Skip to main content

Advertisement

Log in

Early microbiota, antibiotics and health

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The colonization of the neonatal digestive tract provides a microbial stimulus required for an adequate maturation towards the physiological homeostasis of the host. This colonization, which is affected by several factors, begins with facultative anaerobes and continues with anaerobic genera. Accumulating evidence underlines the key role of the early neonatal period for this microbiota-induced maturation, being a key determinant factor for later health. Therefore, understanding the factors that determine the establishment of the microbiota in the infant is of critical importance. Exposure to antibiotics, either prenatally or postnatally, is common in early life mainly due to the use of intrapartum prophylaxis or to the administration of antibiotics in C-section deliveries. However, we are still far from understanding the impact of early antibiotics and their long-term effects. Increased risk of non-communicable diseases, such as allergies or obesity, has been observed in individuals exposed to antibiotics during early infancy. Moreover, the impact of antibiotics on the establishment of the infant gut resistome, and on the role of the microbiota as a reservoir of resistance genes, should be evaluated in the context of the problems associated with the increasing number of antibiotic resistant pathogenic strains. In this article, we review and discuss the above-mentioned issues with the aim of encouraging debate on the actions needed for understanding the impact of early life antibiotics upon human microbiota and health and for developing strategies aimed at minimizing this impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sekirov I, Russel SL, Antunes CM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  PubMed  Google Scholar 

  2. Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238

    Article  CAS  PubMed  Google Scholar 

  3. Kuczynski J, Lauber CL, Walters WA et al (2011) Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 13:47–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Salazar N, Arboleya S, Valdés L et al (2014) The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Front Genet 5:406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Al-Asmakh M, Zadjali F (2015) Use of germ-free animal models in microbiota-related research. J Microbiol Biotechnol 25:1583–1588

    Article  PubMed  Google Scholar 

  6. Hansen CH, Nielsen DS, Kverka M et al (2012) Patterns of early gut colonization shape future immune responses of the host. PLoS One 7:e34043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Renz H, Brandtzaeg P, Hornef M (2012) The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol 12:9–23

    CAS  Google Scholar 

  8. Olszak T, An D, Zeissig S et al (2012) Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:489–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cox LM, Yamanishi S, Sohn J et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:705–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352:539–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Claus SP, Tsang TM, Wang Y et al (2008) Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol Syst Biol 4:219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bercik P, Denou E, Collins J et al (2011) The intestinal microbiota affects central levels of brain-derived neurotrophic factors and behaviours in mice. Gastroenterology 141:599–609

    Article  CAS  PubMed  Google Scholar 

  13. Clarke G, O’Mahony SM, Dinan TG, Cryan JF (2014) Priming for health: gut microbiota acquired in early life regulates physiology, brain and behavior. Acta Paediatr 103:812–819

    Article  CAS  PubMed  Google Scholar 

  14. Neuman H, Debelius JW, Knight R, Koren O (2015) Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev 39:509–521

    Article  PubMed  Google Scholar 

  15. Jimenez E, Fernandez L, Marin ML et al (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51:270–274

    Article  CAS  PubMed  Google Scholar 

  16. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S (2016) Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 6:23129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arboleya S, Binetti A, Salazar N et al (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79:763–772

    Article  CAS  PubMed  Google Scholar 

  19. Arboleya S, Sánchez B, Milani C et al (2015) Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J Pediatr 166:538–544

    Article  CAS  PubMed  Google Scholar 

  20. Dogra S, Sakwinska O, Soh S-E et al (2015) Dynamics of infant gut microbiota are influences by delivery mode and gestational duration and are associated with subsequent adiposity. MBio 6:e02419

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jakobsson HE, Abrahamsson TR, Jenmalm MC et al (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonization and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566

    Article  CAS  PubMed  Google Scholar 

  23. Bäckhed F, Roswall J, Peng Y (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703

    Article  PubMed  CAS  Google Scholar 

  24. Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD (2012) Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 3:203–220

    Article  PubMed  PubMed Central  Google Scholar 

  25. Faa G, Gerosa C, Fanni D, Nemolato S, van Eyken P, Fanos V (2013) Factors influencing the development of a personal tailored microbiota in the neonate, with particular emphasis on antibiotic therapy. J Matern Fetal Neonatal Med 26(S2):35–43

    Article  PubMed  Google Scholar 

  26. Rutten NBMM, Rijkers GT, Meijssen CB et al (2015) Intestinal microbiota composition after antibiotic treatment in early life: the INCA study. BMC Pediatr 15:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B (2014) The intestinal microbiome in early life: health and disease. Front Immunol 5:427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fanaro S, Chierici R, Guerrini P, Vigi V (2003) Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 91:48–55

    CAS  PubMed  Google Scholar 

  30. Cheng J, Ringel-Kulka T, Heikamp-de Jong I et al (2016) Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J 10:1002–1014

    Article  PubMed  Google Scholar 

  31. Hollister EB, Riehle K, Luna RA et al (2015) Structure and function of the healthy preadolescent pediatric gut microbiome. Microbiome 3:36

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159:1739–1745

    CAS  PubMed  Google Scholar 

  33. Bendtsen KM, Fisker L, Hansen AK, Hansen CH, Nielsen DS (2015) The influence of the young microbiome on inflammatory diseases—lessons from animal studies. Birth Defects Res C Embryo Today 105:278–295

    Article  CAS  PubMed  Google Scholar 

  34. Simonyte Sjodin K, Vidman L, Ryden P, West CE (2016) Emerging evidence of the role of gut microbiota in the development of allergic diseases. Curr Opin Allergy Clin Immunol 16:390–395

    Article  PubMed  CAS  Google Scholar 

  35. Russell SL, Gold MJ, Hartmann M et al (2012) Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 13:440–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Russell SL, Gold MJ, Willing BP, Thorson L, Mcnagny KM, Finlay BB (2013) Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4:158–164

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cho I, Yamanishi S, Cox L et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Livanos AE, Greiner TU, Vangay P et al (2016) Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 1:16140

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe J, Fujiwara R, Sasajima N, Ito S, Sonoyama K (2010) Administration of antibiotics during infancy promoted the development of atopic dermatitis-like skin lesions in NC/Nga mice. Biosci Biotechnol Biochem 74:358–363

    Article  CAS  PubMed  Google Scholar 

  40. Kumar P, Magon N (2012) Hormones in pregnancy. Niger Med J 53:179–183

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nuriel-Ohayon M, Neuman H, Koren O (2016) Microbial changes during pregnancy, birth, and infancy. Front Microbiol 7:1031

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mueller NT, Whyatt R, Hoepner L et al (2015) Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes 39:665–670

    Article  CAS  Google Scholar 

  43. Stokholm J, Schjorring S, Eskildsen CE et al (2014) Antibiotic use during pregnancy alters the commensal vaginal microbiota. Clin Microbiol Infect 20:629–635

    Article  CAS  PubMed  Google Scholar 

  44. Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T et al (2016) The maternal microbiota drives early postnatal innate immune development. Science 351(6279):1296–1302

    Article  PubMed  CAS  Google Scholar 

  45. Chernikova DA, Koestler DC, Hoen AG et al (2016) Fetal exposures and perinatal influences on the stool microbiota of premature infants. J Matern Fetal Neonatal Med 29:99–105

    Article  PubMed  Google Scholar 

  46. Tormo-Badia N, Hakansson A, Vasudevan K, Molin G, Ahrne S, Cilio CM (2014) Antibiotic treatment of pregnant non-obese diabetic mice leads to altered gut microbiota and intestinal immunological changes in the offspring. Scand J Immunol 80:250–260

    Article  CAS  PubMed  Google Scholar 

  47. Munyaka PM, Eissa N, Bernstein CN, Khafipour E, Ghaia JE (2015) Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: a role of the gut microbiota. PLoS One 10(11):e0142536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Khan I, Azhar EI, Abbas AT et al (2016) Metagenomic analysis of antibiotic-induced changes in gut microbiota in a pregnant rat model. Front Pharmacol 7:104

    PubMed  PubMed Central  Google Scholar 

  49. Tochitani S, Ikeno T, Ito T, Sakurai A, Yamauchi T, Matsuzaki H (2016) Administration of non-absorbable antibiotics to pregnant mice to perturb the maternal gut microbiota is associated with alterations in offspring behavior. PLoS One 11:e0138293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hu Y, Peng J, Tai N, Hu C, Zhang X, Wong FS (2015) Maternal antibiotic treatment protects offspring from diabetes development in non obese diabetic mice by generation of tolerogenic APCs. J Immunol 195:4176–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Verani JR, McGee L, Schrag SF (2010) Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC). Prevention of perinatal group B Streptococcal disease. Revised guidelines from CDC. MMWR Recomm Rep 59(RR-10):1–36

    PubMed  Google Scholar 

  52. Alós Cortés JI, Andreu Domingo A, Arribas Mir L et al (2013) Prevención de la infección perinatal por estreptococo del grupo B. Recomendaciones españolas. Actualización 2012. Documento de consenso SEIMC/SEGO/SEN/SEQ/SEMFYC. Enferm Infecc Microbiol Clin 31:158–172

    Article  Google Scholar 

  53. Di Renzo GC, Melin P, Berandi A et al (2015) Intrapartum GBS screening and antibiotic prophylaxis: a European consensus conference. J Matern Fetal Neonatal Med 28:766–782

    Article  PubMed  CAS  Google Scholar 

  54. Benitz WE, Gould JB, Druzin ML (1999) Risk factors for early-onset group B Streptococcal sepsis: estimation of odd ratios by critical literature review. Pediatrics 103:e77

    Article  CAS  PubMed  Google Scholar 

  55. Brocklehurst P (2015) Screening for Group B Streptococcus should be routine in pregnancy: ACAINST: current evidence does not support the introduction of microbiological screening for identifying carriers of Group B streptococcus. BJOG Int J Obstet Gynecol 122:368

    Article  Google Scholar 

  56. Van Dyke MK, Phares CR, Lynfield R et al (2009) Evaluation of universal antenatal screening for group B streptococcus. N Engl J Med 360:2626–2636

    Article  PubMed  Google Scholar 

  57. Ohlson A, Shah VS (2014) Intrapartum antibiotics for known maternal group B Streptococcal colonization. Cochrane Database Syst Rev 10(6):CD007467

    Google Scholar 

  58. Bokulich NA, Chung J, Battaglia T et al (2016) Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343ra382

    Article  CAS  Google Scholar 

  59. Vangay P, Ward T, Gerber JS, Knights D (2015) Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 17:553–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Azad MB, Konya T, Persaud RR et al (2016) Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG Int J Obstet Gynecol 123:983–993

    Article  CAS  Google Scholar 

  61. Mazzola G, Murphy K, Ross RP et al (2016) Early gut microbiota perturbations following intrapartum antibiotic prophylaxis to prevent group B Streptococcal disease. PLoS One 11:e0157527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Keski-Nisula L, Kyynarainen HR, Karkkainen U, Karhukorpi J, Heinonen S, Pekkanen J (2013) Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth. Acta Paediatr 102:480–485

    Article  PubMed  Google Scholar 

  63. Fouhy F, Guinane CM, Hussey S et al (2012) High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother 56:5811–5820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. WHO/RHR/15.02 (2015) World Health Organization. Statement on Caesarean Section Rates

  65. Smaill F, Hofmeyr GJ (2002) Antibiotic prophylaxis for cesarean section. Cochrane Database Syst Rev 3:CD000933

    Google Scholar 

  66. Hill CJ, Lynch DB, Murphy K et al (2017) Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET cohort. Microbiome 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N et al (2015) Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 22(3):250–253

    Article  CAS  Google Scholar 

  68. Clark RH, Bloom BT, Spitzer AR, Gerstmann DR (2006) Reported medication use in the neonatal intensive care unit: data from a large national data set. Pediatrics 117(6):1979–1987. doi:10.1542/peds.2005-1707

    Article  PubMed  Google Scholar 

  69. Stoll BJ, Hansen NI, Bell EF et al (2010) Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics 126:443–456

    Article  PubMed  PubMed Central  Google Scholar 

  70. Goldenberg RL, Hauth JC, Andrews WW (2000) Intrauterine infection and preterm delivery. N Engl J Med 342:1500–1507

    Article  CAS  PubMed  Google Scholar 

  71. Stoll BJ, Hansen NI, Sánchez PJ et al (2011) Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics 127:817–826

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cotten CM, Taylor S, Stoll B et al (2009) Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 123:58–66

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhang T, Smith MA, Camp PG, Shajari S, MacLeod SM, Carleton BC (2013) Prescription drug dispensing profiles for one million children: a population-based analysis. Eur J Clin Pharmacol 69:581–588

    Article  PubMed  Google Scholar 

  74. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77:2367–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tanaka S, Kobayashi T, Songjinda P et al (2009) Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 56:80–87

    Article  CAS  PubMed  Google Scholar 

  76. Mathew JL (2004) Effect of maternal antibiotics on breastfeeding infants. Postgrad Med J 80(942):196–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Soto A, Martín V, Jiménez E, Mader I, Rodríguez JM, Fernández L (2014) Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J Pediatr Gastroenterol Nutr 59:78–88

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pacifici G (2006) Placental transfer of antibiotics administered to the mother: a review. Int J Clin Pharmacol Ther 44:57

    Article  CAS  PubMed  Google Scholar 

  79. Tamburini S, Shen N, Wu HC, Clemente JC (2016) The microbiome in early life: implications for health outcomes. Nat Med 22:713–722

    Article  CAS  PubMed  Google Scholar 

  80. Ong MS, Umetsu DT, Mandl KD (2014) Consequences of antibiotics of antibiotics and infections in infancy: bugs, drugs, and wheezing. Ann Allergy Asthma Immunol 112:441–445

    Article  CAS  PubMed  Google Scholar 

  81. Johnson CC, Ownby DR, Alford SH et al (2005) Antibiotic exposure in early infancy and risk for childhood atopy. J Allergy Clin Immunol 115:1218–1224

    Article  CAS  PubMed  Google Scholar 

  82. Stensballe LG, Simonsen J, Jensen SM, Bonnelykke K, Bisgaard H (2013) Use of antibiotics during pregnancy increases the risk of asthma in early childhood. J Pediatr 162:832–838

    Article  CAS  PubMed  Google Scholar 

  83. Chu S, Yu H, Chen Y, Chen Q, Wang B, Zhang J (2015) Periconceptional and gestational exposure to antibiotics and childhood asthma. PLOS One 10:e0140443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Wickens K, Ignham T, Epton M et al (2008) The association of early life exposure to antibiotics and the development of asthma, eczema and atopy in a birth cohort: confounding or causality? Clin Exp Allergy 38:1318–1324

    Article  CAS  PubMed  Google Scholar 

  85. Hill DA, Siracusa MC, Abt MC et al (2012) Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 18:538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gonzalez-Perez G, Hicks AL, Tekieli TM, Radens CM, Williams BL, Lamouse-Smith ES (2016) Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity. J Immunol 169:3768–3779

    Article  CAS  Google Scholar 

  87. Cox LM, Blaser MJ (2014) Antibiotics in early life and obesity. Nat Rev Endocrinol 11:182–190

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nobel YR, Cox LM, Kirigin FF et al (2015) Metabolic and metagenomics outcomes from early-life pulsed antibiotic treatment. Nat Commun 6:7486

    Article  PubMed  PubMed Central  Google Scholar 

  89. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ (2013) Infant antibiotic exposures and early-life body mass. Int J Obes 37:16–23

    Article  CAS  Google Scholar 

  90. Bailey LC, Forrest CB, Zhanj P, Richards TM, Livshits A, DeRusso PA (2014) Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr 168:1063–1069

    Article  PubMed  Google Scholar 

  91. Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H (2015) Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 133:617–626

    Article  Google Scholar 

  92. Candon S, Perez-Arroyo A, Marquet C et al (2015) Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous model of autoimmune insulin-dependent diabetes. PLOS One 10:e0125448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gibson MK, Crofts TS, Dantas G (2015) Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol 27:51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  PubMed  Google Scholar 

  95. Gillings MR (2013) Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol 4:4

    Article  PubMed  PubMed Central  Google Scholar 

  96. Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R (2011) Evolutionary paths to antibiotic resistance under dynamically sustained drug stress. Nat Genet 44:101–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Barbosa TM, Levy SB (2000) The impact of antibiotic use on resistance development and persistence. Drug Resist Updat 3:303–311

    Article  PubMed  Google Scholar 

  98. Versluis D, D’Andrea MM, Garcia JR et al (2015) Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions. Sci Rep 5:11981

    Article  PubMed  PubMed Central  Google Scholar 

  99. Moore AM, Patel S, Forsberg KJ et al (2013) Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes. PLoS One 8(11):e78822

    Article  PubMed  PubMed Central  Google Scholar 

  100. Moles L, Gomez M, Jimenez E et al (2015) Preterm infant gut colonization in the neonatal ICU and complete restoration 2 years later. Clin Microbiol Infect 21:936e1–936e10

    Article  Google Scholar 

  101. Zhang L, Kinkelaar D, Huang Y, Li YL, Li XJ, Wang HH (2011) Acquired antibiotic resistance: are we born with it? Appl Environ Microbiol 77:7134–7141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gosalbes MJ, Valles Y, Jimenez-Hernandez N et al (2016) High frequencies of antibiotic resistance genes in infants’ meconium and early fecal samples. J Dev Orig Health Dis 7:35–44

    Article  CAS  PubMed  Google Scholar 

  103. Fouhy F, Ogilvie LA, Jones BV et al (2014) Identification of aminoglycoside and beta-lactam resistance genes from within an infant gut functional metagenomic library. PLoS One 9:e108016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Moore AM, Ahmadi S, Patel S et al (2015) Gut resistome development in healthy twin pairs in the first year of life. Microbiome 3:27

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yassour M, Vatanen T, Siljander H et al (2016) Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 8:343ra81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. von Wintersdorff CJH, Wolffs PFG, Savelkoul PHM et al (2016) The gut resistome is highly dynamic during the first months of life. Future Microbiol 11:501–510

    Article  CAS  Google Scholar 

  107. Ravi A, Avershina E, Foley SL et al (2015) The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons. Sci Rep 5:15317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work carried out in the authors’ laboratories on the early life microbiota is founded by the EU Joint Programming Initiative—A Healthy Diet for a Healthy Life (JPI HDHL, http://www.healthydietforhealthylife.eu/) and the Spanish Ministry of Economy and Competitiveness (MINECO) (Project EarlyMicroHealth). The Grant GRUPIN14-043 from “Plan Regional de Investigación del Principado de Asturias” is also acknowledged. A. M. N. is the recipient of a JPI predoctoral fellowship and N. S. benefits from a JdC contract, from the Spanish Ministry of Economy and Competitiveness (MINECO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Gueimonde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogacka, A.M., Salazar, N., Arboleya, S. et al. Early microbiota, antibiotics and health. Cell. Mol. Life Sci. 75, 83–91 (2018). https://doi.org/10.1007/s00018-017-2670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2670-2

Keywords

Navigation