Skip to main content

Advertisement

Log in

Immune responses against protozoan parasites: a focus on the emerging role of Nod-like receptors

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Nod-like receptors (NLRs) have gained attention in recent years because of the ability of some family members to assemble into a multimeric protein complex known as the inflammasome. The role of NLRs and the inflammasome in regulating innate immunity against bacterial pathogens has been well studied. However, recent studies show that NLRs and inflammasomes also play a role during infections caused by protozoan parasites, which pose a significant global health burden. Herein, we review the diseases caused by the most common protozoan parasites in the world and discuss the roles of NLRs and inflammasomes in host immunity against these parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Harton JA, Linhoff MW, Zhang J, Ting JP (2002) Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J Immunol 169(8):4088–4093

    Article  CAS  PubMed  Google Scholar 

  2. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nunez G, Inohara N (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4(7):702–707. doi:10.1038/ni945

    Article  CAS  PubMed  Google Scholar 

  3. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872. doi:10.1074/jbc.C200651200

    Article  CAS  PubMed  Google Scholar 

  4. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nunez G (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278(8):5509–5512. doi:10.1074/jbc.C200673200

    Article  CAS  PubMed  Google Scholar 

  5. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300(5625):1584–1587. doi:10.1126/science.1084677

    Article  CAS  PubMed  Google Scholar 

  6. Schneider M, Zimmermann AG, Roberts RA, Zhang L, Swanson KV, Wen H, Davis BK, Allen IC, Holl EK, Ye Z, Rahman AH, Conti BJ, Eitas TK, Koller BH, Ting JP (2012) The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kappaB. Nat Immunol 13(9):823–831. doi:10.1038/ni.2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, Ji J, Shen P, Zheng S, Chen ZJ, Wang RF (2010) NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141(3):483–496. doi:10.1016/j.cell.2010.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anand PK, Malireddi RK, Lukens JR, Vogel P, Bertin J, Lamkanfi M, Kanneganti TD (2012) NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488(7411):389–393. doi:10.1038/nature11250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford RM, Davis BK, Uronis JM, Herfarth HH, Jobin C, Rogers AB, Ting JP (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36(5):742–754. doi:10.1016/j.immuni.2012.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zaki MH, Vogel P, Malireddi RK, Body-Malapel M, Anand PK, Bertin J, Green DR, Lamkanfi M, Kanneganti TD (2011) The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20(5):649–660. doi:10.1016/j.ccr.2011.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allen IC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA, Gris D, Roney KE, Zimmermann AG, Bowzard JB, Ranjan P, Monroe KM, Pickles RJ, Sambhara S, Ting JP (2011) NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways. Immunity 34(6):854–865. doi:10.1016/j.immuni.2011.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xia X, Cui J, Wang HY, Zhu L, Matsueda S, Wang Q, Yang X, Hong J, Songyang Z, Chen ZJ, Wang RF (2011) NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK. Immunity 34(6):843–853. doi:10.1016/j.immuni.2011.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harton JA, Ting JP (2000) Class II transactivator: mastering the art of major histocompatibility complex expression. Mol Cell Biol 20(17):6185–6194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, Bayir E, Iliopoulos D, van den Elsen PJ, Kobayashi KS (2010) NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci USA 107(31):13794–13799. doi:10.1073/pnas.1008684107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bruchard M, Rebe C, Derangere V, Togbe D, Ryffel B, Boidot R, Humblin E, Hamman A, Chalmin F, Berger H, Chevriaux A, Limagne E, Apetoh L, Vegran F, Ghiringhelli F (2015) The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol 16(8):859–870. doi:10.1038/ni.3202

    Article  CAS  PubMed  Google Scholar 

  16. Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P, Bertin J, Coyle A, Grant EP, Akira S, Nunez G (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440(7081):233–236. doi:10.1038/nature04517

    Article  CAS  PubMed  Google Scholar 

  17. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218. doi:10.1038/nature02664

    Article  CAS  PubMed  Google Scholar 

  18. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–232. doi:10.1038/nature04515

    Article  CAS  PubMed  Google Scholar 

  19. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  20. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241. doi:10.1038/nature04516

    Article  CAS  PubMed  Google Scholar 

  21. Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig Y, Pevsner-Fischer M, Shapiro H, Christ A, Harmelin A, Halpern Z, Latz E, Flavell RA, Amit I, Segal E, Elinav E (2015) Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163(6):1428–1443. doi:10.1016/j.cell.2015.10.048

    Article  CAS  PubMed  Google Scholar 

  22. Vladimer GI, Weng D, Paquette SW, Vanaja SK, Rathinam VA, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q, Reed G, Mecsas JC, Iwakura Y, Bertin J, Goguen JD, Fitzgerald KA, Lien E (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37(1):96–107. doi:10.1016/j.immuni.2012.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stanley SL Jr (2003) Amoebiasis. Lancet 361(9362):1025–1034. doi:10.1016/S0140-6736(03)12830-9

    Article  CAS  PubMed  Google Scholar 

  24. Haque R, Huston CD, Hughes M, Houpt E, Petri WA Jr (2003) Amebiasis. N Engl J Med 348(16):1565–1573. doi:10.1056/NEJMra022710

    Article  PubMed  Google Scholar 

  25. Mortimer L, Chadee K (2010) The immunopathogenesis of Entamoeba histolytica. Exp Parasitol 126(3):366–380. doi:10.1016/j.exppara.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  26. Mondal D, Haque R, Sack RB, Kirkpatrick BD, Petri WA Jr (2009) Attribution of malnutrition to cause-specific diarrheal illness: evidence from a prospective study of preschool children in Mirpur, Dhaka, Bangladesh. Am J Trop Med Hyg 80(5):824–826

    PubMed  PubMed Central  Google Scholar 

  27. Verkerke HP, Petri WA Jr, Marie CS (2012) The dynamic interdependence of amebiasis, innate immunity, and undernutrition. Semin Immunopathol 34(6):771–785. doi:10.1007/s00281-012-0349-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bassily S, Farid Z, el-Masry NA, Mikhail EM (1987) Treatment of intestinal E. histolytica and G. lamblia with metronidazole, tinidazole and ornidazole: a comparative study. J Trop Med Hyg 90(1):9–12

    CAS  PubMed  Google Scholar 

  29. Guo X, Houpt E, Petri WA Jr (2007) Crosstalk at the initial encounter: interplay between host defense and ameba survival strategies. Curr Opin Immunol 19(4):376–384. doi:10.1016/j.coi.2007.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chadee K, Petri WA Jr, Innes DJ, Ravdin JI (1987) Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J Clin Investig 80(5):1245–1254. doi:10.1172/JCI113199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moncada DM, Kammanadiminti SJ, Chadee K (2003) Mucin and Toll-like receptors in host defense against intestinal parasites. Trends Parasitol 19(7):305–311

    Article  CAS  PubMed  Google Scholar 

  32. Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, Chadee K, Vallance BA (2010) Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 6(5):e1000902. doi:10.1371/journal.ppat.1000902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Haque R, Ali IM, Sack RB, Farr BM, Ramakrishnan G, Petri WA Jr (2001) Amebiasis and mucosal IgA antibody against the Entamoeba histolytica adherence lectin in Bangladeshi children. J Infect Dis 183(12):1787–1793. doi:10.1086/320740

    Article  CAS  PubMed  Google Scholar 

  34. Peterson KM, Guo X, Elkahloun AG, Mondal D, Bardhan PK, Sugawara A, Duggal P, Haque R, Petri WA Jr (2011) The expression of REG 1A and REG 1B is increased during acute amebic colitis. Parasitol Int 60(3):296–300. doi:10.1016/j.parint.2011.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Becker SM, Cho KN, Guo X, Fendig K, Oosman MN, Whitehead R, Cohn SM, Houpt ER (2010) Epithelial cell apoptosis facilitates Entamoeba histolytica infection in the gut. Am J Pathol 176(3):1316–1322. doi:10.2353/ajpath.2010.090740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chadee K, Moreau F, Meerovitch E (1987) Entamoeba histolytica: chemoattractant activity for gerbil neutrophils in vivo and in vitro. Exp Parasitol 64(1):12–23

    Article  CAS  PubMed  Google Scholar 

  37. Salata RA, Ahmed P, Ravdin JI (1989) Chemoattractant activity of Entamoeba histolytica for human polymorphonuclear neutrophils. J Parasitol 75(4):644–646

    Article  CAS  PubMed  Google Scholar 

  38. Rivero-Nava L, Aguirre-Garcia J, Shibayama-Salas M, Hernandez-Pando R, Tsutsumi V, Calderon J (2002) Entamoeba histolytica: acute granulomatous intestinal lesions in normal and neutrophil-depleted mice. Exp Parasitol 101(4):183–192

    Article  PubMed  Google Scholar 

  39. Seydel KB, Zhang T, Stanley SL Jr (1997) Neutrophils play a critical role in early resistance to amebic liver abscesses in severe combined immunodeficient mice. Infect Immun 65(9):3951–3953

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ivory CP, Prystajecky M, Jobin C, Chadee K (2008) Toll-like receptor 9-dependent macrophage activation by Entamoeba histolytica DNA. Infect Immun 76(1):289–297. doi:10.1128/IAI.01217-07

    Article  CAS  PubMed  Google Scholar 

  41. Maldonado-Bernal C, Kirschning CJ, Rosenstein Y, Rocha LM, Rios-Sarabia N, Espinosa-Cantellano M, Becker I, Estrada I, Salazar-Gonzalez RM, Lopez-Macias C, Wagner H, Sanchez J, Isibasi A (2005) The innate immune response to Entamoeba histolytica lipopeptidophosphoglycan is mediated by toll-like receptors 2 and 4. Parasite Immunol 27(4):127–137. doi:10.1111/j.1365-3024.2005.00754.x

    Article  CAS  PubMed  Google Scholar 

  42. Seydel KB, Smith SJ, Stanley SL Jr (2000) Innate immunity to amebic liver abscess is dependent on gamma interferon and nitric oxide in a murine model of disease. Infect Immun 68(1):400–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siman-Tov R, Ankri S (2003) Nitric oxide inhibits cysteine proteinases and alcohol dehydrogenase 2 of Entamoeba histolytica. Parasitol Res 89(2):146–149. doi:10.1007/s00436-002-0716-2

    Article  PubMed  Google Scholar 

  44. Vivanco-Cid H, Alpuche-Aranda C, Wong-Baeza I, Rocha-Ramirez LM, Rios-Sarabia N, Estrada-Garcia I, Villasis-Keever MA, Lopez-Macias C, Isibasi A (2007) Lipopopeptidephosphoglycan from Entamoeba histolytica activates human macrophages and dendritic cells and reaches their late endosomes. Parasite Immunol 29(9):467–474. doi:10.1111/j.1365-3024.2007.00963.x

    Article  CAS  PubMed  Google Scholar 

  45. Lotter H, Gonzalez-Roldan N, Lindner B, Winau F, Isibasi A, Moreno-Lafont M, Ulmer AJ, Holst O, Tannich E, Jacobs T (2009) Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog 5(5):e1000434. doi:10.1371/journal.ppat.1000434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tsutsumi V, Mena-Lopez R, Anaya-Velazquez F, Martinez-Palomo A (1984) Cellular bases of experimental amebic liver abscess formation. Am J Pathol 117(1):81–91

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo X, Barroso L, Becker SM, Lyerly DM, Vedvick TS, Reed SG, Petri WA Jr, Houpt ER (2009) Protection against intestinal amebiasis by a recombinant vaccine is transferable by T cells and mediated by gamma interferon. Infect Immun 77(9):3909–3918. doi:10.1128/IAI.00487-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lotter H, Jacobs T, Gaworski I, Tannich E (2006) Sexual dimorphism in the control of amebic liver abscess in a mouse model of disease. Infect Immun 74(1):118–124. doi:10.1128/IAI.74.1.118-124.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sanchez-Guillen Mdel C, Perez-Fuentes R, Salgado-Rosas H, Ruiz-Arguelles A, Ackers J, Shire A, Talamas-Rohana P (2002) Differentiation of Entamoeba histolytica/Entamoeba dispar by PCR and their correlation with humoral and cellular immunity in individuals with clinical variants of amoebiasis. Am J Trop Med Hyg 66(6):731–737

    PubMed  Google Scholar 

  50. Guo X, Stroup SE, Houpt ER (2008) Persistence of Entamoeba histolytica infection in CBA mice owes to intestinal IL-4 production and inhibition of protective IFN-gamma. Mucosal Immunol 1(2):139–146. doi:10.1038/mi.2007.18

    Article  CAS  PubMed  Google Scholar 

  51. Guo X, Barroso L, Lyerly DM, Petri WA Jr, Houpt ER (2011) CD4+ and CD8+ T cell- and IL-17-mediated protection against Entamoeba histolytica induced by a recombinant vaccine. Vaccine 29(4):772–777. doi:10.1016/j.vaccine.2010.11.013

    Article  CAS  PubMed  Google Scholar 

  52. Eckmann L, Reed SL, Smith JR, Kagnoff MF (1995) Entamoeba histolytica trophozoites induce an inflammatory cytokine response by cultured human cells through the paracrine action of cytolytically released interleukin-1 alpha. J Clin Investig 96(3):1269–1279. doi:10.1172/JCI118161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Que X, Kim SH, Sajid M, Eckmann L, Dinarello CA, McKerrow JH, Reed SL (2003) A surface amebic cysteine proteinase inactivates interleukin-18. Infect Immun 71(3):1274–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Z, Wang L, Seydel KB, Li E, Ankri S, Mirelman D, Stanley SL Jr (2000) Entamoeba histolytica cysteine proteinases with interleukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis. Mol Microbiol 37(3):542–548

    Article  CAS  PubMed  Google Scholar 

  55. Velazquez JR, Garibay-Martinez L, Martinez-Tejada P, Leal YA (2012) An amebic anti-inflammatory peptide down-regulates ex vivo IL-1beta expression in patients with rheumatoid arthritis. Reumatol Clin 8(6):315–320. doi:10.1016/j.reuma.2012.03.012

    Article  PubMed  Google Scholar 

  56. Mortimer L, Moreau F, Cornick S, Chadee K (2014) Gal-lectin-dependent contact activates the inflammasome by invasive Entamoeba histolytica. Mucosal Immunol 7(4):829–841. doi:10.1038/mi.2013.100

    Article  CAS  PubMed  Google Scholar 

  57. Mortimer L, Moreau F, Cornick S, Chadee K (2015) The NLRP3 inflammasome is a pathogen sensor for invasive Entamoeba histolytica via activation of alpha5beta1 integrin at the macrophage-amebae intercellular junction. PLoS Pathog 11(5):e1004887. doi:10.1371/journal.ppat.1004887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, Team WHOLC (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7(5):e35671. doi:10.1371/journal.pone.0035671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. CDC (2013) Center for Disease Control and Prevention. Parasites-Leishmaniasis. Global Health—Division of Parasitic Diseases and Malaria. http://www.cdc.gov/parasites/leishmaniasis/epi.html

  60. Kedzierski L (2010) Leishmaniasis vaccine: where are we today? J Glob Infect Dis 2(2):177–185. doi:10.4103/0974-777X.62881

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2(11):845–858. doi:10.1038/nri933

    Article  CAS  PubMed  Google Scholar 

  62. Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, Lawyer P, Fay MP, Germain RN, Sacks D (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321(5891):970–974. doi:10.1126/science.1159194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Novais FO, Santiago RC, Bafica A, Khouri R, Afonso L, Borges VM, Brodskyn C, Barral-Netto M, Barral A, de Oliveira CI (2009) Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J Immunol 183(12):8088–8098. doi:10.4049/jimmunol.0803720

    Article  CAS  PubMed  Google Scholar 

  64. Afonso L, Borges VM, Cruz H, Ribeiro-Gomes FL, DosReis GA, Dutra AN, Clarencio J, de Oliveira CI, Barral A, Barral-Netto M, Brodskyn CI (2008) Interactions with apoptotic but not with necrotic neutrophils increase parasite burden in human macrophages infected with Leishmania amazonensis. J Leukoc Biol 84(2):389–396. doi:10.1189/jlb.0108018

    Article  CAS  PubMed  Google Scholar 

  65. Guimaraes-Costa AB, Nascimento MT, Froment GS, Soares RP, Morgado FN, Conceicao-Silva F, Saraiva EM (2009) Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci USA 106(16):6748–6753. doi:10.1073/pnas.0900226106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, Xu D, Muller W, Moncada S, Liew FY (1995) Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375(6530):408–411. doi:10.1038/375408a0

    Article  CAS  PubMed  Google Scholar 

  67. von Stebut E, Belkaid Y, Jakob T, Sacks DL, Udey MC (1998) Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J Exp Med 188(8):1547–1552

    Article  Google Scholar 

  68. Heinzel FP, Rerko RM, Ahmed F, Hujer AM (1996) IFN-gamma-independent production of IL-12 during murine endotoxemia. J Immunol 157(10):4521–4528

    CAS  PubMed  Google Scholar 

  69. de Veer MJ, Curtis JM, Baldwin TM, DiDonato JA, Sexton A, McConville MJ, Handman E, Schofield L (2003) MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling. Eur J Immunol 33(10):2822–2831. doi:10.1002/eji.200324128

    Article  PubMed  CAS  Google Scholar 

  70. Debus A, Glasner J, Rollinghoff M, Gessner A (2003) High levels of susceptibility and T helper 2 response in MyD88-deficient mice infected with Leishmania major are interleukin-4 dependent. Infect Immun 71(12):7215–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Muraille E, De Trez C, Brait M, De Baetselier P, Leo O, Carlier Y (2003) Genetically resistant mice lacking MyD88-adapter protein display a high susceptibility to Leishmania major infection associated with a polarized Th2 response. J Immunol 170(8):4237–4241

    Article  CAS  PubMed  Google Scholar 

  72. Becker I, Salaiza N, Aguirre M, Delgado J, Carrillo-Carrasco N, Kobeh LG, Ruiz A, Cervantes R, Torres AP, Cabrera N, Gonzalez A, Maldonado C, Isibasi A (2003) Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Mol Biochem Parasitol 130(2):65–74

    Article  CAS  PubMed  Google Scholar 

  73. Karmakar S, Bhaumik SK, Paul J, De T (2012) TLR4 and NKT cell synergy in immunotherapy against visceral leishmaniasis. PLoS Pathog 8(4):e1002646. doi:10.1371/journal.ppat.1002646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Paul J, Karmakar S, De T (2012) TLR-mediated distinct IFN-gamma/IL-10 pattern induces protective immunity against murine visceral leishmaniasis. Eur J Immunol 42(8):2087–2099. doi:10.1002/eji.201242428

    Article  CAS  PubMed  Google Scholar 

  75. Liese J, Schleicher U, Bogdan C (2007) TLR9 signaling is essential for the innate NK cell response in murine cutaneous leishmaniasis. Eur J Immunol 37(12):3424–3434. doi:10.1002/eji.200737182

    Article  CAS  PubMed  Google Scholar 

  76. Schleicher U, Liese J, Knippertz I, Kurzmann C, Hesse A, Heit A, Fischer JA, Weiss S, Kalinke U, Kunz S, Bogdan C (2007) NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs. J Exp Med 204(4):893–906. doi:10.1084/jem.20061293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gurung P, Kanneganti TD (2015) Innate immunity against Leishmania infections. Cell Microbiol. doi:10.1111/cmi.12484

    PubMed  Google Scholar 

  78. Kautz-Neu K, Schwonberg K, Fischer MR, Schermann AI, von Stebut E (2012) Dendritic cells in Leishmania major infections: mechanisms of parasite uptake, cell activation and evidence for physiological relevance. Med Microbiol Immunol 201(4):581–592. doi:10.1007/s00430-012-0261-2

    Article  CAS  PubMed  Google Scholar 

  79. Rodriguez NE, Wilson ME (2014) Eosinophils and mast cells in leishmaniasis. Immunol Res 59(1–3):129–141. doi:10.1007/s12026-014-8536-x

    Article  CAS  PubMed  Google Scholar 

  80. Smelt SC, Cotterell SE, Engwerda CR, Kaye PM (2000) B cell-deficient mice are highly resistant to Leishmania donovani infection, but develop neutrophil-mediated tissue pathology. J Immunol 164(7):3681–3688

    Article  CAS  PubMed  Google Scholar 

  81. Holaday BJ, Sadick MD, Wang ZE, Reiner SL, Heinzel FP, Parslow TG, Locksley RM (1991) Reconstitution of Leishmania immunity in severe combined immunodeficient mice using Th1- and Th2-like cell lines. J Immunol 147(5):1653–1658

    CAS  PubMed  Google Scholar 

  82. Mitchell GF (1983) Murine cutaneous leishmaniasis: resistance in reconstituted nude mice and several F1 hybrids infected with Leishmania tropica major. J Immunogenet 10(5):395–412

    Article  CAS  PubMed  Google Scholar 

  83. Erb K, Blank C, Ritter U, Bluethmann H, Moll H (1996) Leishmania major infection in major histocompatibility complex class II-deficient mice: CD8+ T cells do not mediate a protective immune response. Immunobiology 195(2):243–260. doi:10.1016/S0171-2985(96)80043-X

    Article  CAS  PubMed  Google Scholar 

  84. Titus RG, Milon G, Marchal G, Vassalli P, Cerottini JC, Louis JA (1987) Involvement of specific Lyt-2+ T cells in the immunological control of experimentally induced murine cutaneous leishmaniasis. Eur J Immunol 17(10):1429–1433. doi:10.1002/eji.1830171007

    Article  CAS  PubMed  Google Scholar 

  85. Locksley RM, Reiner SL, Hatam F, Littman DR, Killeen N (1993) Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science 261(5127):1448–1451

    Article  CAS  PubMed  Google Scholar 

  86. Belkaid Y, Von Stebut E, Mendez S, Lira R, Caler E, Bertholet S, Udey MC, Sacks D (2002) CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J Immunol 168(8):3992–4000

    Article  CAS  PubMed  Google Scholar 

  87. Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10(2):89–102. doi:10.1038/nri2691

    Article  CAS  PubMed  Google Scholar 

  88. Voronov E, Dotan S, Gayvoronsky L, White RM, Cohen I, Krelin Y, Benchetrit F, Elkabets M, Huszar M, El-On J, Apte RN (2010) IL-1-induced inflammation promotes development of leishmaniasis in susceptible BALB/c mice. Int Immunol 22(4):245–257. doi:10.1093/intimm/dxq006

    Article  CAS  PubMed  Google Scholar 

  89. Xin L, Li Y, Soong L (2007) Role of interleukin-1beta in activating the CD11c(high) CD45RB- dendritic cell subset and priming Leishmania amazonensis-specific CD4+ T cells in vitro and in vivo. Infect Immun 75(10):5018–5026. doi:10.1128/IAI.00499-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kautz-Neu K, Kostka SL, Dinges S, Iwakura Y, Udey MC, von Stebut E (2011) A role for leukocyte-derived IL-1RA in DC homeostasis revealed by increased susceptibility of IL-1RA-deficient mice to cutaneous leishmaniasis. J Invest Dermatol 131(8):1650–1659. doi:10.1038/jid.2011.99

    Article  CAS  PubMed  Google Scholar 

  91. Bryson KJ, Wei XQ, Alexander J (2008) Interleukin-18 enhances a Th2 biased response and susceptibility to Leishmania mexicana in BALB/c mice. Microbes Infect/Institut Pasteur 10(7):834–839. doi:10.1016/j.micinf.2008.03.009

    Article  CAS  Google Scholar 

  92. Wei XQ, Niedbala W, Xu D, Luo ZX, Pollock KG, Brewer JM (2004) Host genetic background determines whether IL-18 deficiency results in increased susceptibility or resistance to murine Leishmania major infection. Immunol Lett 94(1–2):35–37. doi:10.1016/j.imlet.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  93. Kautz-Neu K, Kostka SL, Dinges S, Iwakura Y, Udey MC, von Stebut E (2011) IL-1 signalling is dispensable for protective immunity in Leishmania-resistant mice. Exp Dermatol 20(1):76–78. doi:10.1111/j.1600-0625.2010.01172.x

    Article  CAS  PubMed  Google Scholar 

  94. Monteforte GM, Takeda K, Rodriguez-Sosa M, Akira S, David JR, Satoskar AR (2000) Genetically resistant mice lacking IL-18 gene develop Th1 response and control cutaneous Leishmania major infection. J Immunol 164(11):5890–5893

    Article  CAS  PubMed  Google Scholar 

  95. Wei XQ, Leung BP, Niedbala W, Piedrafita D, Feng GJ, Sweet M, Dobbie L, Smith AJ, Liew FY (1999) Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice. J Immunol 163(5):2821–2828

    CAS  PubMed  Google Scholar 

  96. Ohkusu K, Yoshimoto T, Takeda K, Ogura T, Kashiwamura S, Iwakura Y, Akira S, Okamura H, Nakanishi K (2000) Potentiality of interleukin-18 as a useful reagent for treatment and prevention of Leishmania major infection. Infect Immun 68(5):2449–2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gurung P, Karki R, Vogel P, Watanabe M, Bix M, Lamkanfi M, Kanneganti TD (2015) An NLRP3 inflammasome-triggered Th2-biased adaptive immune response promotes leishmaniasis. J Clin Investig 125(3):1329–1338. doi:10.1172/JCI79526

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lima-Junior DS, Costa DL, Carregaro V, Cunha LD, Silva AL, Mineo TW, Gutierrez FR, Bellio M, Bortoluci KR, Flavell RA, Bozza MT, Silva JS, Zamboni DS (2013) Inflammasome-derived IL-1beta production induces nitric oxide-mediated resistance to Leishmania. Nat Med 19(7):909–915. doi:10.1038/nm.3221

    Article  CAS  PubMed  Google Scholar 

  99. Shio MT, Christian JG, Jung JY, Chang KP, Olivier M (2015) PKC/ROS-mediated NLRP3 inflammasome activation is attenuated by leishmania zinc-metalloprotease during infection. PLoS Negl Trop Dis 9(6):e0003868. doi:10.1371/journal.pntd.0003868

    Article  PubMed  PubMed Central  Google Scholar 

  100. Charmoy M, Hurrell BP, Romano A, Lee SH, Ribeiro-Gomes F, Riteau N, Mayer-Barber K, Tacchini-Cottier F, Sacks DL (2015) The Nlrp3 inflammasome, IL-1beta, and neutrophil recruitment are required for susceptibility to a non-healing strain of Leishmania major in C57BL/6 mice. Eur J Immunol. doi:10.1002/eji.201546015

    Google Scholar 

  101. Hoover DL, Berger M, Hammer CH, Meltzer MS (1985) Complement-mediated serum cytotoxicity for Leishmania major amastigotes: killing by serum deficient in early components of the membrane attack complex. J Immunol 135(1):570–574

    CAS  PubMed  Google Scholar 

  102. Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89(4):587–596

    Article  CAS  PubMed  Google Scholar 

  103. WHO (2014) World Health Organization. Malaria. World Malaria Report 2014. http://www.whoint/malaria/media/world_malaria_report_2014/en/

  104. Miller LH, Ackerman HC, Su XZ, Wellems TE (2013) Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19(2):156–167. doi:10.1038/nm.3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Amino R, Giovannini D, Thiberge S, Gueirard P, Boisson B, Dubremetz JF, Prevost MC, Ishino T, Yuda M, Menard R (2008) Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host Microbe 3(2):88–96. doi:10.1016/j.chom.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  106. Mac-Daniel L, Buckwalter MR, Berthet M, Virk Y, Yui K, Albert ML, Gueirard P, Menard R (2014) Local immune response to injection of Plasmodium sporozoites into the skin. J Immunol 193(3):1246–1257. doi:10.4049/jimmunol.1302669

    Article  CAS  PubMed  Google Scholar 

  107. Vreden SG (1994) The role of Kupffer cells in the clearance of malaria sporozoites from the circulation. Parasitol Today 10(8):304–308

    Article  CAS  PubMed  Google Scholar 

  108. Scheller LF, Wirtz RA, Azad AF (1994) Susceptibility of different strains of mice to hepatic infection with Plasmodium berghei. Infect Immun 62(11):4844–4847

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Vanderberg JP, Khan ZM, Stewart MJ (1993) Induction of hepatic inflammatory response by Plasmodium berghei sporozoites protects BALB/c mice against challenge with Plasmodium yoelii sporozoites. J Parasitol 79(5):763–767

    Article  CAS  PubMed  Google Scholar 

  110. Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, Pravenec M, Kain KC (2004) CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J Infect Dis 189(2):204–213. doi:10.1086/380764

    Article  CAS  PubMed  Google Scholar 

  111. Aitman TJ, Cooper LD, Norsworthy PJ, Wahid FN, Gray JK, Curtis BR, McKeigue PM, Kwiatkowski D, Greenwood BM, Snow RW, Hill AV, Scott J (2000) Malaria susceptibility and CD36 mutation. Nature 405(6790):1015–1016. doi:10.1038/35016636

    Article  CAS  PubMed  Google Scholar 

  112. Gazzinelli RT, Kalantari P, Fitzgerald KA, Golenbock DT (2014) Innate sensing of malaria parasites. Nat Rev Immunol 14(11):744–757. doi:10.1038/nri3742

    Article  CAS  PubMed  Google Scholar 

  113. Tsuji M (2010) A retrospective evaluation of the role of T cells in the development of malaria vaccine. Exp Parasitol 126(3):421–425. doi:10.1016/j.exppara.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  114. Rodrigues MM, Cordey AS, Arreaza G, Corradin G, Romero P, Maryanski JL, Nussenzweig RS, Zavala F (1991) CD8+ cytolytic T cell clones derived against the Plasmodium yoelii circumsporozoite protein protect against malaria. Int Immunol 3(6):579–585

    Article  CAS  PubMed  Google Scholar 

  115. Romero P, Maryanski JL, Corradin G, Nussenzweig RS, Nussenzweig V, Zavala F (1989) Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 341(6240):323–326. doi:10.1038/341323a0

    Article  CAS  PubMed  Google Scholar 

  116. Sano G, Hafalla JC, Morrot A, Abe R, Lafaille JJ, Zavala F (2001) Swift development of protective effector functions in naive CD8(+) T cells against malaria liver stages. J Exp Med 194(2):173–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zavala F, Rodrigues M, Rodriguez D, Rodriguez JR, Nussenzweig RS, Esteban M (2001) A striking property of recombinant poxviruses: efficient inducers of in vivo expansion of primed CD8(+) T cells. Virology 280(2):155–159. doi:10.1006/viro.2000.0792

    Article  CAS  PubMed  Google Scholar 

  118. Perez-Mazliah D, Langhorne J (2014) CD4 T-cell subsets in malaria: TH1/TH2 revisited. Front Immunol 5:671. doi:10.3389/fimmu.2014.00671

    PubMed  Google Scholar 

  119. Tsuji M, Romero P, Nussenzweig RS, Zavala F (1990) CD4+ cytolytic T cell clone confers protection against murine malaria. J Exp Med 172(5):1353–1357

    Article  CAS  PubMed  Google Scholar 

  120. Wang R, Charoenvit Y, Corradin G, De La Vega P, Franke ED, Hoffman SL (1996) Protection against malaria by Plasmodium yoelii sporozoite surface protein 2 linear peptide induction of CD4+ T cell- and IFN-gamma-dependent elimination of infected hepatocytes. J Immunol 157(9):4061–4067

    CAS  PubMed  Google Scholar 

  121. Weiss WR, Mellouk S, Houghten RA, Sedegah M, Kumar S, Good MF, Berzofsky JA, Miller LH, Hoffman SL (1990) Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes. J Exp Med 171(3):763–773

    Article  CAS  PubMed  Google Scholar 

  122. Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, Tygrett LT, Waldschmidt TJ, Crompton PD, Harty JT (2012) Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol 13(2):188–195. doi:10.1038/ni.2180

    Article  CAS  Google Scholar 

  123. Carvalho LH, Sano G, Hafalla JC, Morrot A, Curotto de Lafaille MA, Zavala F (2002) IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat Med 8(2):166–170. doi:10.1038/nm0202-166

    Article  CAS  PubMed  Google Scholar 

  124. Oliveira GA, Kumar KA, Calvo-Calle JM, Othoro C, Altszuler D, Nussenzweig V, Nardin EH (2008) Class II-restricted protective immunity induced by malaria sporozoites. Infect Immun 76(3):1200–1206. doi:10.1128/IAI.00566-07

    Article  CAS  PubMed  Google Scholar 

  125. Finney CA, Lu Z, LeBourhis L, Philpott DJ, Kain KC (2009) Disruption of Nod-like receptors alters inflammatory response to infection but does not confer protection in experimental cerebral malaria. Am J Trop Med Hyg 80(5):718–722

    CAS  PubMed  Google Scholar 

  126. Egan TJ (2008) Haemozoin formation. Mol Biochem Parasitol 157(2):127–136. doi:10.1016/j.molbiopara.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  127. Dostert C, Guarda G, Romero JF, Menu P, Gross O, Tardivel A, Suva ML, Stehle JC, Kopf M, Stamenkovic I, Corradin G, Tschopp J (2009) Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One 4(8):e6510. doi:10.1371/journal.pone.0006510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Griffith JW, Sun T, McIntosh MT, Bucala R (2009) Pure Hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J Immunol 183(8):5208–5220. doi:10.4049/jimmunol.0713552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shio MT, Eisenbarth SC, Savaria M, Vinet AF, Bellemare MJ, Harder KW, Sutterwala FS, Bohle DS, Descoteaux A, Flavell RA, Olivier M (2009) Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5(8):e1000559. doi:10.1371/journal.ppat.1000559

    Article  PubMed  CAS  Google Scholar 

  130. Kordes M, Matuschewski K, Hafalla JC (2011) Caspase-1 activation of interleukin-1beta (IL-1beta) and IL-18 is dispensable for induction of experimental cerebral malaria. Infect Immun 79(9):3633–3641. doi:10.1128/IAI.05459-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Reimer T, Shaw MH, Franchi L, Coban C, Ishii KJ, Akira S, Horii T, Rodriguez A, Nunez G (2010) Experimental cerebral malaria progresses independently of the Nlrp3 inflammasome. Eur J Immunol 40(3):764–769. doi:10.1002/eji.200939996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ataide MA, Andrade WA, Zamboni DS, Wang D, Souza Mdo C, Franklin BS, Elian S, Martins FS, Pereira D, Reed G, Fitzgerald KA, Golenbock DT, Gazzinelli RT (2014) Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog 10(1):e1003885. doi:10.1371/journal.ppat.1003885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Santos ML, Reis EC, Bricher PN, Sousa TN, Brito CF, Lacerda MV, Fontes CJ, Carvalho LH, Pontillo A (2016) Contribution of inflammasome genetics in Plasmodium vivax malaria. Infect Genet Evol. doi:10.1016/j.meegid.2016.02.038

    PubMed  Google Scholar 

  134. Flegr J, Prandota J, Sovickova M, Israili ZH (2014) Toxoplasmosis—a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS One 9(3):e90203. doi:10.1371/journal.pone.0090203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Montoya JG, Liesenfeld O (2004) Toxoplasmosis. Lancet 363(9425):1965–1976. doi:10.1016/S0140-6736(04)16412-X

    Article  CAS  PubMed  Google Scholar 

  136. Robert-Gangneux F, Darde ML (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25(2):264–296. doi:10.1128/CMR.05013-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Weiss LM, Dubey JP (2009) Toxoplasmosis: a history of clinical observations. Int J Parasitol 39(8):895–901. doi:10.1016/j.ijpara.2009.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  138. Scharton-Kersten TM, Wynn TA, Denkers EY, Bala S, Grunvald E, Hieny S, Gazzinelli RT, Sher A (1996) In the absence of endogenous IFN-gamma, mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection. J Immunol 157(9):4045–4054

    CAS  PubMed  Google Scholar 

  139. Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A (1993) Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sci USA 90(13):6115–6119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Scharton-Kersten TM, Yap G, Magram J, Sher A (1997) Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J Exp Med 185(7):1261–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bliss SK, Gavrilescu LC, Alcaraz A, Denkers EY (2001) Neutrophil depletion during Toxoplasma gondii infection leads to impaired immunity and lethal systemic pathology. Infect Immun 69(8):4898–4905. doi:10.1128/IAI.69.8.4898-4905.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu CH, Fan YT, Dias A, Esper L, Corn RA, Bafica A, Machado FS, Aliberti J (2006) Cutting edge: dendritic cells are essential for in vivo IL-12 production and development of resistance against Toxoplasma gondii infection in mice. J Immunol 177(1):31–35

    Article  CAS  PubMed  Google Scholar 

  143. Yarovinsky F (2014) Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol 14(2):109–121. doi:10.1038/nri3598

    Article  CAS  PubMed  Google Scholar 

  144. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308(5728):1626–1629. doi:10.1126/science.1109893

    Article  CAS  PubMed  Google Scholar 

  145. Lindberg RE, Frenkel JK (1977) Toxoplasmosis in nude mice. J Parasitol 63(2):219–221

    Article  CAS  PubMed  Google Scholar 

  146. Suzuki Y, Joh K, Kobayashi A (1991) Tumor necrosis factor-independent protective effect of recombinant IFN-gamma against acute toxoplasmosis in T cell-deficient mice. J Immunol 147(8):2728–2733

    CAS  PubMed  Google Scholar 

  147. Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A (1992) Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol 149(1):175–180

    CAS  PubMed  Google Scholar 

  148. Hunter CA, Litton MJ, Remington JS, Abrams JS (1994) Immunocytochemical detection of cytokines in the lymph nodes and brains of mice resistant or susceptible to toxoplasmic encephalitis. J Infect Dis 170(4):939–945

    Article  CAS  PubMed  Google Scholar 

  149. Schluter D, Hein A, Dorries R, Deckert-Schluter M (1995) Different subsets of T cells in conjunction with natural killer cells, macrophages, and activated microglia participate in the intracerebral immune response to Toxoplasma gondii in athymic nude and immunocompetent rats. Am J Pathol 146(4):999–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Shaw MH, Reimer T, Sanchez-Valdepenas C, Warner N, Kim YG, Fresno M, Nunez G (2009) T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nat Immunol 10(12):1267–1274. doi:10.1038/ni.1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Suzuki Y, Conley FK, Remington JS (1989) Importance of endogenous IFN-gamma for prevention of toxoplasmic encephalitis in mice. J Immunol 143(6):2045–2050

    CAS  PubMed  Google Scholar 

  152. Suzuki Y, Yang Q, Yang S, Nguyen N, Lim S, Liesenfeld O, Kojima T, Remington JS (1996) IL-4 is protective against development of toxoplasmic encephalitis. J Immunol 157(6):2564–2569

    CAS  PubMed  Google Scholar 

  153. Caetano BC, Biswas A, Lima DS Jr, Benevides L, Mineo TW, Horta CV, Lee KH, Silva JS, Gazzinelli RT, Zamboni DS, Kobayashi KS (2011) Intrinsic expression of Nod2 in CD4+ T lymphocytes is not necessary for the development of cell-mediated immunity and host resistance to Toxoplasma gondii. Eur J Immunol 41(12):3627–3631. doi:10.1002/eji.201141876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Witola WH, Mui E, Hargrave A, Liu S, Hypolite M, Montpetit A, Cavailles P, Bisanz C, Cesbron-Delauw MF, Fournie GJ, McLeod R (2011) NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells. Infect Immun 79(2):756–766. doi:10.1128/IAI.00898-10

    Article  CAS  PubMed  Google Scholar 

  155. Gov L, Karimzadeh A, Ueno N, Lodoen MB (2013) Human innate immunity to Toxoplasma gondii is mediated by host caspase-1 and ASC and parasite GRA15. mBio 4(4). doi:10.1128/mBio.00255-13

  156. Ewald SE, Chavarria-Smith J, Boothroyd JC (2014) NLRP1 is an inflammasome sensor for Toxoplasma gondii. Infect Immun 82(1):460–468. doi:10.1128/IAI.01170-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Gorfu G, Cirelli KM, Melo MB, Mayer-Barber K, Crown D, Koller BH, Masters S, Sher A, Leppla SH, Moayeri M, Saeij JP, Grigg ME (2014) Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii. mBio 5(1). doi:10.1128/mBio.01117-13

  158. Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault SK, Periago MR (2008) The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis 2(9):e300. doi:10.1371/journal.pntd.0000300

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lescure FX, Le Loup G, Freilij H, Develoux M, Paris L, Brutus L, Pialoux G (2010) Chagas disease: changes in knowledge and management. Lancet Infect Dis 10(8):556–570. doi:10.1016/S1473-3099(10)70098-0

    Article  PubMed  Google Scholar 

  160. Tanowitz HB, Machado FS, Jelicks LA, Shirani J, de Carvalho AC, Spray DC, Factor SM, Kirchhoff LV, Weiss LM (2009) Perspectives on Trypanosoma cruzi-induced heart disease (Chagas disease). Prog Cardiovasc Dis 51(6):524–539. doi:10.1016/j.pcad.2009.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  161. Campos MA, Closel M, Valente EP, Cardoso JE, Akira S, Alvarez-Leite JI, Ropert C, Gazzinelli RT (2004) Impaired production of proinflammatory cytokines and host resistance to acute infection with Trypanosoma cruzi in mice lacking functional myeloid differentiation factor 88. J Immunol 172(3):1711–1718

    Article  CAS  PubMed  Google Scholar 

  162. Roggero E, Wildmann J, Passerini MO, del Rey A, Besedovsky HO (2012) Different peripheral neuroendocrine responses to Trypanosoma cruzi infection in mice lacking adaptive immunity. Ann N Y Acad Sci 1262:37–44. doi:10.1111/j.1749-6632.2012.06645.x

    Article  CAS  PubMed  Google Scholar 

  163. Teixeira MM, Gazzinelli RT, Silva JS (2002) Chemokines, inflammation and Trypanosoma cruzi infection. Trends Parasitol 18(6):262–265

    Article  CAS  PubMed  Google Scholar 

  164. Graefe SE, Jacobs T, Gaworski I, Klauenberg U, Steeg C, Fleischer B (2003) Interleukin-12 but not interleukin-18 is required for immunity to Trypanosoma cruzi in mice. Microbes Infect 5(10):833–839

    Article  CAS  PubMed  Google Scholar 

  165. Holscher C, Kohler G, Muller U, Mossmann H, Schaub GA, Brombacher F (1998) Defective nitric oxide effector functions lead to extreme susceptibility of Trypanosoma cruzi-infected mice deficient in gamma interferon receptor or inducible nitric oxide synthase. Infect Immun 66(3):1208–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Torrico F, Heremans H, Rivera MT, Van Marck E, Billiau A, Carlier Y (1991) Endogenous IFN-gamma is required for resistance to acute Trypanosoma cruzi infection in mice. J Immunol 146(10):3626–3632

    CAS  PubMed  Google Scholar 

  167. Chen L, Watanabe T, Watanabe H, Sendo F (2001) Neutrophil depletion exacerbates experimental Chagas’ disease in BALB/c, but protects C57BL/6 mice through modulating the Th1/Th2 dichotomy in different directions. Eur J Immunol 31(1):265–275. doi:10.1002/1521-4141(200101)31:1<265:AID-IMMU265>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  168. Lieke T, Graefe SE, Klauenberg U, Fleischer B, Jacobs T (2004) NK cells contribute to the control of Trypanosoma cruzi infection by killing free parasites by perforin-independent mechanisms. Infect Immun 72(12):6817–6825. doi:10.1128/IAI.72.12.6817-6825.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rodrigues MM, Oliveira AC, Bellio M (2012) The immune response to Trypanosoma cruzi: role of Toll-like receptors and perspectives for vaccine development. J Parasitol Res 2012:507874. doi:10.1155/2012/507874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Tarleton RL, Grusby MJ, Postan M, Glimcher LH (1996) Trypanosoma cruzi infection in MHC-deficient mice: further evidence for the role of both class I- and class II-restricted T cells in immune resistance and disease. Int Immunol 8(1):13–22

    Article  CAS  PubMed  Google Scholar 

  171. Tarleton RL, Koller BH, Latour A, Postan M (1992) Susceptibility of beta 2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature 356(6367):338–340. doi:10.1038/356338a0

    Article  CAS  PubMed  Google Scholar 

  172. Antunez MI, Cardoni RL (2001) Early IFN-gamma production is related to the presence of interleukin (IL)-18 and the absence of IL-13 in experimental Trypanosoma cruzi infections. Immunol Lett 79(3):189–196

    Article  CAS  PubMed  Google Scholar 

  173. Silva JS, Morrissey PJ, Grabstein KH, Mohler KM, Anderson D, Reed SG (1992) Interleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection. J Exp Med 175(1):169–174

    Article  CAS  PubMed  Google Scholar 

  174. Tarleton RL (2015) CD8+ T cells in Trypanosoma cruzi infection. Semin Immunopathol 37(3):233–238. doi:10.1007/s00281-015-0481-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Silva GK, Gutierrez FR, Guedes PM, Horta CV, Cunha LD, Mineo TW, Santiago-Silva J, Kobayashi KS, Flavell RA, Silva JS, Zamboni DS (2010) Cutting edge: nucleotide-binding oligomerization domain 1-dependent responses account for murine resistance against Trypanosoma cruzi infection. J Immunol 184(3):1148–1152. doi:10.4049/jimmunol.0902254

    Article  CAS  PubMed  Google Scholar 

  176. Goncalves VM, Matteucci KC, Buzzo CL, Miollo BH, Ferrante D, Torrecilhas AC, Rodrigues MM, Alvarez JM, Bortoluci KR (2013) NLRP3 controls Trypanosoma cruzi infection through a caspase-1-dependent IL-1R-independent NO production. PLoS Negl Trop Dis 7(10):e2469. doi:10.1371/journal.pntd.0002469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Silva GK, Costa RS, Silveira TN, Caetano BC, Horta CV, Gutierrez FR, Guedes PM, Andrade WA, De Niz M, Gazzinelli RT, Zamboni DS, Silva JS (2013) Apoptosis-associated speck-like protein containing a caspase recruitment domain inflammasomes mediate IL-1beta response and host resistance to Trypanosoma cruzi infection. J Immunol 191(6):3373–3383. doi:10.4049/jimmunol.1203293

    Article  CAS  PubMed  Google Scholar 

  178. Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2(12):933–944. doi:10.1038/nri954

    Article  CAS  PubMed  Google Scholar 

  179. Niedbala W, Cai B, Liew FY (2006) Role of nitric oxide in the regulation of T cell functions. Ann Rheum Dis 65(Suppl 3):iii37–iii40. doi:10.1136/ard.2006.058446

    PubMed  PubMed Central  Google Scholar 

  180. Lupfer C, Thomas PG, Kanneganti TD (2014) Nucleotide oligomerization and binding domain 2-dependent dendritic cell activation is necessary for innate immunity and optimal CD8+ T Cell responses to influenza A virus infection. J Virol 88(16):8946–8955. doi:10.1128/JVI.01110-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Kobayashi KS, van den Elsen PJ (2012) NLRC5: a key regulator of MHC class I-dependent immune responses. Nat Rev Immunol 12(12):813–820. doi:10.1038/nri3339

    Article  CAS  PubMed  Google Scholar 

  182. Griffith TS, Ferguson TA (2011) Cell death in the maintenance and abrogation of tolerance: the five Ws of dying cells. Immunity 35(4):456–466. doi:10.1016/j.immuni.2011.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lukens JR, Gurung P, Shaw PJ, Barr MJ, Zaki MH, Brown SA, Vogel P, Chi H, Kanneganti TD (2015) The NLRP12 sensor negatively regulates autoinflammatory disease by modulating interleukin-4 production in T cells. Immunity 42(4):654–664. doi:10.1016/j.immuni.2015.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Munoz-Arias I, Greene WC (2014) Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505(7484):509–514. doi:10.1038/nature12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. Vani J. Shanker and Cherise M. Guess of St. Jude Children’s Research Hospital’s Department of Scientific Editing for her help with critical editing of the manuscript. We also thank Drs. Farrah Phillips, Si Ming Man and Ankit Malik for their critical reading of the manuscript. PG is a postdoctoral fellow supported by the Paul Barrett Endowed Fellowship from St. Jude Children’s Research Hospital. This work was supported in part by grants from the National Institute of Health (Grants AR056296, CA163507, and AI101935) and American Lebanese Syrian Associated Charities to T-D.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirumala-Devi Kanneganti.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurung, P., Kanneganti, TD. Immune responses against protozoan parasites: a focus on the emerging role of Nod-like receptors. Cell. Mol. Life Sci. 73, 3035–3051 (2016). https://doi.org/10.1007/s00018-016-2212-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2212-3

Keywords

Navigation