Skip to main content

Advertisement

Log in

Evaluating anti-Toxoplasma gondii activity of new serie of phenylsemicarbazone and phenylthiosemicarbazones in vitro

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

While Toxoplasma gondii is able to infect and replicate within all eukaryotic cells, tachyzoites are the infective form of T. gondii that invades all eukaryotic cells leading to tissue rupture, the main features of toxoplasmosis. The present study evaluates the activity of (benzaldehyde)-4-phenyl-3-thiosemicarbazone and (benzaldehyde)-(4 or 1)-phenylsemicarbazone against intracellular T. gondii. The nine new compounds were incubated in infected Vero cells at concentrations of 0.01, 0.1, 0.5, and 1.0 mM and evaluated for three main effects: cytotoxicity, infection, and number of intracellular parasites. The cytotoxicity test showed a pattern by analyzing the substituent arylhydrazone, where trihydroxy Compounds 49 were cytotoxic at concentrations of 0.5 and 1.0 mM. The results highlight Compound 8, which reduced the number of intracellular parasites by 82 % in a concentration of 0.01 mM and showed a LD50 of 0.3 mM in cell culture. These different biological actions are due to changes in the molecular structure and type of radical present in each compound. All compounds tested were more efficient than the control drug sulfadizine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1

Similar content being viewed by others

References

  • Aquino TM, Liesen AP, Silva R, Lima V, Carvalho C, Faria A, Araújo J, Lima J, Alves AJ, Melo EJT, Góes AJS (2008) Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids. Bioorg Med Chem 16:446–456

    Article  PubMed  Google Scholar 

  • Bosch-Driessen L, Verbraak F, Suttorp-Schulten M, van Ruyven R, Klok A, Hoyng C, Rothova A (2002) A prospective, randomized trial of pyrimethamine and azithromycin vs pyrimethamine and sulfadiazine for the treatment of ocular toxoplasmosis. Am J Ophthalmol 134:34–40

    Article  PubMed  CAS  Google Scholar 

  • Carvalho CS, Melo EJT (2006) Acidification of parasitophorus vacuole containing Toxoplasma gondii in the presence of hidroxyurea. An Acad Bras Cienc 78:475–484

    PubMed  CAS  Google Scholar 

  • Carvalho CS, Melo EJT, Tenório RP, Góes AJS (2010) Anti-parasitic action and elimination of intracellular Toxoplasma gondii in the presence of novel thiosemicarbazone and 4-thiozolidinones derivates. Braz J Med Biol Res 43:139–149

    Article  PubMed  CAS  Google Scholar 

  • Casas JS, Garcia-Tasende M, S, Sordo J (2000) Main group metal complexes of semicarbazones and thiosemicarbazones: a structural review. Coord Chem Rev 209:197–261

    Article  CAS  Google Scholar 

  • Chen J, Huang Y, Liu G, Afrasiabi Z, Sinn E, Padhye S, Ma Y (2004) The cytotoxicity and mechanisms of 1,2-naphthoquinone thiosemicarbazone and its metal derivatives against mcf-7 human breast cancer cells. Toxicol Appl Pharmacol 197:40–48

    Article  PubMed  CAS  Google Scholar 

  • Dannemann B, Israelski D, Leoung G, McGraw T, Mills J, Remington JS (1991) Toxoplasma serology, parasitemia and antigenemia in patients at risk for toxoplasmic encephalitis. AIDS 5:1363–1365

    Article  PubMed  CAS  Google Scholar 

  • Hancock CN, Stockwin LH, Han B, Divelbiss RD, Jun JH, Malhotra SV, Hollingshead MG, Newton DL (2011) A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radic Biol Med 50:110–121

    Article  PubMed  CAS  Google Scholar 

  • Hill D, Dubey J (2002) Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect 8:634–640

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson DW (1985) Metal chelators as potential antiviral agents. Antivir Res 5:193–205

    Article  PubMed  CAS  Google Scholar 

  • James GS, Sintchenko VG, Dickenson DJ, Gilbert GL (1996) Comparison of cell culture, mouse inoculation, and PCR for detection of Toxoplasma gondii: effects of storage conditions on sensitivity. J Clin Microbiol 34:1572–1575

    PubMed  CAS  Google Scholar 

  • Kesel AJ (2011) Broad-spectrum antiviral activity including human immunodeficiency and hepatitis c viruses mediated by a novel retinoid thiosemicarbazone derivative. Eur J Med Chem 45:1656–1664

    Article  Google Scholar 

  • Kim K, Weiss L (2004) Toxoplasma gondii: the model apicomplexan. Int J Parasitol 34:423–432

    Article  PubMed  CAS  Google Scholar 

  • Levine ND, Corliss JO, Cox FEG, Deroux G, Grain J, Honigberg BM, Leedale GF, Loeblich AR, Lom J, Lynn D, Merinpeld EG, Page FC, Poljansky G, Sprague V, Vavra J, Wallace FG (1980) A newly revised classification of the protozoa. J Protozool 27:37–58

    PubMed  CAS  Google Scholar 

  • Luft B, Remington J (1992) Toxoplasmic encephalitis in aids. Clin Infect Dis 15:211–222

    Article  PubMed  CAS  Google Scholar 

  • Melo EJT, Beiral HJ (2003) Effect of hydroxyurea on the intracellular multiplication of Toxoplasma gondii, Leishmania amazonensis and Trypanosoma cruzi. Braz J Med Biol Res 36:65–69

    PubMed  CAS  Google Scholar 

  • Melo EJT, Souza W (2000) Effect of hydroxyurea on intracellular Toxoplasma gondii. FEMS Microbiol Lett 185:79–85

    Article  PubMed  Google Scholar 

  • Oliveira RB, Souza-Fagundes EM, Soares RPP, Andrade AA, Krettli AU, Zani CL (2008) Synthesis and antimalarial activity of semicarbazone and thiosemicarbazone derivatives. Eur J Med Chem 43:1983–1988

    Article  PubMed  Google Scholar 

  • Qin Y, Xing R, Liu S, Li K, Meng X, Li R, Cui J, Li B, Li P (2012) Novel thiosemicarbazone chitosan derivatives: preparation, characterization, and antifungal activity. Carbohydr Polym 87:2664–2670

    Article  CAS  Google Scholar 

  • Rodrigues C, Batista AA, Ellena J, Castellano EE, Benítez D, Cerecetto H, González M, Teixeira LR, Beraldo H (2010) Coordination of nitro-thiosemicarbazones to ruthenium(ii) as a strategy for anti-trypanosomal activity improvement. Eur J Med Chem 45:2847–2853

    Article  PubMed  CAS  Google Scholar 

  • Tenório RP, Carvalho CS, Pessanha CS, Lima J, Faria A, Alves AJ, Melo EJT, Góes AJS (2005) Synthesis of thiosemicarbazone and 4-thiazolidinone derivatives and their in vitro anti-Toxoplasma gondii activity. Bioorg Med Chem Lett 15:2575–2578

    Article  PubMed  Google Scholar 

  • Turan-Zitouni G, Kaplancikli ZA, Yildiz MT, Chevallet P, Kaya D (2002) Synthesis and in vitro antibacterial activity of new steroidal thiosemicarbazone derivatives. Eur J Med Chem 10:607–613

    Google Scholar 

  • Wong S, Remington JS (1993) Biology of Toxoplasma gondii. AIDS 7:299–316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support received from the Cordenação de Aperfeiçoamento de Pessoal Nível Superior (Capes), the Fundação de Amparo à à Pesquisa do Estado do Rio de Janeiro Carlos Chagas Filho (Faperj) and the english reviewer John Marr Ditty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antônio G. B. Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, M.A.G.B., Carvalho, L.P., Rocha, B.S. et al. Evaluating anti-Toxoplasma gondii activity of new serie of phenylsemicarbazone and phenylthiosemicarbazones in vitro. Med Chem Res 22, 3574–3580 (2013). https://doi.org/10.1007/s00044-012-0347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0347-9

Keywords

Navigation