determine whether its different functions (transcription or DNA repair) could be diverted in clonal selection during cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  2. Aguilera A, García-Muse T (2013) Causes of genome instability. Annu Rev Genet 47:1–32

    Article  PubMed  CAS  Google Scholar 

  3. Gatenby RA, Cunningham JJ, Brown JS (2014) Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations. Nat Commun 5:5499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sheridan PL, Schorpp M, Voz ML, Jones KA (1995) Cloning of an SNF2/SWI2-related protein that binds specifically to the SPH motifs of the SV40 enhancer and to the HIV-1 promoter. J Biol Chem 270:4575–4587

    Article  PubMed  CAS  Google Scholar 

  5. Lin Y, Sheridan PL, Jones KA, Evans GA (1995) The HIP116 SNF2/SW12-related transcription factor gene (SNF2L3) is located on human chromosome 3q25.1-q26.1. Genomics 27:381–382

    Article  PubMed  CAS  Google Scholar 

  6. Hayward-Lester A, Hewetson A, Beale EG, Oefner PJ, Doris PA, Chilton BS (1996) Cloning, characterization, and steroid-dependent posttranscriptional processing of RUSH-1 alpha and beta, two uteroglobin promoter-binding proteins. Mol Endocrinol Baltim Md 10:1335–1349

    CAS  Google Scholar 

  7. Zhang Q, Ekhterae D, Kim KH (1997) Molecular cloning and characterization of P113, a mouse SNF2/SWI2-related transcription factor. Gene 202:31–37

    Article  PubMed  CAS  Google Scholar 

  8. Gong X, Kaushal S, Ceccarelli E, Bogdanova N, Neville C, Nguyen T, Clark H, Khatib ZA, Valentine M, Look AT et al (1997) Developmental regulation of Zbu1, a DNA-binding member of the SWI2/SNF2 family. Dev Biol 183:166–182

    Article  PubMed  CAS  Google Scholar 

  9. Ding H, Descheemaeker K, Marynen P, Nelles L, Carvalho T, Carmo-Fonseca M, Collen D, Belayew A (1996) Characterization of a helicase-like transcription factor involved in the expression of the human plasminogen activator inhibitor-1 gene. DNA Cell Biol 15:429–442

    Article  PubMed  CAS  Google Scholar 

  10. Capouillez A, Decaestecker C, Filleul O, Chevalier D, Coppée F, Leroy X, Belayew A, Saussez S (2008) Helicase-like transcription factor exhibits increased expression and altered intracellular distribution during tumor progression in hypopharyngeal and laryngeal squamous cell carcinomas. Virchows Arch Int J Pathol 453:491–499

    Article  CAS  Google Scholar 

  11. Aguilera A, García-Muse T (2013) Causes of genome instability. Annu Rev Genet 47:1–32

    Article  PubMed  CAS  Google Scholar 

  12. Unk I, Hajdú I, Blastyák A, Haracska L (2010) Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair 9:257–267

    Article  PubMed  CAS  Google Scholar 

  13. Moinova HR, Chen W-D, Shen L, Smiraglia D, Olechnowicz J, Ravi L, Kasturi L, Myeroff L, Plass C, Parsons R et al (2002) HLTF gene silencing in human colon cancer. Proc Natl Acad Sci USA 99:4562–4567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Capouillez A, Debauve G, Decaestecker C, Filleul O, Chevalier D, Mortuaire G, Coppée F, Leroy X, Belayew A, Saussez S (2009) The helicase-like transcription factor is a strong predictor of recurrence in hypopharyngeal but not in laryngeal squamous cell carcinomas. Histopathology 55:77–90

    Article  PubMed  Google Scholar 

  15. Capouillez A, Noël J-C, Arafa M, Arcolia V, Mouallif M, Guenin S, Delvenne P, Belayew A, Saussez S (2011) Expression of the helicase-like transcription factor and its variants during carcinogenesis of the uterine cervix: implications for tumour progression. Histopathology 58:984–988

    Article  PubMed  Google Scholar 

  16. Hewetson A, Chilton BS (2003) An Sp1-NF-Y/progesterone receptor DNA binding-dependent mechanism regulates progesterone-induced transcriptional activation of the rabbit RUSH/SMARCA3 gene. J Biol Chem 278:40177–40185

    Article  PubMed  CAS  Google Scholar 

  17. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  PubMed  CAS  Google Scholar 

  18. Kim JM, Cho EN, Kwon YE, Bae SJ, Kim M, Seol JH (2010) CHFR functions as a ubiquitin ligase for HLTF to regulate its stability and functions. Biochem Biophys Res Commun 395:515–520

    Article  PubMed  CAS  Google Scholar 

  19. Qing P, Han L, Bin L, Yan L, Ping WX (2011) USP7 regulates the stability and function of HLTF through deubiquitination. J Cell Biochem 112:3856–3862

    Article  PubMed  CAS  Google Scholar 

  20. Hewetson A, Chilton BS (2008) Progesterone-dependent deoxyribonucleic acid looping between RUSH/SMARCA3 and Egr-1 mediates repression by c-Rel. Mol Endocrinol Baltim Md 22:813–822

    Article  CAS  Google Scholar 

  21. Visser M, Kayser M, Palstra R-J (2012) HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res 22:446–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinforma Oxf Engl 21:2933–2942

    Article  CAS  Google Scholar 

  23. Helmer RA, Foreman O, Dertien JS, Panchoo M, Bhakta SM, Chilton BS (2013) Role of helicase-like transcription factor (hltf) in the G2/m transition and apoptosis in brain. PLoS ONE 8:e66799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Helmer RA, Dertien JS, Chilton BS (2011) Prolactin induces Jak2 phosphorylation of RUSHY195. Mol Cell Endocrinol 338:79–83

    Article  PubMed  CAS  Google Scholar 

  25. Guillaumond F, Boyer B, Becquet D, Guillen S, Kuhn L, Garin J, Belghazi M, Bosler O, Franc J-L, François-Bellan A-M (2011) Chromatin remodeling as a mechanism for circadian prolactin transcription: rhythmic NONO and SFPQ recruitment to HLTF. FASEB. J Off Publ Fed Am Soc Exp Biol 25:2740–2756

    CAS  Google Scholar 

  26. Hewetson A, Chilton BS (2008) Progesterone-dependent deoxyribonucleic acid looping between RUSH/SMARCA3 and Egr-1 mediates repression by c-Rel. Mol Endocrinol Baltim Md 22:813–822

    Article  CAS  Google Scholar 

  27. Helmer RA, Martínez-Zaguilán R, Dertien JS, Fulford C, Foreman O, Peiris V, Chilton BS (2013) Helicase-like transcription factor (hltf) regulates g2/m transition, wt1/gata4/hif-1a cardiac transcription networks, and collagen biogenesis. PLoS ONE 8:e80461

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tian F, Sharma S, Zou J, Lin S-Y, Wang B, Rezvani K, Wang H, Parvin JD, Ludwig T, Canman CE et al (2013) BRCA1 promotes the ubiquitination of PCNA and recruitment of translesion polymerases in response to replication blockade. Proc Natl Acad Sci USA 110:13558–13563

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brys R, Nelles L, van der Schueren E, Silvestre N, Huylebroeck D, Remacle JE (1998) Identical cis-acting elements and related trans-acting factors control activity of nonviral promoter in Schizosaccharomyces pombe and mammalian cells. DNA Cell Biol 17:349–358

    Article  PubMed  CAS  Google Scholar 

  30. Ding H, Beckers MC, Plaisance S, Marynen P, Collen D, Belayew A (1998) Characterization of a double homeodomain protein (DUX1) encoded by a cDNA homologous to 3.3 kb dispersed repeated elements. Hum Mol Genet 7:1681–1694

    Article  PubMed  CAS  Google Scholar 

  31. Mahajan MC, Weissman SM (2002) DNA-dependent adenosine triphosphatase (helicaselike transcription factor) activates beta-globin transcription in K562 cells. Blood 99:348–356

    Article  PubMed  CAS  Google Scholar 

  32. Ding H, Benotmane AM, Suske G, Collen D, Belayew A (1999) Functional interactions between Sp1 or Sp3 and the helicase-like transcription factor mediate basal expression from the human plasminogen activator inhibitor-1 gene. J Biol Chem 274:19573–19580

    Article  PubMed  CAS  Google Scholar 

  33. Hewetson A, Hendrix EC, Mansharamani M, Lee VH, Chilton BS (2002) Identification of the RUSH consensus-binding site by cyclic amplification and selection of targets: demonstration that RUSH mediates the ability of prolactin to augment progesterone-dependent gene expression. Mol Endocrinol Baltim Md 16:2101–2112

    Article  CAS  Google Scholar 

  34. Sturm RA, Duffy DL, Zhao ZZ, Leite FPN, Stark MS, Hayward NK, Martin NG, Montgomery GW (2008) A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color. Am J Hum Genet 82:424–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sturm RA, Larsson M (2009) Genetics of human iris colour and patterns. Pigment Cell Melanoma Res 22:544–562

    Article  PubMed  CAS  Google Scholar 

  36. Ceccarelli E, McGrew MJ, Nguyen T, Grieshammer U, Horgan D, Hughes SH, Rosenthal N (1999) An E box comprises a positional sensor for regional differences in skeletal muscle gene expression and methylation. Dev Biol 213:217–229

    Article  PubMed  CAS  Google Scholar 

  37. Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219

    Article  PubMed  CAS  Google Scholar 

  38. Unk I, Hajdú I, Fátyol K, Hurwitz J, Yoon J-H, Prakash L, Prakash S, Haracska L (2008) Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc Natl Acad Sci USA 105:3768–3773

    Article  PubMed  PubMed Central  Google Scholar 

  39. Motegi A, Liaw H-J, Lee K-Y, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JHJ et al (2008) Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci USA 105:12411–12416

    Article  PubMed  PubMed Central  Google Scholar 

  40. Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182

    Article  PubMed  CAS  Google Scholar 

  41. Ding L, Forsburg SL (2014) Essential domains of Schizosaccharomyces pombe Rad8 required for DNA damage response. G3 Bethesda Md 4:1373–1384

  42. Ortiz-Bazán MÁ, Gallo-Fernández M, Saugar I, Jiménez-Martín A, Vázquez MV, Tercero JA (2014) Rad5 plays a major role in the cellular response to DNA damage during chromosome replication. Cell Rep 9:460–468

    Article  PubMed  CAS  Google Scholar 

  43. Lin J-R, Zeman MK, Chen J-Y, Yee M-C, Cimprich KA (2011) SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell 42:237–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Masuda Y, Suzuki M, Kawai H, Hishiki A, Hashimoto H, Masutani C, Hishida T, Suzuki F, Kamiya K (2012) En bloc transfer of polyubiquitin chains to PCNA in vitro is mediated by two different human E2–E3 pairs. Nucleic Acids Res

  45. Krijger PHL, Lee K-Y, Wit N, van den Berk PCM, Wu X, Roest HP, Maas A, Ding H, Hoeijmakers JHJ, Myung K et al (2011) HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: existence of an alternative E3 ligase. DNA Repair 10:438–444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hendel A, Krijger PHL, Diamant N, Goren Z, Langerak P, Kim J, Reissner T, Lee K, Geacintov NE, Carell T et al (2011) PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells. PLoS Genet 7:e1002262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Achar YJ, Balogh D, Haracska L (2011) Coordinated protein and DNA remodeling by human HLTF on stalled replication fork. Proc Natl Acad Sci USA 108:14073–14078

    Article  PubMed  PubMed Central  Google Scholar 

  48. Blastyák A, Hajdú I, Unk I, Haracska L (2010) Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol Cell Biol 30:684–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hishiki A, Hara K, Ikegaya Y, Yokoyama H, Shimizu T, Sato M, Hashimoto H (2015) Structure of a novel DNA-binding domain of Helicase-like Transcription Factor (HLTF) and its functional implication in DNA damage tolerance. J Biol Chem 290:13215–13223

    Article  PubMed  CAS  Google Scholar 

  50. Ikegaya Y, Hara K, Hishiki A, Yokoyama H, Hashimoto H (2015) Crystallographic study of a novel DNA-binding domain of human HLTF involved in the template-switching pathway to avoid the replication arrest caused by DNA damage. Acta Crystallogr. Sect F Struct Biol Commun 71:668–670

    Article  CAS  Google Scholar 

  51. Kile AC, Chavez DA, Bacal J, Eldirany S, Korzhnev DM, Bezsonova I, Eichman BF, Cimprich KA (2015) HLTF’s ancient HIRAN domain binds 3′ DNA ends to drive replication fork reversal. Mol Cell

  52. Tsutakawa SE, Tainer JA (2015) Bending forks and wagging dogs-It’s about the DNA 3′ tail. Mol Cell 58:972–973

    Article  PubMed  CAS  Google Scholar 

  53. Longerich S, Sung P (2011) Clearance of roadblocks in replication fork restart. Proc Natl Acad Sci USA 108:13881–13882

    Article  PubMed  PubMed Central  Google Scholar 

  54. Burkovics P, Sebesta M, Balogh D, Haracska L, Krejci L (2014) Strand invasion by HLTF as a mechanism for template switch in fork rescue. Nucleic Acids Res 42:1711–1720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kang MY, Lee BB, Kim Y-H, Chang DK, Kyu Park S, Chun H-K, Song SY, Park J, Kim D-H (2007) Association of the SUV39H1 histone methyltransferase with the DNA methyltransferase 1 at mRNA expression level in primary colorectal cancer. Int J Cancer J Int Cancer 121:2192–2197

    Article  CAS  Google Scholar 

  56. Kim Y-H, Petko Z, Dzieciatkowski S, Lin L, Ghiassi M, Stain S, Chapman WC, Washington MK, Willis J, Markowitz SD et al (2006) CpG island methylation of genes accumulates during the adenoma progression step of the multistep pathogenesis of colorectal cancer. Genes Chromosomes Cancer 45:781–789

    Article  PubMed  CAS  Google Scholar 

  57. Brandes JC, van Engeland M, Wouters KAD, Weijenberg MP, Herman JG (2005) CHFR promoter hypermethylation in colon cancer correlates with the microsatellite instability phenotype. Carcinogenesis 26:1152–1156

    Article  PubMed  CAS  Google Scholar 

  58. Bai AHC, Tong JHM, To K-F, Chan MWY, Man EPS, Lo K-W, Lee JFY, Sung JJY, Leung WK (2004) Promoter hypermethylation of tumor-related genes in the progression of colorectal neoplasia. Int J Cancer J Int Cancer 112:846–853

    Article  CAS  Google Scholar 

  59. Hibi K, Nakayama H, Kanyama Y, Kodera Y, Ito K, Akiyama S, Nakao A (2003) Methylation pattern of HLTF gene in digestive tract cancers. Int J Cancer J Int Cancer 104:433–436

    Article  CAS  Google Scholar 

  60. Hibi K, Kodera Y, Ito K, Akiyama S, Nakao A (2005) Aberrant methylation of HLTF, SOCS-1, and CDH13 genes is shown in colorectal cancers without lymph node metastasis. Dis Colon Rectum 48:1282–1286

    Article  PubMed  Google Scholar 

  61. Hibi K, Nakao A (2006) Highly-methylated colorectal cancers show poorly-differentiated phenotype. Anticancer Res 26:4263–4266

    PubMed  CAS  Google Scholar 

  62. Lee BB, Lee EJ, Jung EH, Chun H-K, Chang DK, Song SY, Park J, Kim D-H (2009) Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin. Cancer Res. Off J Am Assoc Cancer Res 15:6185–6191

    Article  CAS  Google Scholar 

  63. Wallner M, Herbst A, Behrens A, Crispin A, Stieber P, Göke B, Lamerz R, Kolligs FT (2006) Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin Cancer Res Off J Am Assoc Cancer Res 12:7347–7352

    Article  CAS  Google Scholar 

  64. Herbst A, Wallner M, Rahmig K, Stieber P, Crispin A, Lamerz R, Kolligs FT (2009) Methylation of helicase-like transcription factor in serum of patients with colorectal cancer is an independent predictor of disease recurrence. Eur J Gastroenterol Hepatol 21:565–569

    Article  PubMed  CAS  Google Scholar 

  65. Herbst A, Rahmig K, Stieber P, Philipp A, Jung A, Ofner A, Crispin A, Neumann J, Lamerz R, Kolligs FT (2011) Methylation of NEUROG1 in serum is a sensitive marker for the detection of early colorectal cancer. Am J Gastroenterol 106:1110–1118

    Article  PubMed  CAS  Google Scholar 

  66. Philipp AB, Stieber P, Nagel D, Neumann J, Spelsberg F, Jung A, Lamerz R, Herbst A, Kolligs FT (2012) Prognostic role of methylated free circulating DNA in colorectal cancer. Int J Cancer J Int Cancer 131:2308–2319

    Article  CAS  Google Scholar 

  67. Philipp AB, Nagel D, Stieber P, Lamerz R, Thalhammer I, Herbst A, Kolligs FT (2014) Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer. BMC Cancer 14:245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Leung WK, To K-F, Man EPS, Chan MWY, Bai AHC, Hui AJ, Chan FKL, Sung JJY (2005) Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am J Gastroenterol 100:2274–2279

    Article  PubMed  CAS  Google Scholar 

  69. Itzkowitz SH, Jandorf L, Brand R, Rabeneck L, Schroy PC 3rd, Sontag S, Johnson D, Skoletsky J, Durkee K, Markowitz S et al (2007) Improved fecal DNA test for colorectal cancer screening. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc 5:111–117

    CAS  Google Scholar 

  70. Leung WK, To K-F, Man EPS, Chan MWY, Hui AJ, Ng SSM, Lau JYW, Sung JJY (2007) Detection of hypermethylated DNA or cyclooxygenase-2 messenger RNA in fecal samples of patients with colorectal cancer or polyps. Am J Gastroenterol 102:1070–1076

    Article  PubMed  CAS  Google Scholar 

  71. Hamai Y, Oue N, Mitani Y, Nakayama H, Ito R, Matsusaki K, Yoshida K, Toge T, Yasui W (2003) DNA hypermethylation and histone hypoacetylation of the HLTF gene are associated with reduced expression in gastric carcinoma. Cancer Sci 94:692–698

    Article  PubMed  CAS  Google Scholar 

  72. Leung WK, Yu J, Bai AHC, Chan MWY, Chan K-K, To K-F, Chan FKL, Ng EKW, Chung SCS, Sung JJY (2003) Inactivation of helicase-like transcription factor by promoter hypermethylation in human gastric cancer. Mol Carcinog 37:91–97

    Article  PubMed  CAS  Google Scholar 

  73. Oue N, Mitani Y, Motoshita J, Matsumura S, Yoshida K, Kuniyasu H, Nakayama H, Yasui W (2006) Accumulation of DNA methylation is associated with tumor stage in gastric cancer. Cancer 106:1250–1259

    Article  PubMed  CAS  Google Scholar 

  74. Kim JJ, Chung SW, Kim JH, Kim JW, Oh JS, Kim S, Song SY, Park J, Kim D-H (2006) Promoter methylation of helicase-like transcription factor is associated with the early stages of gastric cancer with family history. Ann. Oncol. Off J Eur Soc Med Oncol ESMO 17:657–662

    Article  CAS  Google Scholar 

  75. Guo W, Dong Z, Guo Y, Chen Z, Kuang G, Yang Z (2011) Aberrant methylation of the CpG island of HLTF gene in gastric cardia adenocarcinoma and dysplasia. Clin Biochem 44:784–788

    Article  PubMed  CAS  Google Scholar 

  76. Fukuoka T, Hibi K, Nakao A (2006) Aberrant methylation is frequently observed in advanced esophageal squamous cell carcinoma. Anticancer Res 26:3333–3335

    PubMed  CAS  Google Scholar 

  77. Kang S, Kim JW, Kang GH, Lee S, Park NH, Song YS, Park SY, Kang SB, Lee HP (2006) Comparison of DNA hypermethylation patterns in different types of uterine cancer: cervical squamous cell carcinoma, cervical adenocarcinoma and endometrial adenocarcinoma. Int J Cancer J Int Cancer 118:2168–2171

    Article  CAS  Google Scholar 

  78. Jo H, Kang S, Kim JW, Kang GH, Park NH, Song YS, Park SY, Kang SB, Lee HP (2007) Hypermethylation of the COX-2 gene is a potential prognostic marker for cervical cancer. J Obstet Gynaecol Res 33:236–241

    Article  PubMed  CAS  Google Scholar 

  79. Castro M, Grau L, Puerta P, Gimenez L, Venditti J, Quadrelli S, Sánchez-Carbayo M (2010) Multiplexed methylation profiles of tumor suppressor genes and clinical outcome in lung cancer. J Trans Med 8:86

    Article  CAS  Google Scholar 

  80. Zhang X, Li HM, Liu Z, Zhou G, Zhang Q, Zhang T, Zhang J, Zhang C (2013) Loss of heterozygosity and methylation of multiple tumor suppressor genes on chromosome 3 in hepatocellular carcinoma. J Gastroenterol 48:132–143

    Article  PubMed  CAS  Google Scholar 

  81. García-Baquero R, Puerta P, Beltran M, Alvarez M, Sacristan R, Alvarez-Ossorio JL, Sánchez-Carbayo M (2013) Methylation of a novel panel of tumor suppressor genes in urine moves forward noninvasive diagnosis and prognosis of bladder cancer: a 2-center prospective study. J Urol 190:723–730

    Article  PubMed  CAS  Google Scholar 

  82. García-Baquero R, Puerta P, Beltran M, Alvarez-Mújica M, Alvarez-Ossorio JL, Sánchez-Carbayo M (2014) Methylation of tumor suppressor genes in a novel panel predicts clinical outcome in paraffin-embedded bladder tumors. Tumour Biol J Int Soc Oncodevelopmental Biol Med

  83. Borinstein SC, Conerly M, Dzieciatkowski S, Biswas S, Washington MK, Trobridge P, Henikoff S, Grady WM (2010) Aberrant DNA methylation occurs in colon neoplasms arising in the azoxymethane colon cancer model. Mol Carcinog 49:94–103

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Sandhu S, Wu X, Nabi Z, Rastegar M, Kung S, Mai S, Ding H (2012) Loss of HLTF function promotes intestinal carcinogenesis. Mol Cancer 11:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Debauve G, Nonclercq D, Ribaucour F, Wiedig M, Gerbaux C, Leo O, Laurent G, Journé F, Belayew A, Toubeau G (2006) Early expression of the Helicase-Like Transcription Factor (HLTF/SMARCA3) in an experimental model of estrogen-induced renal carcinogenesis. Mol Cancer 5:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Cho S, Cinghu S, Yu J-R, Park W-Y (2011) Helicase-like transcription factor confers radiation resistance in cervical cancer through enhancing the DNA damage repair capacity. J Cancer Res Clin Oncol 137:629–637

    Article  PubMed  CAS  Google Scholar 

  87. Ye C, Sun N-X, Ma Y, Zhao Q, Zhang Q, Xu C, Wang S-B, Sun S-H, Wang F, Li W (2015) MicroRNA-145 contributes to enhancing radiosensitivity of cervical cancer cells. FEBS Lett 589:702–709

    Article  PubMed  CAS  Google Scholar 

  88. Arcolia V, Paci P, Dhont L, Chantrain G, Sirtaine N, Decaestecker C, Remmelink M, Belayew A, Saussez S (2014) Helicase-like transcription factor: a new marker of well-differentiated thyroid cancers. BMC Cancer 14:492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Debauve G, Capouillez A, Belayew A, Saussez S (2008) The helicase-like transcription factor and its implication in cancer progression. Cell. Mol. Life Sci. CMLS 65:591–604

    Article  PubMed  CAS  Google Scholar 

  90. Masuda T, Hattori N, Senoo T, Akita S, Ishikawa N, Fujitaka K, Haruta Y, Murai H, Kohno N (2013) SK-216, an inhibitor of plasminogen activator inhibitor-1, limits tumor progression and angiogenesis. Mol Cancer Ther 12:2378–2388

    Article  PubMed  CAS  Google Scholar 

  91. Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8:S62–S67

    Article  PubMed  CAS  Google Scholar 

  92. Walerych D, Napoli M, Collavin L, Del Sal G (2012) The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 33:2007–2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J (1995) Alternate splicing produces a novel cyclin D1 transcript. Oncogene 11:1005–1011

    PubMed  CAS  Google Scholar 

  94. Sun Y, Lou X, Yang M, Yuan C, Ma L, Xie B-K, Wu J-M, Yang W, Shen SX, Xu N et al (2013) Cyclin-dependent kinase 4 may be expressed as multiple proteins and have functions that are independent of binding to CCND and RB and occur at the S and G 2/M phases of the cell cycle. Cell Cycle Georget. Tex 12:3512–3525

    Article  CAS  Google Scholar 

  95. Lenzken SC, Loffreda A, Barabino SML (2013) RNA Splicing: a New Player in the DNA Damage Response. Int J Cell Biol 2013:153634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186:637–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

L. D. is a F. R. S.-FNRS Research Fellow (Belgian National Fund for Scientific Research). C. M. was a Télévie Research Associate (Belgian National Fund for Scientific Research). This work was financially supported through funding from F. R. S.-FNRS, Télévie and FRMH (Fonds pour la Recherche Médicale dans le Hainaut, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Belayew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhont, L., Mascaux, C. & Belayew, A. The helicase-like transcription factor (HLTF) in cancer: loss of function or oncomorphic conversion of a tumor suppressor?. Cell. Mol. Life Sci. 73, 129–145 (2016). https://doi.org/10.1007/s00018-015-2060-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2060-6

Keywords

Navigation