Skip to main content

Advertisement

Log in

Drug repurposing to overcome resistance to various therapies for colorectal cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Emergence of novel treatment modalities provides effective therapeutic options, apart from conventional cytotoxic chemotherapy, to fight against colorectal cancer. Unfortunately, drug resistance remains a huge challenge in clinics, leading to invariable occurrence of disease progression after treatment initiation. While novel drug development is unfavorable in terms of time frame and costs, drug repurposing is one of the promising strategies to combat resistance. This approach refers to the application of clinically available drugs to treat a different disease. With the well-established safety profile and optimal dosing of these approved drugs, their combination with current cancer therapy is suggested to provide an economical, safe and efficacious approach to overcome drug resistance and prolong patient survival. Here, we review both preclinical and clinical efficacy, as well as cellular mechanisms, of some extensively studied repurposed drugs, including non-steroidal anti-inflammatory drugs, statins, metformin, chloroquine, disulfiram, niclosamide, zoledronic acid and angiotensin receptor blockers. The three major treatment modalities in the management of colorectal cancer, namely classical cytotoxic chemotherapy, molecular targeted therapy and immunotherapy, are covered in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARB:

Angiotensin II receptor blockers

CAF:

Cancer-associated fibroblast

CXCL-12:

Chemokine (C-X-C motif) ligand 12

DC:

Dendritic cells

gp70:

An envelope protein of an endogenous ecotropic murine leukemia virus

IL-6:

Interleukin 6

IFN-γ:

Interferon-gamma

MDSC:

Myeloid-derived suppressing cells

NK cells:

Natural killer cells

NOS-2:

Nitric oxide synthase 2

TAM:

Tumor-associated macrophages

TEM:

Effector memory T cells

Treg:

Regulatory T cells

VEGF:

Vascular endothelial growth factor

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2016) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66:683–691. https://doi.org/10.1136/gutjnl-2015-310912

    Article  PubMed  Google Scholar 

  3. Cunningham D, Atkin W, Lenz HJ et al (2010) Colorectal cancer. Lancet 375:1030–1047. https://doi.org/10.1016/S0140-6736(10)60353-4

    Article  PubMed  Google Scholar 

  4. Labianca R, Nordlinger B, Beretta GD et al (2013) Early colon cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 24:64–72. https://doi.org/10.1093/annonc/mdt354

    Article  Google Scholar 

  5. Benson AB 3rd, Venook AP, Al-Hawary MM et al (2018) Rectal cancer, version 2.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 16:874–901. https://doi.org/10.6004/jnccn.2018.0061

    Article  PubMed  Google Scholar 

  6. Benson AB 3rd, Venook AP, Cederquist L et al (2017) Colon cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 15:370–398. https://doi.org/10.6004/jnccn.2017.0036

    Article  CAS  PubMed  Google Scholar 

  7. Shinagawa T, Tanaka T, Nozawa H et al (2017) Comparison of the guidelines for colorectal cancer in Japan, the USA and Europe. Ann Gastroenterol Surg 2:6–12. https://doi.org/10.1002/ags3.12047

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hammond WA, Swaika A, Mody K (2016) Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol 8:57–84. https://doi.org/10.1177/1758834015614530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ng K, Zhu AX (2008) Targeting the epidermal growth factor receptor in metastatic colorectal cancer. Crit Rev Oncol Hematol 65:8–20. https://doi.org/10.1016/j.critrevonc.2007.09.006

    Article  PubMed  Google Scholar 

  10. Pabla B, Bissonnette M, Konda VJ (2015) Colon cancer and the epidermal growth factor receptor: current treatment paradigms, the importance of diet, and the role of chemoprevention. World J Clin Oncol 6:133–141. https://doi.org/10.5306/wjco.v6.i5.133

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miyamoto Y, Suyama K, Baba H (2017) Recent advances in targeting the EGFR signaling pathway for the treatment of metastatic colorectal cancer. Int J Mol Sci 18:752. https://doi.org/10.3390/ijms18040752

    Article  CAS  PubMed Central  Google Scholar 

  12. Van Cutsem E, Cervantes A, Nordlinger B, Arnold D (2014) ESMO Guidelines Working Group. Metastatic colorectal cancer ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25:1–9. https://doi.org/10.1093/annonc/mdu260

    Article  Google Scholar 

  13. Fan F, Wey JS, McCarty MF et al (2005) Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 24:2647–2653. https://doi.org/10.1038/sj.onc.1208246

    Article  CAS  PubMed  Google Scholar 

  14. Sun W (2012) Angiogenesis in metastatic colorectal cancer and the benefits of targeted therapy. J Hematol Oncol 5:63. https://doi.org/10.1186/1756-8722-5-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalyan A, Kircher S, Shah H, Mulcahy M, Benson A (2018) Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol 9:160–169. https://doi.org/10.21037/jgo.2018.01.17

    Article  PubMed  PubMed Central  Google Scholar 

  16. Granier C, De Guillebon E, Blanc C et al (2017) Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open 2:e000213. https://doi.org/10.1136/esmoopen-2017-000213

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118:9–16. https://doi.org/10.1038/bjc.2017.434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martini G, Troiani T, Cardone C et al (2017) Present and future of metastatic colorectal cancer treatment: a review of new candidate targets. World J Gastroenterol 23:4675–4688. https://doi.org/10.3748/wjg.v23.i26.4675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tampellini M, Sonetto C, Scagliotti GV (2016) Novel anti-angiogenic therapeutic strategies in colorectal cancer. Expert Opin Investig Drugs 25:507–520. https://doi.org/10.1517/13543784.2016.1161754

    Article  CAS  PubMed  Google Scholar 

  20. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–723. https://doi.org/10.1016/j.cell.2017.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li W, Zhang H, Assaraf YG et al (2016) Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 27:14–29. https://doi.org/10.1016/j.drup.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  22. Zhao B, Wang L, Qiu H et al (2017) Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget 8:3980–4000. https://doi.org/10.18632/oncotarget.14012

    Article  PubMed  Google Scholar 

  23. de la Cueva A, Ramírez de Molina A, Alvarez-Ayerza N et al (2013) Combined 5-FU and ChoKα inhibitors as a new alternative therapy of colorectal cancer: evidence in human tumor-derived cell lines and mouse xenografts. PLoS One 8:e64961. https://doi.org/10.1371/journal.pone.0064961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mazard T, Causse A, Simony J et al (2013) Sorafenib overcomes irinotecan resistance in colorectal cancer by inhibiting the ABCG2 drug-efflux pump. Mol Cancer Ther 12:2121–2134. https://doi.org/10.1158/1535-7163.MCT-12-0966

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Bernards R (2018) Taking advantage of drug resistance, a new approach in the war on cancer. Front Med 12:490–495. https://doi.org/10.1007/s11684-018-0647-7

    Article  PubMed  Google Scholar 

  26. Hernandez JJ, Pryszlak M, Smith L et al (2017) Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front Oncol 7:273. https://doi.org/10.3389/fonc.2017.00273

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pushpakom S, Iorio F, Eyers PA et al (2018) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 5:10. https://doi.org/10.1038/nrd.2018.168

    Article  CAS  Google Scholar 

  28. Hu T, Li Z, Gao CY, Cao CH (2016) Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol 22:6876–6889. https://doi.org/10.3748/wjg.v22.i30.6876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dalton WS, Crowley JJ, Salmon SS et al (1995) A phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in patients with refractory myeloma. A Southwest Oncology Group study. Cancer 75:815–820. https://doi.org/10.1002/1097-0142(19950201)75:3%3c815:AID-CNCR1%3e3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  30. Pennock GD, Dalton WS, Roeske WR et al (1991) Systemic toxic effects associated with high-dose verapamil infusion and chemotherapy administration. J Natl Cancer Inst 83(2):105–110. https://doi.org/10.1093/jnci/83.2.105

    Article  CAS  PubMed  Google Scholar 

  31. Sonneveld P, Schoester M, de Leeuw K (1994) Clinical modulation of multidrug resistance in multiple myeloma: effect of cyclosporine on resistant tumor cells. J Clin Oncol 12:1584–1591. https://doi.org/10.1200/JCO.1994.12.8.1584

    Article  CAS  PubMed  Google Scholar 

  32. Murren JR, Durivage HJ, Buzaid AC et al (1996) Trifluoperazine as a modulator of multidrug resistance in refractory breast cancer. Cancer Chemother Pharmacol 38:65–70. https://doi.org/10.1007/s002800050449

    Article  CAS  PubMed  Google Scholar 

  33. Kathawala RJ, Gupta P, Ashby CR Jr, Chen ZS (2015) The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 18:1–17. https://doi.org/10.1016/j.drup.2014.11.002

    Article  PubMed  Google Scholar 

  34. Baer MR, George SL, Dodge RK et al (2002) Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: cancer and Leukemia Group B Study 9720. Blood 100:1224–1232

    CAS  PubMed  Google Scholar 

  35. Tamaki A, Ierano C, Szakacs G, Robey RW, Bates SE (2011) The controversial role of ABC transporters in clinical oncology. Essays Biochem 50:209–232. https://doi.org/10.1042/bse0500209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi Z, Tiwari AK, Shukla S et al (2011) Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Cancer Res 71:3029–3041. https://doi.org/10.1158/0008-5472.CAN-10-3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen JJ, Sun YL, Tiwari AK et al (2012) PDE5 inhibitors, sildenafil and vardenafil, reverse multidrug resistance by inhibiting the efflux function of multidrug resistance protein 7 (ATP-binding Cassette C10) transporter. Cancer Sci 103:1531–1537. https://doi.org/10.1111/j.1349-7006.2012.02328.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goard CA, Mather RG, Vinepal B et al (2010) Differential interactions between statins and P-glycoprotein: implications for exploiting statins as anticancer agents. Int J Cancer 127:2936–2948. https://doi.org/10.1002/ijc.25295

    Article  CAS  PubMed  Google Scholar 

  39. Huang L, Wang C, Zheng W, Liu R, Yang J, Tang C (2007) Effects of celecoxib on the reversal of multidrug resistance in human gastric carcinoma by downregulation of the expression and activity of P-glycoprotein. Anticancer Drugs 18(9):1075–1080. https://doi.org/10.1097/CAD.0b013e3281c49d7a

    Article  CAS  PubMed  Google Scholar 

  40. Rahman M, Selvarajan K, Hasan MR et al (2012) Inhibition of COX-2 in colon cancer modulates tumor growth and MDR-1 expression to enhance tumor regression in therapy-refractory cancers in vivo. Neoplasia 14:624–633. https://doi.org/10.1593/neo.12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang D, DuBois RN (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29:781–788. https://doi.org/10.1038/onc.2009.421

    Article  CAS  PubMed  Google Scholar 

  42. Patel VA, Dunn MJ, Sorokin A (2002) Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2. J Biol Chem 277:38915–38920. https://doi.org/10.1074/jbc.M206855200

    Article  CAS  PubMed  Google Scholar 

  43. Rana C, Piplani H, Vaish V, Nehru B, Sanyal SN (2015) Downregulation of PI3-K/Akt/PTEN pathway and activation of mitochondrial intrinsic apoptosis by Diclofenac and Curcumin in colon cancer. Mol Cell Biochem 402:225–241. https://doi.org/10.1007/s11010-015-2330-5

    Article  CAS  PubMed  Google Scholar 

  44. Moon CM, Kwon JH, Kim JS et al (2014) Nonsteroidal anti-inflammatory drugs suppress cancer stem cells via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1 and activating PPARG in colorectal cancer. Int J Cancer 134:519–529. https://doi.org/10.1002/ijc.28381

    Article  CAS  PubMed  Google Scholar 

  45. Gasparini G, Gattuso D, Morabito A et al (2005) Combined therapy with weekly irinotecan, infusional 5-fluorouracil and the selective COX-2 inhibitor rofecoxib is a safe and effective second-line treatment in metastatic colorectal cancer. Oncologist 10:710–717. https://doi.org/10.1634/theoncologist.10-9-710

    Article  CAS  PubMed  Google Scholar 

  46. Ng K, Meyerhardt JA, Chan AT et al (2014) Aspirin and COX-2 inhibitor use in patients with stage III colon cancer. J Natl Cancer Inst 107:345. https://doi.org/10.1093/jnci/dju345

    Article  CAS  PubMed  Google Scholar 

  47. El-Rayes BF, Zalupski MM, Manza SG et al (2008) Phase-II study of dose attenuated schedule of irinotecan, capecitabine, and celecoxib in advanced colorectal cancer. Cancer Chemother Pharmacol 61:283–289. https://doi.org/10.1007/s00280-007-0472-1

    Article  CAS  PubMed  Google Scholar 

  48. Chen EY, Blanke CD, Haller DG et al (2018) A phase II study of celecoxib with irinotecan, 5-fluorouracil, and leucovorin in patients with previously untreated advanced or metastatic colorectal cancer. Am J Clin Oncol 41:1193–1198. https://doi.org/10.1097/COC.0000000000000465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Y, Guan M, Zheng Z, Zhang Q, Gao F, Xue Y (2013) Effects of metformin on CD133 + colorectal cancer cells in diabetic patients. PLoS One 8:e81264. https://doi.org/10.1371/journal.pone.0081264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nangia-Makker P, Yu Y, Vasudevan A et al (2014) Metformin: a potential therapeutic agent for recurrent colon cancer. PLoS One 9:e84369. https://doi.org/10.1371/journal.pone.0084369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim SH, Kim SC, Ku JL (2017) Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget 8:56546–56557. https://doi.org/10.18632/oncotarget.17798

    Article  PubMed  PubMed Central  Google Scholar 

  52. Skinner HD, Crane CH, Garrett CR et al (2013) Metformin use and improved response to therapy in rectal cancer. Cancer Med 2:99–107. https://doi.org/10.1002/cam4.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Singh PP, Shi Q, Foster NR et al (2016) Relationship between metformin use and recurrence and survival in patients with resected stage III colon cancer receiving adjuvant chemotherapy: results from north central cancer treatment group N0147 (Alliance). Oncologist 21:1509–1521. https://doi.org/10.1634/theoncologist.2016-0153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bragagnoli A, Araujo R, Abdalla K et al (2018) Final results of a phase II of metformin plus irinotecan for refractory colorectal cancer. J Clin Oncol 36:e15527–e15528. https://doi.org/10.1200/JCO.2018.36.15_suppl.e15527

    Article  Google Scholar 

  55. Miranda VC, Braghiroli MI, Faria LD et al (2016) Phase 2 trial of metformin combined with 5-fluorouracil in patients with refractory metastatic colorectal cancer. Clin Colorectal Cancer 15:321–328. https://doi.org/10.1016/j.clcc.2016.04.011

    Article  PubMed  Google Scholar 

  56. Jang HJ, Hong EM, Jang J et al (2016) Synergistic effects of simvastatin and irinotecan against colon cancer cells with or without irinotecan resistance. Gastroenterol Res Pract 2016:7891374. https://doi.org/10.1155/2016/7891374

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kodach LL, Jacobs RJ, Voorneveld PW et al (2011) Statins augment the chemosensitivity of colorectal cancer cells inducing epigenetic reprogramming and reducing colorectal cancer cell ‘stemness’ via the bone morphogenetic protein pathway. Gut 60:1544–1553. https://doi.org/10.1136/gut.2011.237495

    Article  CAS  PubMed  Google Scholar 

  58. Wang W, Collie-Duguid E, Cassidy J (2002) Cerivastatin enhances the cytotoxicity of 5-fluorouracil on chemosensitive and resistant colorectal cancer cell lines. FEBS Lett 531:415–420. https://doi.org/10.1016/S0014-5793(02)03575-5

    Article  CAS  PubMed  Google Scholar 

  59. Jover R, Nguyen TP, Pérez-Carbonell L et al (2011) 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology 140:1174–1181. https://doi.org/10.1053/j.gastro.2010.12.035

    Article  CAS  PubMed  Google Scholar 

  60. Yuan J, Yin Z, Tao K, Wang G, Gao J (2018) Function of insulin-like growth factor 1 receptor in cancer resistance to chemotherapy. Oncol Lett 15:41–47. https://doi.org/10.3892/ol.2017.7276

    Article  CAS  PubMed  Google Scholar 

  61. Jang HJ, Hong EM, Park SW et al (2016) Statin induces apoptosis of human colon cancer cells and downregulation of insulin-like growth factor 1 receptor via proapoptotic ERK activation. Oncol Lett 12:250–256. https://doi.org/10.3892/ol.2016.4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ng K, Ogino S, Meyerhardt JA et al (2011) Relationship between statin use and colon cancer recurrence and survival: results from CALGB 89803. J Natl Cancer Inst 103:1540–1551. https://doi.org/10.1093/jnci/djr307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lim SH, Kim TW, Hong YS et al (2015) A randomised, double-blind, placebo-controlled multi-centre phase III trial of XELIRI/FOLFIRI plus simvastatin for patients with metastatic colorectal cancer. Br J Cancer 113:1421–1426. https://doi.org/10.1038/bjc.2015.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abdullah MI, de Wolf E, Jawad MJ, Richardson A (2018) The poor design of clinical trials of statins in oncology may explain their failure–lessons for drug repurposing. Cancer Treat Rev 69:84–89. https://doi.org/10.1016/j.ctrv.2018.06.010

    Article  PubMed  Google Scholar 

  65. Park D, Lee Y (2014) Biphasic activity of chloroquine in human colorectal cancer cells. Dev Reprod 18:225–231. https://doi.org/10.12717/devrep.2014.18.4.225

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sasaki K, Tsuno NH, Sunami E et al (2010) Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 10:370. https://doi.org/10.1186/1471-2407-10-370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Du B, Guo Y, Jin L, Xiong M, Liu D, Xi X (2017) Targeting autophagy promote the 5-fluorouracil induced apoptosis in human colon cancer cells. Int J Clin Exp Pathol 10:6071–6081

    CAS  Google Scholar 

  68. Selvakumaran M, Amaravadi RK, Vasilevskaya IA, O’Dwyer PJ (2013) Autophagy inhibition sensitizes colon cancer cells to antiangiogenic and cytotoxic therapy. Clin Cancer Res 19(11):2995–3007. https://doi.org/10.1158/1078-0432.CCR-12-1542

    Article  CAS  PubMed  Google Scholar 

  69. Sasaki K, Tsuno NH, Sunami E et al (2012) Resistance of colon cancer to 5-fluorouracil may be overcome by combination with chloroquine, an in vivo study. Anticancer Drugs 23:675–682. https://doi.org/10.1097/CAD.0b013e328353f8c7

    Article  CAS  PubMed  Google Scholar 

  70. Verbaanderd C, Maes H, Schaaf MB et al (2017) Repurposing Drugs in Oncology (ReDO)—chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience 11:781. https://doi.org/10.3332/ecancer.2017.781

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang W, McLeod HL, Cassidy J (2003) Disulfiram-mediated inhibition of NF-κB activity enhances cytotoxicity of 5-fluorouracil in human colorectal cancer cell lines. Int J Cancer 104:504–511. https://doi.org/10.1002/ijc.10972

    Article  CAS  PubMed  Google Scholar 

  72. Stenvang J, Keinicke H, Nielsen SL, Jandu H, Bartek J, Brünner N (2018) Repurposing disulfiram as a potential novel treatment of drug-resistant metastatic colorectal cancer. Mol Cancer Ther 17:A143. https://doi.org/10.1158/1535-7163.TARG-17-A143

    Article  Google Scholar 

  73. Guo X, Xu B, Pandey S et al (2010) Disulfiram/copper complex inhibiting NFκB activity and potentiating cytotoxic effect of gemcitabine on colon and breast cancer cell lines. Cancer Lett 290:104–113. https://doi.org/10.1016/j.canlet.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  74. Liu P, Kumar IS, Brown S et al (2013) Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br J Cancer 109:1876–1885. https://doi.org/10.1038/bjc.2013.534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cong J, Wang Y, Zhang X et al (2017) A novel chemoradiation targeting stem and nonstem pancreatic cancer cells by repurposing disulfiram. Cancer Lett 409:9–19. https://doi.org/10.1016/j.canlet.2017.08.028

    Article  CAS  PubMed  Google Scholar 

  76. Sforza V, Martinelli E, Ciardiello F et al (2016) Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer. World J Gastroenterol 22:6345–6361. https://doi.org/10.3748/wjg.v22.i28.6345

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shimoyama S (2011) Statins are logical candidates for overcoming limitations of targeting therapies on malignancy: their potential application to gastrointestinal cancers. Cancer Chemother Pharmacol 67:729–739. https://doi.org/10.1007/s00280-011-1583-2

    Article  CAS  PubMed  Google Scholar 

  78. Krens LL, Baas JM, Gelderblom H, Guchelaar H (2010) Therapeutic modulation of k-ras signaling in colorectal cancer. Drug Discov Today 15:502–516. https://doi.org/10.1016/j.drudis.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  79. Lee J, Lee I, Han B et al (2011) Effect of simvastatin on cetuximab resistance in human colorectal cancer with KRAS mutations. J Natl Cancer Inst 103:674–688. https://doi.org/10.1093/jnci/djr070

    Article  CAS  PubMed  Google Scholar 

  80. Boisvert-Adamo K, Aplin AE (2008) Mutant B-RAF mediates resistance to anoikis via Bad and Bim. Oncogene 27:3301–3312. https://doi.org/10.1038/sj.onc.1211003

    Article  CAS  PubMed  Google Scholar 

  81. Yu R, Longo J, van Leeuwen JE et al (2018) Statin-induced cancer cell death can be mechanistically uncoupled from prenylation of RAS family proteins. Cancer Res 78:1347–1357. https://doi.org/10.1158/0008-5472.CAN-17-1231

    Article  CAS  PubMed  Google Scholar 

  82. Baas JM, Krens LL, ten Tije AJ et al (2015) Safety and efficacy of the addition of simvastatin to cetuximab in previously treated KRAS mutant metastatic colorectal cancer patients. Invest New Drugs 33:1242–1247. https://doi.org/10.1007/s10637-015-0285-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baas JM, Krens LL, Bos MM et al (2015) Safety and efficacy of the addition of simvastatin to panitumumab in previously treated KRAS mutant metastatic colorectal cancer patients. Anticancer Drugs 26:872–877. https://doi.org/10.1097/CAD.0000000000000255

    Article  CAS  PubMed  Google Scholar 

  84. Krens LL, Simkens LH, Baas JM et al (2014) Statin use is not associated with improved progression free survival in cetuximab treated KRAS mutant metastatic colorectal cancer patients: results from the CAIRO2 study. PLoS One 9:e112201. https://doi.org/10.1371/journal.pone.0112201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee J, Hong YS, Hong JY et al (2014) Effect of simvastatin plus cetuximab/irinotecan for KRAS mutant colorectal cancer and predictive value of the RAS signature for treatment response to cetuximab. Invest New Drugs 32:535–541. https://doi.org/10.1007/s10637-014-0065-x

    Article  CAS  PubMed  Google Scholar 

  86. Loboda A, Nebozhyn M, Klinghoffer R et al (2010) A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Med Genom 3:26. https://doi.org/10.1186/1755-8794-3-26

    Article  CAS  Google Scholar 

  87. Ung N, Putoczki TL, Stylli SS et al (2014) Anti-EGFR therapeutic efficacy correlates directly with inhibition of STAT3 activity. Cancer Biol Ther 15:623–632. https://doi.org/10.4161/cbt.28179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shi L, Zheng H, Hu W et al (2017) Niclosamide inhibition of STAT3 synergizes with erlotinib in human colon cancer. Onco Targets Ther 10:1767–1776. https://doi.org/10.2147/OTT.S129449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li R, Hu Z, Sun SY et al (2013) Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer. Mol Cancer Ther 12:2200–2212. https://doi.org/10.1158/1535-7163.MCT-13-0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bonner JA, Yang ES, Trummell HQ, Nowsheen S, Willey CD, Raisch KP (2011) Inhibition of STAT-3 results in greater cetuximab sensitivity in head and neck squamous cell carcinoma. Radiother Oncol 99:339–343. https://doi.org/10.1016/j.radonc.2011.05.070

    Article  CAS  PubMed  Google Scholar 

  91. Sen M, Joyce S, Panahandeh M et al (2012) Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res 18:4986–4996. https://doi.org/10.1158/1078-0432.CCR-12-0792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lu Y, Zhao X, Liu Q et al (2017) lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med 23:1331–1341. https://doi.org/10.1038/nm.4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Monin MB, Krause P, Stelling R et al (2016) The anthelmintic niclosamide inhibits colorectal cancer cell lines via modulation of the canonical and noncanonical Wnt signaling pathway. J Surg Res 203:193–205. https://doi.org/10.1016/j.jss.2016.03.051

    Article  CAS  PubMed  Google Scholar 

  94. Osada T, Chen M, Yang XY et al (2011) Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Res 71:4172–4182. https://doi.org/10.1158/0008-5472.CAN-10-3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ahn SY, Yang JH, Kim NH et al (2017) Anti-helminthic niclosamide inhibits Ras-driven oncogenic transformation via activation of GSK-3. Oncotarget 8:31856–31863. https://doi.org/10.18632/oncotarget.16255

    Article  PubMed  PubMed Central  Google Scholar 

  96. Burock S, Daum S, Keilholz U, Neumann K, Walther W, Stein U (2018) Phase II trial to investigate the safety and efficacy of orally applied niclosamide in patients with metachronous or sychronous metastases of a colorectal cancer progressing after therapy: the NIKOLO trial. BMC Cancer 18:297. https://doi.org/10.1186/s12885-018-4197-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lu Y, Shi C, Qiu S, Fan Z (2016) Identification and validation of COX-2 as a co-target for overcoming cetuximab resistance in colorectal cancer cells. Oncotarget 7:64766–64777. https://doi.org/10.18632/oncotarget.8649

    Article  PubMed  PubMed Central  Google Scholar 

  98. Greenhough A, Smartt HJ, Moore AE et al (2009) The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30:377–386. https://doi.org/10.1093/carcin/bgp014

    Article  CAS  PubMed  Google Scholar 

  99. Yao S, Fan LY, Lam EW (2018) The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol 50:77–89. https://doi.org/10.1016/j.semcancer.2017.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Valverde A, Peñarando J, Cañas A et al (2017) The addition of celecoxib improves the antitumor effect of cetuximab in colorectal cancer: role of EGFR-RAS-FOXM1-β-catenin signaling axis. Oncotarget 8:21754–21769. https://doi.org/10.18632/oncotarget.15567

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hua X, Phipps AI, Burnett-Hartman AN et al (2017) Timing of aspirin and other nonsteroidal anti-inflammatory drug use among patients with colorectal cancer in relation to tumor markers and survival. J Clin Oncol 35:2806–2813. https://doi.org/10.1200/JCO.2017.72.3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu JM, Wang Y, Wang YL et al (2017) PIK3CA mutations contribute to acquired cetuximab resistance in patients with metastatic colorectal cancer. Clin Cancer Res 23:4602–4616. https://doi.org/10.1158/1078-0432.CCR-16-2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Paleari L, Puntoni M, Clavarezza M, DeCensi M, Cuzick J, DeCensi A (2016) PIK3CA mutation, aspirin use after diagnosis and survival of colorectal cancer. A systematic review and meta-analysis of epidemiological studies. Clin Oncol (R Coll Radiol) 28:317–326. https://doi.org/10.1016/j.clon.2015.11.008

    Article  CAS  Google Scholar 

  104. Din FV, Valanciute A, Houde VP et al (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142:1504–1515. https://doi.org/10.1053/j.gastro.2012.02.050

    Article  CAS  PubMed  Google Scholar 

  105. Liao X, Lochhead P, Nishihara R et al (2012) Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med 367:1596–1606. https://doi.org/10.1056/NEJMoa1207756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Domingo E, Church DN, Sieber O et al (2013) Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J Clin Oncol 31:4297–4305. https://doi.org/10.1200/JCO.2013.50.0322

    Article  CAS  PubMed  Google Scholar 

  107. Leto SM, Trusolino L (2014) Primary and acquired resistance to EGFR-targeted therapies in colorectal cancer: impact on future treatment strategies. J Mol Med (Berl) 92:709–722. https://doi.org/10.1007/s00109-014-1161-2

    Article  CAS  Google Scholar 

  108. Chan E, LaFleur B, Rothenberg ML et al (2011) Dual blockade of the EGFR and COX-2 pathways: a phase II trial of cetuximab and celecoxib in patients with chemotherapy refractory metastatic colorectal cancer. Am J Clin Oncol 34:581–586. https://doi.org/10.1097/COC.0b013e3181fe46a1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li X, Fan Z (2010) The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1α and Bcl-2 and activating the beclin 1/hVps34 complex. Cancer Res 70:5942–5952. https://doi.org/10.1158/0008-5472.CAN-10-0157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li X, Lu Y, Pan T, Fan Z (2010) Roles of autophagy in cetuximab-mediated cancer therapy against EGFR. Autophagy 6:1066–1077. https://doi.org/10.4161/auto.6.8.13366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hu YL, DeLay M, Jahangiri A et al (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72:1773–1783. https://doi.org/10.1158/0008-5472.CAN-11-3831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang H, Song J, Liu Z, Pan L, Xu G (2018) Autophagy activation promotes bevacizumab resistance in glioblastoma by suppressing Akt/mTOR signaling pathway. Oncol Lett 15:1487–1494. https://doi.org/10.3892/ol.2017.7446

    Article  CAS  PubMed  Google Scholar 

  113. Kato J, Futamura M, Kanematsu M et al (2016) Combination therapy with zoledronic acid and cetuximab effectively suppresses growth of colorectal cancer cells regardless of KRAS status. Int J Cancer 138:1516–1527. https://doi.org/10.1002/ijc.29881

    Article  CAS  PubMed  Google Scholar 

  114. Zhu J, Liu M, Liu Y, Zhang Y, Yang B, Zhang W (2017) Zoledronic acid regulates autophagy and induces apoptosis in colon cancer cell line CT26. Biomed Res Int 2017:7203584. https://doi.org/10.1155/2017/7203584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pitt JM, Vétizou M, Daillère R et al (2016) Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and-extrinsic factors. Immunity 44:1255–1269. https://doi.org/10.1016/j.immuni.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  116. Sharma S, Stolina M, Yang SC et al (2003) Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968

    CAS  PubMed  Google Scholar 

  117. Marzbani E, Inatsuka C, Lu H, Disis ML (2013) The invisible arm of immunity in common cancer chemoprevention agents. Cancer Prev Res (Phila) 6:764–773. https://doi.org/10.1158/1940-6207

    Article  CAS  Google Scholar 

  118. Zelenay S, van der Veen AG, Böttcher JP et al (2015) Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162:1257–1270. https://doi.org/10.1016/j.cell.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Harlin H, Meng Y, Peterson AC et al (2009) Chemokine expression in melanoma metastases associated with CD8 + T-cell recruitment. Cancer Res 69:3077–3085. https://doi.org/10.1158/0008-5472.CAN-08-2281

    Article  CAS  PubMed  Google Scholar 

  120. Tsukamoto H, Fujieda K, Miyashita A et al (2018) Combined blockade of IL-6 and PD-1/PD-L1 signaling abrogates mutual regulation of their immunosuppressive effects in the tumor microenvironment. Cancer Res 78:5011–5022. https://doi.org/10.1158/0008-5472.CAN-18-0118

    Article  CAS  PubMed  Google Scholar 

  121. Benci JL, Xu B, Qiu Y et al (2016) Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167:1540–1554. https://doi.org/10.1016/j.cell.2016.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Clavijo PE, Moore EC, Chen J et al (2017) Resistance to CTLA-4 checkpoint inhibition reversed through selective elimination of granulocytic myeloid cells. Oncotarget 8:55804–55820. https://doi.org/10.18632/oncotarget.18437

    Article  PubMed  PubMed Central  Google Scholar 

  123. Nakanishi Y, Nakatsuji M, Seno H et al (2011) COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in Apc Min/+ mouse polyps. Carcinogenesis 32:1333–1339. https://doi.org/10.1093/carcin/bgr128

    Article  CAS  PubMed  Google Scholar 

  124. Hou W, Sampath P, Rojas JJ, Thorne SH (2016) Oncolytic virus-mediated targeting of PGE2 in the tumor alters the immune status and sensitizes established and resistant tumors to immunotherapy. Cancer Cell 30:108–119. https://doi.org/10.1016/j.ccell.2016.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hamada T, Cao Y, Qian ZR et al (2017) Aspirin use and colorectal cancer survival according to tumor CD274 (programmed cell death 1 ligand 1) expression status. J Clin Oncol 35:1836–1844. https://doi.org/10.1200/JCO.2016.70.7547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Noman MZ, Hasmim M, Messai Y et al (2015) Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol 309:C569–C579. https://doi.org/10.1152/ajpcell.00207.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Scharping NE, Menk AV, Whetstone RD, Zeng X, Delgoffe GM (2017) Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res 5:9–16. https://doi.org/10.1158/2326-6066.CIR-16-0103

    Article  CAS  PubMed  Google Scholar 

  128. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H (2015) Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci USA 112(6):1809–1814. https://doi.org/10.1073/pnas.1417636112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cha JH, Yang WH, Xia W et al (2018) Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell 71:606–620. https://doi.org/10.1016/j.molcel.2018.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Afzal MZ, Mercado RR, Shirai K (2018) Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma. J Immunother Cancer 6:64. https://doi.org/10.1186/s40425-018-0375-1

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kubo T, Ninomiya T, Hotta K et al (2018) Study protocol: phase-Ib trial of Nivolumab combined with metformin for refractory/recurrent solid tumors. Clin Lung Cancer 19:e861–e864. https://doi.org/10.1016/j.cllc.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  132. Pinter M, Jain RK (2017) Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci Transl Med 9:eaan5616. https://doi.org/10.1126/scitranslmed.aan5616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xie G, Cheng T, Lin J et al (2018) Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy. J Immunother Cancer 6:88. https://doi.org/10.1186/s40425-018-0401-3

    Article  PubMed  PubMed Central  Google Scholar 

  134. Nakamura K, Yaguchi T, Ohmura G et al (2018) Involvement of local renin-angiotensin system in immunosuppression of tumor microenvironment. Cancer Sci 109:54–64. https://doi.org/10.1111/cas.13423

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ team was supported by the Health and Medical Research Fund [Food and Health Bureau, Hong Kong SAR, grant number 03140276] and a research grant from the Medicine Panel of the Chinese University of Hong Kong [Direct Grant for Research 4054371].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth K. W. To.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fong, W., To, K.K.W. Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell. Mol. Life Sci. 76, 3383–3406 (2019). https://doi.org/10.1007/s00018-019-03134-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03134-0

Keywords

Navigation