Skip to main content

Advertisement

Log in

Cellular and molecular mechanisms of HIV-1 integration targeting

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Integration is central to HIV-1 replication and helps mold the reservoir of cells that persists in AIDS patients. HIV-1 interacts with specific cellular factors to target integration to interior regions of transcriptionally active genes within gene-dense regions of chromatin. The viral capsid interacts with several proteins that are additionally implicated in virus nuclear import, including cleavage and polyadenylation specificity factor 6, to suppress integration into heterochromatin. The viral integrase protein interacts with transcriptional co-activator lens epithelium-derived growth factor p75 to principally position integration within gene bodies. The integrase additionally senses target DNA distortion and nucleotide sequence to help fine-tune the specific phosphodiester bonds that are cleaved at integration sites. Research into virus–host interactions that underlie HIV-1 integration targeting has aided the development of a novel class of integrase inhibitors and may help to improve the safety of viral-based gene therapy vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PIC:

Preintegration complex

MoMLV:

Moloney murine leukemia virus

LEDGF:

Lens epithelium-derived growth factor

CPSF6:

Cleavage and polyadenylation specificity factor 6

RNAi:

RNA interference

MLL:

Mixed-lineage leukemia

HDGF:

Hepatoma-derived growth factor

HRP:

HDGF-related protein

HDGFL:

HDGF like

CR:

Charged regions

IBD:

Integrase-binding domain

PHAT:

Pseudo HEAT repeat analogous topology

NTD:

N-terminal domain

CCD:

Catalytic core domain

CTD:

C-terminal domain

PHD:

Plant homeodomain

SMARCB1:

SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily B, member 1

INI1:

Integrase interactor 1

NPC:

Nuclear pore complex

NUP:

Nucleoporin

CYPA:

Cyclophilin A

RNP:

Ribonucleoprotein

RRM:

RNA recognition motif

PRD:

Pro-rich domain

RSLD:

RS-like domain

IN:

Integrase

GFP:

Green fluorescent protein

NLS:

Nuclear localization signal

CFIm:

Cleavage factor I mammalian

ChIP-Seq:

Chromatin-immunoprecipitation sequencing

Y:

Pyrimidine

R:

Purine

LEDGIN:

LEDGF/p75-integrase interaction site

ALLINI:

Allosteric integrase inhibitor

NCINI:

Non-catalytic site integrase inhibitor

INLAI:

Integrase-LEDGF allosteric inhibitor

MDM:

Monocyte-derived macrophages

LRA:

Latency-reversing agent

PDB:

Protein database

TNPO1:

Transportin 1

TNPO3:

Transportin 3

CA:

Capsid

References

  1. Fassati A, Goff SP (1999) Characterization of intracellular reverse transcription complexes of Moloney murine leukemia virus. J Virol 73:8919–8925

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Bowerman B, Brown PO, Bishop JM, Varmus HE (1989) A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 3:469–478

    Article  PubMed  CAS  Google Scholar 

  3. Miller MD, Farnet CM, Bushman FD (1997) Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 71:5382–5390

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Wei SQ, Mizuuchi K, Craigie R (1997) A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J 16:7511–7520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chen H, Wei S-Q, Engelman A (1999) Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome. J Biol Chem 274:17358–17364

    Article  PubMed  CAS  Google Scholar 

  6. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ballandras-Colas A, Maskell DP, Serrao E, Locke J, Swuec P, Jonsson SR, Kotecha A, Cook NJ, Pye VE, Taylor IA, Andresdottir V, Engelman AN, Costa A, Cherepanov P (2017) A supramolecular assembly mediates lentiviral DNA integration. Science 355:93–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Passos DO, Li M, Yang R, Regensburg S, Ghirlando R, Jeon Y, Kvaratskhelia M, Craigie R, Lyumkis D (2017) CryoEM structures and atomic model of the HIV-1 strand transfer complex intasome. Science 355:89–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Engelman AN, Cherepanov P (2017) Retroviral intasomes arising. Curr Opin Struct Biol 47:23–29

    Article  PubMed  CAS  Google Scholar 

  10. Katzman M, Katz RA, Skalka AM, Leis J (1989) The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J Virol 63:5319–5327

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Roth MJ, Schwartzberg PL, Goff SP (1989) Structure of the termini of DNA intermediates in the integration of retroviral DNA: dependence on IN function and terminal DNA sequence. Cell 58:47–54

    Article  PubMed  CAS  Google Scholar 

  12. Craigie R, Fujiwara T, Bushman F (1990) The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62:829–837

    Article  PubMed  CAS  Google Scholar 

  13. Sherman PA, Fyfe JA (1990) Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity. Proc Natl Acad Sci USA 87:5119–5123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Engelman A, Mizuuchi K, Craigie R (1991) HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221

    Article  PubMed  CAS  Google Scholar 

  15. Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P (2010) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci USA 107:20057–20062

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lesbats P, Engelman AN, Cherepanov P (2016) Retroviral DNA integration. Chem Rev 116:12730–12757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kvaratskhelia M, Sharma A, Larue RC, Serrao E, Engelman A (2014) Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res 42:10209–10225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Craigie R, Bushman FD (2014) Host factors in retroviral integration and the selection of integration target sites. Microbiol Spectr 2:6

    Google Scholar 

  19. Demeulemeester J, Rijck JD, Gijsbers R, Debyser Z (2015) Retroviral integration: site matters: mechanisms and consequences of retroviral integration site selection. BioEssays 37:1202–1214

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schroder ARW, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529

    Article  PubMed  CAS  Google Scholar 

  21. Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    Article  PubMed  CAS  Google Scholar 

  22. LaFave MC, Varshney GK, Gildea DE, Wolfsberg TG, Baxevanis AD, Burgess SM (2014) MLV integration site selection is driven by strong enhancers and active promoters. Nucleic Acids Res 42:4257–4269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. De Ravin SS, Su L, Theobald N, Choi U, Macpherson JL, Poidinger M, Symonds G, Pond SM, Ferris AL, Hughes SH, Malech HL, Wu X (2014) Enhancers are major targets for murine leukemia virus vector integration. J Virol 88:4504–4513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sowd GA, Serrao E, Wang H, Wang W, Fadel HJ, Poeschla EM, Engelman AN (2016) A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc Natl Acad Sci USA 113:E1054–E1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, De Clercq E, Debyser Z (2003) HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278:372–381

    Article  PubMed  CAS  Google Scholar 

  27. Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, Julias JG, Vandegraaff N, Baumann JG, Wang R, Yuen W, Takemura T, Shelton K, Taniuchi I, Li Y, Sodroski J, Littman DR, Coffin JM, Hughes SH, Unutmaz D, Engelman A, KewalRamani VN (2010) Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 7:221–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Pryciak PM, Varmus HE (1992) Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69:769–780

    Article  PubMed  CAS  Google Scholar 

  29. Pruss D, Bushman FD, Wolffe AP (1994) Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc Natl Acad Sci USA 91:5913–5917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pruss D, Reeves R, Bushman FD, Wolffe AP (1994) The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J Biol Chem 269:25031–25041

    PubMed  CAS  Google Scholar 

  31. Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD (2007) HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 17:1186–1194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Benleulmi MS, Matysiak J, Henriquez DR, Vaillant C, Lesbats P, Calmels C, Naughtin M, Leon O, Skalka AM, Ruff M, Lavigne M, Andreola ML, Parissi V (2015) Intasome architecture and chromatin density modulate retroviral integration into nucleosome. Retrovirology 12:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Naughtin M, Haftek-Terreau Z, Xavier J, Meyer S, Silvain M, Jaszczyszyn Y, Levy N, Miele V, Benleulmi MS, Ruff M, Parissi V, Vaillant C, Lavigne M (2015) DNA physical properties and nucleosome positions are major determinants of HIV-1 integrase selectivity. PLoS One 10:e0129427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Holman AG, Coffin JM (2005) Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc Natl Acad Sci USA 102:6103–6107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wu X, Li Y, Crise B, Burgess SM, Munroe DJ (2005) Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J Virol 79:5211–5214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Serrao E, Krishnan L, Shun MC, Li X, Cherepanov P, Engelman A, Maertens GN (2014) Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Nucleic Acids Res 42:5164–5176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Serrao E, Ballandras-Colas A, Cherepanov P, Maertens GN, Engelman AN (2015) Key determinants of target DNA recognition by retroviral intasomes. Retrovirology 12:39

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kirk PDW, Huvet M, Melamed A, Maertens GN, Bangham CRM (2016) Retroviruses integrate into a shared, non-palindromic DNA motif. Nat Microbiol 2:16212

    Article  PubMed  CAS  Google Scholar 

  39. Albanese A, Arosio D, Terreni M, Cereseto A (2008) HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery. PLoS One 3:e2413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Burdick RC, Hu W-S, Pathak VK (2013) Nuclear import of APOBEC3F-labeled HIV-1 preintegration complexes. Proc Natl Acad Sci USA 110:E4780–E4789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Di Primio C, Quercioli V, Allouch A, Gijsbers R, Christ F, Debyser Z, Arosio D, Cereseto A (2013) Single-cell imaging of HIV-1 provirus (SCIP). Proc Natl Acad Sci USA 110:5636–5641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lelek M, Casartelli N, Pellin D, Rizzi E, Souque P, Severgnini M, Di Serio C, Fricke T, Diaz-Griffero F, Zimmer C, Charneau P, Di Nunzio F (2015) Chromatin organization at the nuclear pore favours HIV replication. Nat Commun 6:6483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Marini B, Kertesz-Farkas A, Ali H, Lucic B, Lisek K, Manganaro L, Pongor S, Luzzati R, Recchia A, Mavilio F, Giacca M, Lusic M (2015) Nuclear architecture dictates HIV-1 integration site selection. Nature 521:227–231

    Article  PubMed  CAS  Google Scholar 

  44. Bushman FD, Craigie R (1991) Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proc Natl Acad Sci USA 88:1339–1343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, Hoffmann C (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3:848–858

    Article  PubMed  CAS  Google Scholar 

  46. Engelman A (2005) The ups and downs of gene expression and retroviral DNA integration. Proc Natl Acad Sci USA 102:1275–1276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Engelman A (2007) Host cell factors and HIV-1 integration. Future HIV Ther 1:415–426

    Article  CAS  Google Scholar 

  48. Christ F, Thys W, De Rijck J, Gijsbers R, Albanese A, Arosio D, Emiliani S, Rain JC, Benarous R, Cereseto A, Debyser Z (2008) Transportin-SR2 imports HIV into the nucleus. Curr Biol 18:1192–1202

    Article  PubMed  CAS  Google Scholar 

  49. Huang L, G-l Xu, J-q Zhang, Tian L, J-l Xue, J-z Chen, Jia W (2008) Daxx interacts with HIV-1 integrase and inhibits lentiviral gene expression. Biochem Biophys Res Commun 373:241–245

    Article  PubMed  CAS  Google Scholar 

  50. Studamire B, Goff SP (2008) Host proteins interacting with the Moloney murine leukemia virus integrase: multiple transcriptional regulators and chromatin binding factors. Retrovirology 5:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Woodward CL, Prakobwanakit S, Mosessian S, Chow SA (2009) Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1. J Virol 83:6522–6533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. J-q Zhang, J-j Wang, W-j Li, Huang L, Tian L, J-l Xue, J-z Chen, Jia W (2009) Cellular protein TTRAP interacts with HIV-1 integrase to facilitate viral integration. Biochem Biophys Res Commun 387:256–260

    Article  CAS  Google Scholar 

  53. Ao Z, Danappa Jayappa K, Wang B, Zheng Y, Kung S, Rassart E, Depping R, Kohler M, Cohen EA, Yao X (2010) Importin α3 interacts with HIV-1 integrase and contributes to HIV-1 nuclear import and replication. J Virol 84:8650–8663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Manganaro L, Lusic M, Gutierrez MI, Cereseto A, Del Sal G, Giacca M (2010) Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T lymphocytes. Nat Med 16:329–333

    Article  PubMed  CAS  Google Scholar 

  55. Terreni M, Valentini P, Liverani V, Gutierrez MI, Di Primio C, Di Fenza A, Tozzini V, Allouch A, Albanese A, Giacca M, Cereseto A (2010) GCN5-dependent acetylation of HIV-1 integrase enhances viral integration. Retrovirology 7:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Allouch A, Cereseto A (2011) Identification of cellular factors binding to acetylated HIV-1 integrase. Amino Acids 41:1137–1145

    Article  PubMed  CAS  Google Scholar 

  57. Allouch A, Di Primio C, Alpi E, Lusic M, Arosio D, Giacca M, Cereseto A (2011) The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe 9:484–495

    Article  PubMed  CAS  Google Scholar 

  58. Kobbi L, Octobre G, Dias J, Comisso M, Mirande M (2011) Association of mitochondrial lysyl-tRNA synthetase with HIV-1 GagPol involves catalytic domain of the synthetase and transframe and integrase domains of Pol. J Mol Biol 410:875–886

    Article  PubMed  CAS  Google Scholar 

  59. Sorin M, Cano J, Das S, Mathew S, Wu X, Davies KP, Shi X, Cheng SW, Ott D, Kalpana GV (2011) Recruitment of a SAP18-HDAC1 complex into HIV-1 virions and its requirement for viral replication. PLoS Pathog 5:e1000463

    Article  CAS  Google Scholar 

  60. Yamamoto SP, Okawa K, Nakano T, Sano K, Ogawa K, Masuda T, Morikawa Y, Koyanagi Y, Suzuki Y (2011) Huwe1, a novel cellular interactor of Gag-Pol through integrase binding, negatively influences HIV-1 infectivity. Microbes Infect 13:339–349

    Article  PubMed  CAS  Google Scholar 

  61. Zheng Y, Ao Z, Wang B, Jayappa KD, Yao X (2011) Host protein Ku70 binds and protects HIV-1 integrase from proteasomal degradation and is required for HIV replication. J Biol Chem 286:17722–17735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ao Z, Jayappa KD, Wang B, Zheng Y, Wang X, Peng J, Yao X (2012) Contribution of host nucleoporin 62 in HIV-1 integrase chromatin association and viral DNA integration. J Biol Chem 287:10544–10555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, Hernandez H, Jang GM, Roth SL, Akiva E, Marlett J, Stephens M, D’Orso I, Fernandes J, Fahey M, Mahon C, O’Donoghue AJ, Todorovic A, Morris JH, Maltby DA, Alber T, Cagney G, Bushman FD, Young JA, Chanda SK, Sundquist WI, Kortemme T, Hernandez RD, Craik CS, Burlingame A, Sali A, Frankel AD, Krogan NJ (2012) Global landscape of HIV-human protein complexes. Nature 481:365–370

    Article  CAS  Google Scholar 

  64. Matysiak J, Lesbats P, Mauro E, Lapaillerie D, Dupuy J-W, Lopez AP, Benleulmi MS, Calmels C, Andreola M-L, Ruff M, Llano M, Delelis O, Lavigne M, Parissi V (2017) Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration. Retrovirology 14:39

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ako-Adjei D, Fu W, Wallin C, Katz KS, Song G, Darji D, Brister JR, Ptak RG, Pruitt KD (2015) HIV-1, human interaction database: current status and new features. Nucleic Acids Res 43:D566–D570

    Article  PubMed  CAS  Google Scholar 

  66. Vandekerckhove L, Christ F, Van Maele B, De Rijck J, Gijsbers R, Van den Haute C, Witvrouw M, Debyser Z (2006) Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J Virol 80:1886–1896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zielske SP, Stevenson M (2006) Modest but reproducible inhibition of human immunodeficiency virus type 1 infection in macrophages following LEDGFp75 silencing. J Virol 80:7275–7280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Llano M, Vanegas M, Fregoso O, Saenz D, Chung S, Peretz M (2004) LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 78:9524–9537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Vandegraaff N, Devroe E, Turlure F, Silver PA, Engelman A (2006) Biochemical and genetic analyses of integrase-interacting proteins lens epithelium-derived growth factor (LEDGF)/p75 and hepatoma-derived growth factor related protein 2 (HRP2) in preintegration complex function and HIV-1 replication. Virology 346:415–426

    Article  PubMed  CAS  Google Scholar 

  70. Llano M, Saenz DT, Meehan A, Wongthida P, Peretz M, Walker WH, Teo W, Poeschla EM (2006) An essential role for LEDGF/p75 in HIV integration. Science 314:461–464

    Article  PubMed  CAS  Google Scholar 

  71. Marshall HM, Ronen K, Berry C, Llano M, Sutherland H, Saenz D, Bickmore W, Poeschla E, Bushman FD (2007) Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS One 2:e1340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Shun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S, Kellam P, Cherepanov P, Engelman A (2007) LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev 21:1767–1778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Schrijvers R, De Rijck J, Demeulemeester J, Adachi N, Vets S, Ronen K, Christ F, Bushman FD, Debyser Z, Gijsbers R (2012) LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog 8:e1002558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wang H, Jurado KA, Wu X, Shun MC, Li X, Ferris AL, Smith SJ, Patel PA, Fuchs JR, Cherepanov P, Kvaratskhelia M, Hughes SH, Engelman A (2012) HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor. Nucleic Acids Res 40:11518–11530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Fadel HJ, Morrison JH, Saenz DT, Fuchs JR, Kvaratskhelia M, Ekker SC, Poeschla EM (2014) TALEN knockout of the PSIP1 gene in human cells: analyses of HIV-1 replication and allosteric integrase inhibitor mechanism. J Virol 88:9704–9717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Hultquist JF, Schumann K, Woo JM, Manganaro L, McGregor MJ, Doudna J, Simon V, Krogan NJ, Marson A (2016) A Cas9 ribonucleoprotein platform for functional genetic studies of HIV-host interactions in primary human T cells. Cell Rep 17:1438–1452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289

    Article  PubMed  CAS  Google Scholar 

  78. Schrijvers R, Vets S, De Rijck J, Malani N, Bushman FD, Debyser Z, Gijsbers R (2012) HRP-2 determines HIV-1 integration site selection in LEDGF/p75 depleted cells. Retrovirology 9:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Singh PK, Plumb MR, Ferris AL, Iben JR, Wu X, Fadel HJ, Luke BT, Esnault C, Poeschla EM, Hughes SH, Kvaratskhelia M, Levin HL (2015) LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes. Genes Dev 29:2287–2297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ge H, Si Y, Roeder RG (1998) Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17:6723–6729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ge H, Si Y, Wolffe AP (1998) A novel transcriptional coactivator, p52, functionally interacts with the essential splicing factor ASF/SF2. Mol Cell 2:751–759

    Article  PubMed  CAS  Google Scholar 

  82. Morchikh M, Naughtin M, Di Nunzio F, Xavier J, Charneau P, Jacob Y, Lavigne M (2013) TOX4 and NOVA1 proteins are partners of the LEDGF PWWP domain and affect HIV-1 replication. PLoS One 7:e1001280

    Google Scholar 

  83. Daugaard M, Baude A, Fugger K, Povlsen LK, Beck H, Sorensen CS, Petersen NH, Sorensen PH, Lukas C, Bartek J, Lukas J, Rohde M, Jaattela M (2012) LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol 19:803–810

    Article  PubMed  CAS  Google Scholar 

  84. Yokoyama A, Cleary ML (2008) Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14:36–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Čermáková K, Tesina P, Demeulemeester J, El Ashkar S, Méreau H, Schwaller J, Řezáčová P, Veverka V, De Rijck J (2014) Validation and structural characterization of the LEDGF/p75–MLL interface as a new target for the treatment of MLL-dependent leukemia. Cancer Res 74:5139–5151

    Article  PubMed  CAS  Google Scholar 

  86. Murai MJ, Pollock J, He S, Miao H, Purohit T, Yokom A, Hess JL, Muntean AG, Grembecka J, Cierpicki T (2014) The same site on the integrase-binding domain of lens epithelium–derived growth factor is a therapeutic target for MLL leukemia and HIV. Blood 124:3730–3737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. El Ashkar S, Schwaller J, Pieters T, Goossens S, Demeulemeester J, Christ F, Van Belle S, Juge S, Boeckx N, Engelman A, Van Vlierberghe P, Debyser Z, De Rijck J (2018) LEDGF/p75 is dispensable for hematopoiesis but essential for MLL-rearranged leukemogenesis. Blood 131:95–107

    PubMed  PubMed Central  Google Scholar 

  88. Izumoto Y, Kuroda T, Harada H, Kishimoto T, Nakamura H (1997) Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun 238:26–32

    Article  PubMed  CAS  Google Scholar 

  89. Qin S, Min J (2014) Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci 39:536–547

    Article  PubMed  CAS  Google Scholar 

  90. Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA (2012) Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 8:e1002717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Eidahl JO, Crowe BL, North JA, McKee CJ, Shkriabai N, Feng L, Plumb M, Graham RL, Gorelick RJ, Hess S, Poirier MG, Foster MP, Kvaratskhelia M (2013) Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41:3924–3936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. van Nuland R, van Schaik FM, Simonis M, van Heesch S, Cuppen E, Boelens R, Timmers HM, van Ingen H (2013) Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics Chromatin 6:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Nishizawa Y, Usukura J, Singh DP, Chylack LTJ, Shinohara T (2001) Spatial and temporal dynamics of two alternatively spliced regulatory factors, lens epithelium-derived growth factor (ledgf/p75) and p52, in the nucleus. Cell Tissue Res 305:107–114

    Article  PubMed  CAS  Google Scholar 

  94. Maertens G, Cherepanov P, Pluymers W, Busschots K, De Clercq E, Debyser Z, Engelborghs Y (2003) LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 278:33528–33539

    Article  PubMed  CAS  Google Scholar 

  95. Llano M, Vanegas M, Hutchins N, Thompson D, Delgado S, Poeschla EM (2006) Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75. J Mol Biol 360:760–773

    Article  PubMed  CAS  Google Scholar 

  96. Turlure F, Maertens G, Rahman S, Cherepanov P, Engelman A (2006) A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo. Nucleic Acids Res 34:1653–1665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Tsutsui KM, Sano K, Hosoya O, Miyamoto T, Tsutsui K (2011) Nuclear protein LEDGF/p75 recognizes supercoiled DNA by a novel DNA-binding domain. Nucleic Acids Res 39:5067–5081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Busschots K, Vercammen J, Emiliani S, Benarous R, Engelborghs Y, Christ F, Debyser Z (2005) The interaction of LEDGF/p75 with integrase Is lentivirus-specific and promotes DNA binding. J Biol Chem 280:17841–17847

    Article  PubMed  CAS  Google Scholar 

  99. Cherepanov P (2007) LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro. Nucleic Acids Res 35:113–124

    Article  PubMed  CAS  Google Scholar 

  100. Cherepanov P, Devroe E, Silver PA, Engelman A (2004) Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J Biol Chem 279:48883–48892

    Article  PubMed  CAS  Google Scholar 

  101. Cherepanov P, Sun Z-YJ, Rahman S, Maertens G, Wagner G, Engelman A (2005) Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat Struct Mol Biol 12:526–532

    Article  PubMed  CAS  Google Scholar 

  102. Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A (2005) Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci USA 102:17308–17313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Hare S, Shun MC, Gupta SS, Valkov E, Engelman A, Cherepanov P (2009) A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75. PLoS Pathog 5:e1000259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wang H, Shun MC, Li X, Di Nunzio F, Hare S, Cherepanov P, Engelman A (2014) Efficient transduction of LEDGF/p75 mutant cells by gain-of-function HIV-1 integrase mutant viruses. Mol Ther Methods Clin Dev 1:2

    Article  PubMed Central  CAS  Google Scholar 

  105. Shun M-C, Botbol Y, Li X, Di Nunzio F, Daigle JE, Yan N, Lieberman J, Lavigne M, Engelman A (2008) Identification and characterization of PWWP domain residues critical for LEDGF/p75 chromatin binding and human immunodeficiency virus type 1 infectivity. J Virol 82:11555–11567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Tesina P, Čermáková K, Hořejší M, Procházková K, Fábry M, Sharma S, Christ F, Demeulemeester J, Debyser Z, Rijck JD, Veverka V, Řezáčová P (2015) Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif. Nat Commun 6:7968

    Article  PubMed  CAS  Google Scholar 

  107. Meehan AM, Saenz DT, Morrison JH, Garcia-Rivera JA, Peretz M, Llano M, Poeschla EM (2009) LEDGF/p75 proteins with alternative chromatin tethers are functional HIV-1 cofactors. PLoS Pathog 5:e1000522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Ferris AL, Wu X, Hughes CM, Stewart C, Smith SJ, Milne TA, Wang GG, Shun MC, Allis CD, Engelman A, Hughes SH (2010) Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc Natl Acad Sci USA 107:3135–3140

    Article  PubMed  PubMed Central  Google Scholar 

  109. Gijsbers R, Ronen K, Vets S, Malani N, De Rijck J, McNeely M, Bushman FD, Debyser Z (2010) LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol Ther 18:552–560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Silvers RM, Smith JA, Schowalter M, Litwin S, Liang Z, Geary K, Daniel R (2010) Modification of integration site preferences of an HIV-1-based vector by expression of a novel synthetic protein. Hum Gene Ther 21:337–349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Vranckx LS, Demeulemeester J, Debyser Z, Gijsbers R (2016) Towards a safer, more randomized lentiviral vector integration profile exploring artificial LEDGF chimeras. PLoS One 11:e0164167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, MacIntyre E, Dal Cortivo L, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky BH, Wintergerst U, Velez MC, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman FD, Fischer A, Cavazzana-Calvo M (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Desimmie BA, Weydert C, Schrijvers R, Vets S, Demeulemeester J, Proost P, Paron I, De Rijck J, Mast J, Bannert N, Gijsbers R, Christ F, Debyser Z (2015) HIV-1 IN/Pol recruits LEDGF/p75 into viral particles. Retrovirology 12:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Vets S, De Rijck J, Brendel C, Grez M, Bushman F, Debyser Z, Gijsbers R (2013) Transient expression of an LEDGF/p75 chimera retargets lentivector integration and functionally rescues in a model for X-CGD. Mol Ther Nucleic Acids 2:e77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kalpana G, Marmon S, Wang W, Crabtree G, Goff S (1994) Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266:2002–2006

    Article  PubMed  CAS  Google Scholar 

  116. Roberts CWM, Orkin SH (2004) The SWI/SNF complex—chromatin and cancer. Nat Rev Cancer 4:133–142

    Article  PubMed  CAS  Google Scholar 

  117. Lesbats P, Botbol Y, Chevereau G, Vaillant C, Calmels C, Arneodo A, Andreola ML, Lavigne M, Parissi V (2011) Functional coupling between HIV-1 integrase and the SWI/SNF chromatin remodeling complex for efficient in vitro integration into stable nucleosomes. PLoS Pathog 7:e1001280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Weinberg JB, Matthews TJ, Cullen BR, Malim MH (1991) Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med 174:1477–1482

    Article  PubMed  CAS  Google Scholar 

  119. Lewis P, Hensel M, Emerman M (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 11:3053–3058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Roe T, Reynolds TC, Yu G, Brown PO (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12:2099–2108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lewis PF, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68:510–516

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Matreyek KA, Engelman A (2013) Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 5:2483–2511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M (1992) Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA 89:6580–6584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Elis E, Ehrlich M, Prizan-Ravid A, Laham-Karam N, Bacharach E (2012) p12 tethers the murine leukemia virus pre-integration complex to mitotic chromosomes. PLoS Pathog 8:e1003103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Schneider WM, Brzezinski JD, Aiyer S, Malani N, Gyuricza M, Bushman FD, Roth MJ (2013) Viral DNA tethering domains complement replication-defective mutations in the p12 protein of MuLV Gag. Proc Natl Acad Sci USA 110:9487–9492

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yamashita M, Emerman M (2004) Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J Virol 78:5670–5678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S, Berry CC, Ecker JR, Bushman FD (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2:e60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Matreyek KA, Yucel SS, Li X, Engelman A (2013) Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog 9:e1003693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hue S, Fletcher AJ, Lee K, KewalRamani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ (2011) HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog 7:e1002439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Price AJ, Fletcher AJ, Schaller T, Elliott T, Lee K, KewalRamani VN, Chin JW, Towers GJ, James LC (2012) CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS Pathog 8:e1002896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73:1067–1078

    Article  PubMed  CAS  Google Scholar 

  132. Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP (1996) Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87:1285–1294

    Article  PubMed  CAS  Google Scholar 

  133. De Iaco A, Luban J (2014) Cyclophilin A promotes HIV-1 reverse transcription but its effect on transduction correlates best with its effect on nuclear entry of viral cDNA. Retrovirology 11:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, James LC, Towers GJ, Young JA, Chanda SK, Konig R, Malani N, Berry CC, Bushman FD (2011) HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog 7:e1001313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Di Nunzio F, Fricke T, Miccio A, Valle-Casuso JC, Perez P, Souque P, Rizzi E, Severgnini M, Mavilio F, Charneau P, Diaz-Griffero F (2013) Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology 440:8–18

    Article  PubMed  CAS  Google Scholar 

  136. Koh Y, Wu X, Ferris AL, Matreyek KA, Smith SJ, Lee K, KewalRamani VN, Hughes SH, Engelman A (2013) Differential effects of human immunodeficiency virus type 1 capsid and cellular factors nucleoporin 153 and LEDGF/p75 on the efficiency and specificity of viral DNA integration. J Virol 87:648–658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Di Nunzio F (2013) New insights in the role of nucleoporins: a bridge leading to concerted steps from HIV-1 nuclear entry until integration. Virus Res 178:187–196

    Article  PubMed  CAS  Google Scholar 

  139. Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG, Stout CD, Sundquist WI, Hill CP, Yeager M (2009) X-ray structures of the hexameric building block of the HIV capsid. Cell 137:1282–1292

    Article  PubMed  PubMed Central  Google Scholar 

  140. Pornillos O, Ganser-Pornillos BK, Yeager M (2011) Atomic-level modelling of the HIV capsid. Nature 469:424–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Sundquist WI, Kräusslich H-G (2012) HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2:a006924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Saito A, Henning MS, Serrao E, Dubose BN, Teng S, Huang J, Li X, Saito N, Roy SP, Siddiqui MA, Ahn J, Tsuji M, Hatziioannou T, Engelman AN, Yamashita M (2016) Capsid-CPSF6 interaction is dispensable for HIV-1 replication in primary cells but is selected during virus passage in vivo. J Virol 90:6918–6935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Bichel K, Price AJ, Schaller T, Towers GJ, Freund SM, James LC (2013) HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Retrovirology 10:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Lin DH, Zimmermann S, Stuwe T, Stuwe E, Hoelz A (2013) Structural and functional analysis of the C-terminal domain of Nup358/RanBP2. J Mol Biol 425:1318–1329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Yamashita M, Engelman AN (2017) Capsid-dependent host factors in HIV-1 infection. Trends Microbiol 25:741–755

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  146. Yokoyama N, Hayashi N, Seki T, Pante N, Ohba T, Nishii K, Kuma K, Hayashida T, Miyata T, Aebi U (1995) A giant nucleopore protein that binds Ran/TC4. Nature 376:184–188

    Article  PubMed  CAS  Google Scholar 

  147. Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E (1995) Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 270:14209–14213

    Article  PubMed  CAS  Google Scholar 

  148. Dharan A, Talley S, Tripathi A, Mamede JI, Majetschak M, Hope TJ, Campbell EM (2016) KIF5B and Nup358 cooperatively mediate the nuclear import of HIV-1 during infection. PLoS Pathog 12:e1005700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Roth SL, Malani N, Bushman FD (2011) Gammaretroviral integration into nucleosomal target DNA in vivo. J Virol 85:7393–7401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Maertens GN, Cook NJ, Wang W, Hare S, Gupta SS, Öztop I, Lee K, Pye VE, Cosnefroy O, Snijders AP, KewalRamani VN, Fassati A, Engelman A, Cherepanov P (2014) Structural basis for nuclear import of splicing factors by human Transportin 3. Proc Natl Acad Sci USA 111:2728–2733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Peng K, Muranyi W, Glass B, Laketa V, Yant SR, Tsai L, Cihlar T, Müller B, Kräusslich H-G (2014) Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. eLife 3:e04114

    Article  PubMed  PubMed Central  Google Scholar 

  152. Chin CR, Perreira JM, Savidis G, Portmann JM, Aker AM, Feeley EM, Smith MC, Brass AL (2015) Direct visualization of HIV-1 replication intermediates shows that capsid and CPSF6 modulate HIV-1 intra-nuclear invasion and integration. Cell Rep 13:1717–1731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. De Iaco A, Santoni F, Vannier A, Guipponi M, Antonarakis S, Luban J (2013) TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm. Retrovirology 10:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Fricke T, Valle-Casuso JC, White TE, Brandariz-Nuñez A, Bosche WJ, Reszka N, Gorelick R, Diaz-Griffero F (2013) The ability of TNPO3-depleted cells to inhibit HIV-1 infection requires CPSF6. Retrovirology 10:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Hori T, Takeuchi H, Saito H, Sakuma R, Inagaki Y, Yamaoka S (2013) A carboxy-terminally truncated human CPSF6 lacking residues encoded by exon 6 inhibits HIV-1 cDNA synthesis and promotes capsid disassembly. J Virol 87:7726–7736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Meehan AM, Saenz DT, Morrison J, Hu C, Peretz M, Poeschla EM (2011) LEDGF dominant interference proteins demonstrate prenuclear exposure of HIV-1 integrase and synergize with LEDGF depletion to destroy viral infectivity. J Virol 85:3570–3583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Yan N, Cherepanov P, Daigle JE, Engelman A, Lieberman J (2009) The SET complex acts as a barrier to autointegration of HIV-1. PLoS Pathog 5:e1000327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Gérard A, Soler N, Ségéral E, Belshan M, Emiliani S (2013) Identification of low molecular weight nuclear complexes containing integrase during the early stages of HIV-1 infection. Retrovirology 10:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Botbol Y, Raghavendra NK, Rahman S, Engelman A, Lavigne M (2008) Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro. Nucleic Acids Res 36:1237–1246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. McKee CJ, Kessl JJ, Shkriabai N, Dar MJ, Engelman A, Kvaratskhelia M (2008) Dynamic modulation of HIV-1 integrase structure and function by cellular lens epithelium-derived growth factor (LEDGF) protein. J Biol Chem 283:31802–31812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Zhyvoloup A, Melamed A, Anderson I, Planas D, Lee CH, Kriston-Vizi J, Ketteler R, Merritt A, Routy JP, Ancuta P, Bangham CRM, Fassati A (2017) Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation. PLoS Pathog 13:e1006460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Dettwiler S, Aringhieri C, Cardinale S, Keller W, Barabino SML (2004) Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. J Biol Chem 279:35788–35797

    Article  PubMed  CAS  Google Scholar 

  163. Lee K, Mulky A, Yuen W, Martin TD, Meyerson NR, Choi L, Yu H, Sawyer SL, Kewalramani VN (2012) HIV-1 capsid-targeting domain of cleavage and polyadenylation specificity factor 6. J Virol 86:3851–3860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Bhattacharya A, Alam SL, Fricke T, Zadrozny K, Sedzicki J, Taylor AB, Demeler B, Pornillos O, Ganser-Pornillos BK, Diaz-Griffero F, Ivanov DN, Yeager M (2014) Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc Natl Acad Sci USA 111:18625–18630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Price AJ, Jacques DA, McEwan WA, Fletcher AJ, Essig S, Chin JW, Halambage UD, Aiken C, James LC (2014) Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly. PLoS Pathog 10:e1004459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Lee BJ, Cansizoglu AE, Süel KE, Louis TH, Zhang Z, Chook YM (2006) Rules for nuclear localization sequence recognition by karyopherin beta2. Cell 126:543–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Rüegsegger U, Beyer K, Keller W (1996) Purification and characterization of human cleavage factor I involved in the 3′ end processing of messenger RNA precursors. J Biol Chem 271:6107–6113

    Article  PubMed  Google Scholar 

  168. Gruber AR, Martin G, Keller W, Zavolan M (2012) Cleavage factor Im is a key regulator of 3′ UTR length. RNA Biol 9:1405–1412

    Article  PubMed  CAS  Google Scholar 

  169. Martin G, Gruber AR, Keller W, Zavolan M (2012) Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length. Cell Rep 1:753–763

    Article  PubMed  CAS  Google Scholar 

  170. Yang Q, Coseno M, Gilmartin GM, Doublié S (2011) Crystal structure of a human cleavage factor CFIm25/CFIm68/RNA complex provides an insight into poly(A) site recognition and RNA looping. Structure 19:368–377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Rasheedi S, Shun M-C, Serrao E, Sowd GA, Qian J, Hao C, Dasgupta T, Engelman AN, Skowronski J (2016) The cleavage and polyadenylation specificity factor 6 (CPSF6) subunit of the capsid-recruited pre-messenger RNA cleavage factor I (CFIm) complex mediates HIV-1 integration into genes. J Biol Chem 291:11809–11819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Cardinale S, Cisterna B, Bonetti P, Aringhieri C, Biggiogera M, Barabino SML (2007) Subnuclear localization and dynamics of the pre-mRNA 3′ end processing factor mammalian cleavage factor I 68-kDa subunit. Mol Biol Cell 18:1282–1292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Katahira J, Okuzaki D, Inoue H, Yoneda Y, Maehara K, Ohkawa Y (2013) Human TREX component Thoc5 affects alternative polyadenylation site choice by recruiting mammalian cleavage factor I. Nucleic Acids Res 41:7060–7072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Lusic M, Siliciano RF (2016) Nuclear landscape of HIV-1 infection and integration. Nat Rev Microbiol 15:69–82

    Article  PubMed  CAS  Google Scholar 

  175. Vranckx LS, Demeulemeester J, Saleh S, Boll A, Vansant G, Schrijvers R, Weydert C, Battivelli E, Verdin E, Cereseto A, Christ F, Gijsbers R, Debyser Z (2016) LEDGIN-mediated inhibition of integrase–LEDGF/p75 interaction reduces reactivation of residual latent HIV. EBioMedicine 8:248–264

    Article  PubMed  PubMed Central  Google Scholar 

  176. Quercioli V, Di Primio C, Casini A, Mulder LCF, Vranckx LS, Borrenberghs D, Gijsbers R, Debyser Z, Cereseto A (2016) Comparative analysis of HIV-1 and murine leukemia virus three-dimensional nuclear distributions. J Virol 90:5205–5209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Burdick RC, Delviks-Frankenberry KA, Chen J, Janaka SK, Sastri J, Hu WS, Pathak VK (2017) Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes. PLoS Pathog 13:e1006570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Maertens GN, Hare S, Cherepanov P (2010) The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468:326–329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Johnson RC, Stella S, Heiss JK (2008) Bending and compaction of DNA by proteins. In: Rice PA, Correll CC (eds) Protein-nucleic acid interactions. RCS Publishing, London, pp 176–220

    Chapter  Google Scholar 

  180. Demeulemeester J, Vets S, Schrijvers R, Madlala P, De Maeyer M, De Rijck J, Ndung’u T, Debyser Z, Gijsbers R (2014) HIV-1 integrase variants retarget viral integration and are associated with disease progression in a chronic infection cohort. Cell Host Microbe 16:651–662

    Article  PubMed  CAS  Google Scholar 

  181. Maskell DP, Renault L, Serrao E, Lesbats P, Matadeen R, Hare S, Lindemann D, Engelman AN, Costa A, Cherepanov P (2015) Structural basis for retroviral integration into nucleosomes. Nature 523:366–369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. De Rijck J, Vandekerckhove L, Gijsbers R, Hombrouck A, Hendrix J, Vercammen J, Engelborghs Y, Christ F, Debyser Z (2006) Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication. J Virol 80:11498–11509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Fader LD, Malenfant E, Parisien M, Carson R, Bilodeau F, Landry S, Pesant M, Brochu C, Morin S, Chabot C, Halmos T, Bousquet Y, Bailey MD, Kawai SH, Coulombe R, LaPlante S, Jakalian A, Bhardwaj PK, Wernic D, Schroeder P, Amad M, Edwards P, Garneau M, Duan J, Cordingley M, Bethell R, Mason SW, Bös M, Bonneau P, Poupart MA, Faucher AM, Simoneau B, Fenwick C, Yoakim C, Tsantrizos Y (2014) Discovery of BI 224436, a noncatalytic site integrase inhibitor (NCINI) of HIV-1. ACS Med Chem Lett 5:422–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV, De Maeyer M, Chaltin P, Debyser Z (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6:442–448

    Article  PubMed  CAS  Google Scholar 

  185. Fenwick C, Amad M, Bailey MD, Bethell R, Bös M, Bonneau P, Cordingley M, Coulombe R, Duan J, Edwards P, Fader LD, Faucher AM, Garneau M, Jakalian A, Kawai S, Lamorte L, LaPlante S, Luo L, Mason S, Poupart MA, Rioux N, Schroeder P, Simoneau B, Tremblay S, Tsantrizos Y, Witvrouw M, Yoakim C (2014) Preclinical profile of BI 224436, a novel HIV-1 non-catalytic-site integrase inhibitor. Antimicrob Agents Chemother 58:3233–3244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Kessl JJ, Jena N, Koh Y, Taskent-Sezgin H, Slaughter A, Feng L, de Silva S, Wu L, Le Grice SF, Engelman A, Fuchs JR, Kvaratskhelia M (2012) Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 287:16801–16811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Balakrishnan M, Yant SR, Tsai L, O’Sullivan C, Bam RA, Tsai A, Niedziela-Majka A, Stray KM, Sakowicz R, Cihlar T (2013) Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS One 8:e74163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Le Rouzic E, Bonnard D, Chasset S, Bruneau JM, Chevreuil F, Le Strat F, Nguyen J, Beauvoir R, Amadori C, Brias J, Vomscheid S, Eiler S, Levy N, Delelis O, Deprez E, Saib A, Zamborlini A, Emiliani S, Ruff M, Ledoussal B, Moreau F, Benarous R (2013) Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Retrovirology 10:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Desimmie BA, Schrijvers R, Demeulemeester J, Borrenberghs D, Weydert C, Thys W, Vets S, Van Remoortel B, Hofkens J, De Rijck J, Hendrix J, Bannert N, Gijsbers R, Christ F, Debyser Z (2013) LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 10:57

    Article  PubMed  PubMed Central  Google Scholar 

  190. Jurado KA, Wang H, Slaughter A, Feng L, Kessl JJ, Koh Y, Wang W, Ballandras-Colas A, Patel PA, Fuchs JR, Kvaratskhelia M, Engelman A (2013) Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc Natl Acad Sci USA 110:8690–8695

    Article  PubMed  PubMed Central  Google Scholar 

  191. Gupta K, Brady T, Dyer BM, Malani N, Hwang Y, Male F, Nolte RT, Wang L, Velthuisen E, Jeffrey J, Van Duyne GD, Bushman FD (2014) Allosteric inhibition of human immunodeficiency virus integrase: late block during viral replication and abnormal multimerization involving specific protein domains. J Biol Chem 289:20477–20488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Sharma A, Slaughter A, Jena N, Feng L, Kessl JJ, Fadel HJ, Malani N, Male F, Wu L, Poeschla E, Bushman FD, Fuchs JR, Kvaratskhelia M (2014) A new class of multimerization selective inhibitors of HIV-1 integrase. PLoS Pathog 10:e1004171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. van Gent DC, Elgersma Y, Bolk MWJ, Vink C, Plasterk RHA (1991) DNA binding properties of the integrase proteins of human immunodeficiency viruses types 1 and 2. Nucleic Acids Res 19:3821–3827

    Article  PubMed  PubMed Central  Google Scholar 

  194. Engelman A, Bushman FD, Craigie R (1993) Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J 12:3269–3275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Vincent KA, Ellison V, Chow SA, Brown PO (1993) Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations. J Virol 67:425–437

    PubMed  PubMed Central  CAS  Google Scholar 

  196. Taddeo B, Carlini F, Verani P, Engelman A (1996) Reversion of a human immunodeficiency virus type 1 integrase mutant at a second site restores enzyme function and virus infectivity. J Virol 70:8277–8284

    PubMed  PubMed Central  CAS  Google Scholar 

  197. Hayouka Z, Rosenbluh J, Levin A, Loya S, Lebendiker M, Veprintsev D, Kotler M, Hizi A, Loyter A, Friedler A (2007) Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proc Natl Acad Sci USA 104:8316–8321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Hare S, Di Nunzio F, Labeja A, Wang J, Engelman A, Cherepanov P (2009) Structural basis for functional tetramerization of lentiviral integrase. PLoS Pathog 5:e1000515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Pandey KK, Bera S, Grandgenett DP (2011) The HIV-1 integrase monomer induces a specific interaction with LTR DNA for concerted integration. Biochemistry 50:9788–9796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Raghavendra NK, Engelman A (2007) LEDGF/p75 interferes with the formation of synaptic nucleoprotein complexes that catalyze full-site HIV-1 DNA integration in vitro: implications for the mechanism of viral cDNA integration. Virology 360:1–5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Kessl JJ, Li M, Ignatov M, Shkriabai N, Eidahl JO, Feng L, Musier-Forsyth K, Craigie R, Kvaratskhelia M (2011) FRET analysis reveals distinct conformations of IN tetramers in the presence of viral DNA or LEDGF/p75. Nucleic Acids Res 39:9009–9022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Feng L, Dharmarajan V, Serrao E, Hoyte A, Larue RC, Slaughter A, Sharma A, Plumb MR, Kessl JJ, Fuchs JR, Bushman FD, Engelman AN, Griffin PR, Kvaratskhelia M (2016) The competitive interplay between allosteric HIV-1 integrase inhibitor BI/D and LEDGF/p75 during the early stage of HIV-1 replication adversely affects inhibitor potency. ACS Chem Biol 11:1313–1321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Deng N, Hoyte A, Mansour YE, Mohamed MS, Fuchs JR, Engelman AN, Kvaratskhelia M, Levy R (2016) Allosteric HIV-1 integrase inhibitors promote aberrant protein multimerization by directly mediating inter-subunit interactions: structural and thermodynamic modeling studies. Protein Sci 25:1911–1917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Gupta K, Turkki V, Sherrill-Mix S, Hwang Y, Eilers G, Taylor L, McDanal C, Wang P, Temelkoff D, Nolte RT, Velthuisen E, Jeffrey J, Van Duyne GD, Bushman FD (2016) Structural basis for inhibitor-induced aggregation of HIV integrase. PLoS Biol 14:e1002584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, Hung M, Samuel D, Novikov N, Xu Y, Mitchell M, Guo H, Babaoglu K, Liu X, Geleziunas R, Sakowicz R (2012) New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J Biol Chem 287:21189–21203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Fontana J, Jurado KA, Cheng N, Ly NL, Fuchs JR, Gorelick RJ, Engelman AN, Steven AC (2015) Distribution and redistribution of HIV-1 nucleocapsid protein in immature, mature, and integrase-inhibited virions: a role for integrase in maturation. J Virol 89:9765–9780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Engelman A (1999) In vivo analysis of retroviral integrase structure and function. Adv Virus Res 52:411–426

    Article  PubMed  CAS  Google Scholar 

  208. Engelman A (2011) Pleiotropic nature of HIV-1 integrase mutations. In: Neamati N (ed) HIV-1 integrase: mechanism and inhibitor design. Wiley, Hoboken, pp 67–81

    Chapter  Google Scholar 

  209. Engelman A, Englund G, Orenstein JM, Martin MA, Craigie R (1995) Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 69:2729–2736

    PubMed  PubMed Central  CAS  Google Scholar 

  210. Johnson BC, Métifiot M, Ferris A, Pommier Y, Hughes SH (2013) A homology model of HIV-1 integrase and analysis of mutations designed to test the model. J Mol Biol 425:2133–2146

    Article  PubMed  CAS  Google Scholar 

  211. Madison MK, Lawson DQ, Elliott J, Ozantürk AN, Koneru PC, Townsend D, Errando M, Kvaratskhelia M, Kutluay SB (2017) Allosteric HIV-1 integrase inhibitors lead to premature degradation of the viral RNA genome and integrase in target cells. J Virol 91:e00821–00817

    Article  Google Scholar 

  212. Kessl JJ, Kutluay SB, Townsend D, Rebensburg S, Slaughter A, Larue RC, Shkriabai N, Bakouche N, Fuchs JR, Bieniasz PD, Kvaratskhelia M (2016) HIV-1 integrase binds the viral RNA genome and is essential during virion morphogenesis. Cell 166(1257–1268):e1212

    Google Scholar 

  213. Chun T-W, Stuyver L, Mizell SB, Ehler LA, Mican JAM, Baseler M, Lloyd AL, Nowak MA, Fauci AS (1997) Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 94:13193–13197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Chun TW, Fauci AS (2012) HIV reservoirs: pathogenesis and obstacles to viral eradication and cure. AIDS 26:1261–1268

    Article  PubMed  Google Scholar 

  215. Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, Hill S, Spindler J, Ferris AL, Mellors JW, Kearney MF, Coffin JM, Hughes SH (2014) Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345:179–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Wagner TA, McLaughlin S, Garg K, Cheung CY, Larsen BB, Styrchak S, Huang HC, Edlefsen PT, Mullins JI, Frenkel LM (2014) Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345:570–573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI, Lai J, Blankson JN, Siliciano JD, Siliciano RF (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155:540–551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Cohn LB, Silva IT, Oliveira TY, Rosales RA, Parrish EH, Learn GH, Hahn BH, Czartoski JL, McElrath MJ, Lehmann C, Klein F, Caskey M, Walker BD, Siliciano JD, Siliciano RF, Jankovic M, Nussenzweig MC (2015) HIV-1 integration landscape during latent and active infection. Cell 160:420–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Simonetti FR, Sobolewski MD, Fyne E, Shao W, Spindler J, Hattori J, Anderson EM, Watters SA, Hill S, Wu X, Wells D, Su L, Luke BT, Halvas EK, Besson G, Penrose KJ, Yang Z, Kwan RW, Van Waes C, Uldrick T, Citrin DE, Kovacs J, Polis MA, Rehm CA, Gorelick R, Piatak M, Keele BF, Kearney MF, Coffin JM, Hughes SH, Mellors JW, Maldarelli F (2016) Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci USA 113:1883–1888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Hughes SH, Coffin JM (2016) What integration sites tell us about HIV persistence. Cell Host Microbe 19:588–598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Darcis G, Van Driessche B, Van Lint C (2017) HIV latency: should we shock or lock? Trends Immunol 38:217–228

    Article  PubMed  CAS  Google Scholar 

  222. Chen HC, Martinez JP, Zorita E, Meyerhans A, Filion GJ (2017) Position effects influence HIV latency reversal. Nat Struct Mol Biol 24:47–54

    Article  PubMed  CAS  Google Scholar 

  223. Gres AT, Kirby KA, KewalRamani VN, Tanner JJ, Pornillos O, Sarafianos SG (2015) X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science 349:99–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Work in the corresponding author’s laboratory is funded by Grants AI039394 and AI052014 from the US National Institutes of Health. The authors thank Vasudevan Achuthan, Gregory Bedwell, and Sooin Jang for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan N. Engelman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelman, A.N., Singh, P.K. Cellular and molecular mechanisms of HIV-1 integration targeting. Cell. Mol. Life Sci. 75, 2491–2507 (2018). https://doi.org/10.1007/s00018-018-2772-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2772-5

Keywords

Navigation