Skip to main content
Log in

Antidiabetic and antidyslipidemic activities of Cuminum cyminum L. in validated animal models

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The ethanolic extract of seeds of Cuminum cyminum (C.c) was found to improve glucose tolerance to the tune of around 18.3% (P < 0.01) in normal rats and shows around 17.7% (P < 0.01) and 17.1% fall on blood glucose levels at 0–300 and 0–1440 min, respectively, on streptozotocin-induced diabetic rats at an oral dose of 250 mg/Kg body weight. The extract has also been found to improve around 26.7% (P < 0.01) glucose intolerance on 14th day post treatment in high fructose fed streptozotocin-induced diabetic rats. The extract was also found to have antidyslipidemic activity as evident by 21.04% (P < 0.01) decline in serum triglycerides, 22.7% (P < 0.01) decline in total serum cholesterol, and 16.9% of decline in serum LDL-C, respectively, along with 12.2% (P < 0.05) increase in serum HDL-C on high fat diet fed male Syrian golden hamster. The extract was also found inhibitory to eye lens aldose reductase (EC 1.1.1.21) with IC50 value of 7.07 μg/ml as compared to the standard AR inhibiting compound Quercetin which showed IC50 2.35 μg/ml. The extract was also found inhibitory to α-glucosidase with IC50 value of 100 μg/ml as compared to known drug Acarbose which showed IC50 of around 25 μg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Mhd Jalil AM, Amin Ismail A, Chong PP, Hamid M, Hasbullah Syed Kamaruddin S, Hasbullah S, Kamaruddin S (2009) Effect of cocoa extract containing polyphenols and methylxanthines on biochemical parameters of obese-diabetic rats. J Sci Food Agri 89:130–137

    Article  Google Scholar 

  • Andro-Cetto A, Revilla-Monsalve C, Wiedenfeld H (2007) Hypoglycemic effect of Tournefortia hirsutissima L., on n-streptozotocin diabetic rats. J Ethnopharmacol 112:96–100

    Article  Google Scholar 

  • Andrade-Cetto A, Revilla-Monsalve C, Wiedenfeld H (2007) Hypoglycemic effect of Tournefortia hirsutissima L., on n-streptozotocin diabetic rats. J Ethnopharmacol 112:96–100

    Article  PubMed  Google Scholar 

  • Arulmozhi DK, Veeranjaneyulu A, Bodhankar SL (2009) Neonatal streptozotocin-induced rat model of Type 2 diabetes mellitus: a glance. Indian J Pharmacol 36(4):217–221

    Google Scholar 

  • Bhatia G, Rizvi F, Saxena R, Puri A, Khanna AK, Chander R, Wulf EM, Rastogi AK (2003) In vivo model for dyslipidemia with diabetes mellitus in hamsters. Indian J Exp Biol 41:1456–1459

    PubMed  Google Scholar 

  • Buchanan TA (2003) Pancreatic beta-cell loss and preservation in type 2 diabetes. Clin Ther 25(Suppl B):B32–B46

    Article  PubMed  CAS  Google Scholar 

  • Daisy P, Vargese L, Priya EC (2009) Comparative studies on the different leaf extracts of Elephantopus scaber L. on STZ-induced diabetic rats. Eur J Sci Res 32(3):304–313

    Google Scholar 

  • de la Fuente JA, Manzanaro S (2003) Aldose reductase inhibitors from natural sources. Nat Prod Rep 20:243–251

    Article  PubMed  CAS  Google Scholar 

  • Dhandapani S, Subramanian VR, Rajagopal S, Namasivayam N (2002) Hypolipidemic effect of Cuminum cyminum L. on alloxan induced diabetic rats. Pharmacol Res 46(3):251–255

    Article  PubMed  CAS  Google Scholar 

  • Farswan M, Majumder MP, Percha V (2009) Protective effect of Cassia glauca Linn. On the serum glucose and hepatic enzymes level in streptozotocin induced NIDDM in rats. Indian J Pharmacol 41(1):19–22

    Article  PubMed  Google Scholar 

  • Frayan NK, Kingman MS (1995) Dietary sugars and lipid metabolism in humans. Am J Clin Nutr 62(suppl):250S–263S

    Google Scholar 

  • Hayman S, Kinoshita JH (1965) Isolation and properties of lens Aldose reductase. J Biol Chem 240:877–882

    PubMed  CAS  Google Scholar 

  • Joshi SG (2000) Medicinal plants: family Apiaceae, 1st edn. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, pp 34–35

    Google Scholar 

  • Khare CP (2004) Indian medicinal plants. ISBN: 978-0-387-70637-5 Springer-Verlag, Berlin/Heidelberg

  • Kubo I, Kinst-Hori I (1998) Tyrosinase inhibitors from cumin. J Agric Food Chem 46:5338–5341

    Article  CAS  Google Scholar 

  • Latha RCR, Daisy P (2010) Influence of Terminalia bellerica Roxb. Fruit extracts on biochemical parameters in streptozotocin diabetic rats Int J Pharmacol 6(2):89–96

    Google Scholar 

  • Lebovitz HE (1997) Alpha glucosidase inhibitors. Endocrinol Metab Clin North Am 26(3):539–551

    Article  PubMed  CAS  Google Scholar 

  • Lee H-S (2005) Cuminaldehyde: aldose reductase and α-glucosidase inhibitor derived from Cuminum cyminum L. seeds. J Agric Food Chem 53:2446–2450

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Kim MK (2001) Rat intestinal α-glucosidase and lens aldose reductase inhibitory activities of grain extract. Food Sci Biotechnol 10:172–177

    Google Scholar 

  • Lowry HO, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Bio Chem 193:265–275

    CAS  Google Scholar 

  • Mahalingam G, Kannabiran K (2010) 2-Hydroxy 4-methoxy benzoic acid isolated from roots of Hemidesmus indicus ameliorates liver, kidney and pancreas injury due to streptozotocin-induced diabetes in rats. Indian J Exp Biol 48:159–164

    Google Scholar 

  • Mlinar B, Marc J, Janez A, Pfeifer M (2007) Molecular mechanism of insulin resistance an associated diseases. Clin Chim Acta 375:20–35

    Article  PubMed  CAS  Google Scholar 

  • Mythili MD, Vyas R, Gunasekaram S (2004) Effect of streptozotocin on the ultrastructure of rat pancreatic islets. Microsc Res Tech 63:274–281

    Article  PubMed  CAS  Google Scholar 

  • Nammi S, Sreemantula S, Roufogalis BD (2009) Protective effect of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic Clin Pharmacol Toxicol 104(5):366–373

    Article  PubMed  CAS  Google Scholar 

  • Narender T, Puri A, Sweta, Khalid T, Saxena R, Bhatia G, Chandra R (2006) 4-Hydroxyisoleucine an unusual amino acid as antidyslipidemic and antihyperglycemic agent. Bioorg Med Chem Lett 16:293–296

    Article  PubMed  CAS  Google Scholar 

  • Palmer AM, Thomas CR, Gopaul N, Dhir S, Anggared EE, Poston L (1998) Dietary antioxidant supplementation reduces lipid peroxidation but impairs vascular function in small mesenteric arteries of streptozotocin diabetic rat. Diabetologia 41:148–156

    Article  PubMed  CAS  Google Scholar 

  • Portha B, Levancher C, Picolon L, Rosselin G (1974) Diabetogenic effect of streptozotocin in the rat during the prenatal period. Diabetes 23:883–895

    Google Scholar 

  • Ravinet TC, Delgorge C, Menet C, Arnone M, Soubrie P (2004) CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord 28:640–648

    Article  Google Scholar 

  • Roman-Ramos R (1995) Antihyperglycemic effect of some edible plants. J Ethnopharmacol 48:25–32

    Article  PubMed  CAS  Google Scholar 

  • Somwar R, Sweeny G, Ramlal T, Klip A (1998) Stimulation of glucose and amino acid transport and activation of the insulin signaling pathways by Insulin lispro in L6 skeletal muscle cells. Clin Ther 20:125–140

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320

    Article  PubMed  CAS  Google Scholar 

  • Sultana S, Ripa FA, Hamid K (2010) Comparative antioxidant activity study of some commonly used spices in Bangladesh. Pak J Biol Sci 13(7):340–343

    Article  PubMed  CAS  Google Scholar 

  • Sung BK, Lee CH, Kim CH, Lee HS (2004) Antimite effect of essential oils derived from 24 Rosaceae and Umbelliferae species against stored food mite. Food Biotechnol 13:512–515

    Google Scholar 

  • Sunil C, Latha G, Mohanraj P, Kalichelvan K, Agastian P (2009) α-Glucosidase inhibitory and antidiabetic activities of ethanolic extract of Pisonia alba Span. leaves. Int J Integrative Biol 6(1):41–45

    Google Scholar 

  • Tiwari P, Rahuja N, Kumar R, Lakshmi V, Srivastava NM, Agarwal SC, Raghubir R, Srivastava AK (2008) Search for antihyperglycemic activity of few marine flora and fauna. Indian J Sci Technol 1(5):1–5

    CAS  Google Scholar 

  • Tripathi KB, Srivastava KA (2006) Diabetes mellitus: complications and therapeutics. Med Sci Monit 12(7):130–147

    Google Scholar 

  • Ueda H, Kuroiwa E, Tachibana Y, Kawanihi K, ayala F, Moriyasu M (2004) Aldose reductase inhibitors from the leaves of Myrciaria duba (H.B.&K.) McVaugh. Phytomedicine 11:652–665

    Article  PubMed  CAS  Google Scholar 

  • Watanabe J, Kawabata J, Kurihara H, Niki R (1997) Isolation and identification of α-glucosidase inhibitors from Tochucha (Eucommia ulmoides). Biosci Biotechnol Biochem 61:177–178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge to CSIR, New Delhi for providing financial support to carry out this work in the form of network project (NWP-0032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swayam Prakash Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivsatava, R., Srivastava, S.P., Jaiswal, N. et al. Antidiabetic and antidyslipidemic activities of Cuminum cyminum L. in validated animal models. Med Chem Res 20, 1656–1666 (2011). https://doi.org/10.1007/s00044-010-9483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-010-9483-2

Keywords

Navigation