Skip to main content
Erschienen in: Strahlentherapie und Onkologie 9/2012

01.09.2012 | Original article

Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions

verfasst von: I. Simmat, P. Georg, D. Georg, W. Birkfellner, G. Goldner, M. Stock

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 9/2012

Einloggen, um Zugang zu erhalten

Abstract

Background and purpose

The goal of the current study was to evaluate the commercially available atlas-based autosegmentation software for clinical use in prostate radiotherapy. The accuracy was benchmarked against interobserver variability.

Material and methods

A total of 20 planning computed tomographs (CTs) and 10 cone-beam CTs (CBCTs) were selected for prostate, rectum, and bladder delineation. The images varied regarding to individual (age, body mass index) and setup parameters (contrast agent, rectal balloon, implanted markers). Automatically created contours with ABAS® and iPlan® were compared to an expert’s delineation by calculating the Dice similarity coefficient (DSC) and conformity index.

Results

Demo-atlases of both systems showed different results for bladder (DSCABAS 0.86 ± 0.17, DSCiPlan 0.51 ± 0.30) and prostate (DSCABAS 0.71 ± 0.14, DSCiPlan 0.57 ± 0.19). Rectum delineation (DSCABAS 0.78 ± 0.11, DSCiPlan 0.84 ± 0.08) demonstrated differences between the systems but better correlation of the automatically drawn volumes. ABAS® was closest to the interobserver benchmark. Autosegmentation with iPlan®, ABAS® and manual segmentation took 0.5, 4 and 15–20 min, respectively. Automatic contouring on CBCT showed high dependence on image quality (DSC bladder 0.54, rectum 0.42, prostate 0.34).

Conclusion

For clinical routine, efforts are still necessary to either redesign algorithms implemented in autosegmentation or to optimize image quality for CBCT to guarantee required accuracy and time savings for adaptive radiotherapy.
Literatur
1.
Zurück zum Zitat Aljabar P, Heckemann RA, Hammers A et al (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46:726–738PubMedCrossRef Aljabar P, Heckemann RA, Hammers A et al (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46:726–738PubMedCrossRef
2.
Zurück zum Zitat Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187(5):284–291PubMedCrossRef Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187(5):284–291PubMedCrossRef
3.
Zurück zum Zitat Commowick O, Vincent G, Gregoire M (2008) Atlas-based delineation of lymph node levels in head and neck computed tomography images. Radiother Oncol 87:281–289PubMedCrossRef Commowick O, Vincent G, Gregoire M (2008) Atlas-based delineation of lymph node levels in head and neck computed tomography images. Radiother Oncol 87:281–289PubMedCrossRef
4.
Zurück zum Zitat Ehrhardt J, Handels H, Malina T et al (2001) Atlas-based segmentation of bone structures to support the virtual planning of hip operations. Int J Med Inform 64:439–447PubMedCrossRef Ehrhardt J, Handels H, Malina T et al (2001) Atlas-based segmentation of bone structures to support the virtual planning of hip operations. Int J Med Inform 64:439–447PubMedCrossRef
5.
Zurück zum Zitat Fiorino C, Renib M, Bolognesi M et al (1998) Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol 47:285–292PubMedCrossRef Fiorino C, Renib M, Bolognesi M et al (1998) Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol 47:285–292PubMedCrossRef
6.
Zurück zum Zitat Genovesi D, Cèfaro GA, Vinciguerra A et al (2011) Interobserver variability of clinical target volume delineation in supra-diaphragmatic Hodgkin’s disease: a multi-institutional experience. Strahlenther Onkol 187(6):357–366PubMedCrossRef Genovesi D, Cèfaro GA, Vinciguerra A et al (2011) Interobserver variability of clinical target volume delineation in supra-diaphragmatic Hodgkin’s disease: a multi-institutional experience. Strahlenther Onkol 187(6):357–366PubMedCrossRef
7.
Zurück zum Zitat Gerstner N, Wachter S, Dorner D et al (1999) Significance of a rectal balloon as internal immobilization device in conformal radiotherapy of prostatic carcinoma. Strahlenther Onkol 175(5):232–238PubMedCrossRef Gerstner N, Wachter S, Dorner D et al (1999) Significance of a rectal balloon as internal immobilization device in conformal radiotherapy of prostatic carcinoma. Strahlenther Onkol 175(5):232–238PubMedCrossRef
8.
Zurück zum Zitat Ghadjar P, Gwerder N, Manser P et al (2010) High-dose (80 Gy) intensity-modulated radiation therapy with daily image-guidance as primary treatment for localized prostate cancer. Strahlenther Onkol 186(12):687–692PubMedCrossRef Ghadjar P, Gwerder N, Manser P et al (2010) High-dose (80 Gy) intensity-modulated radiation therapy with daily image-guidance as primary treatment for localized prostate cancer. Strahlenther Onkol 186(12):687–692PubMedCrossRef
9.
Zurück zum Zitat Ghilezan M, Yan D, Martinez A (2010) Adaptive radiation therapy for prostate cancer. Semin Radiat Oncol 20:130–137PubMedCrossRef Ghilezan M, Yan D, Martinez A (2010) Adaptive radiation therapy for prostate cancer. Semin Radiat Oncol 20:130–137PubMedCrossRef
10.
Zurück zum Zitat Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186(10):535–543PubMedCrossRef Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186(10):535–543PubMedCrossRef
11.
Zurück zum Zitat Haas B, Coradi T, Scholz M et al (2008) Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ specific segmentation strategies. Phys Med Biol 53:1751–1771PubMedCrossRef Haas B, Coradi T, Scholz M et al (2008) Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ specific segmentation strategies. Phys Med Biol 53:1751–1771PubMedCrossRef
12.
Zurück zum Zitat Han X, Hoogeman MS, Levendag PC et al (2008) Atlas-based auto-segmentation of head and neck ct-images. Med Image Comput Comput Assist Interv 5242:434–441 Han X, Hoogeman MS, Levendag PC et al (2008) Atlas-based auto-segmentation of head and neck ct-images. Med Image Comput Comput Assist Interv 5242:434–441
13.
Zurück zum Zitat Heinze P, Meister D, Kober R et al (2002) Atlas-based segmentation of pathological knee joints. Stud Health Technol Inform 85:198–203PubMed Heinze P, Meister D, Kober R et al (2002) Atlas-based segmentation of pathological knee joints. Stud Health Technol Inform 85:198–203PubMed
14.
Zurück zum Zitat Huyskens DP, Maingon P, Vanuytsel L et al (2008) A qualitative and quantitative analysis of an auto-segmentation module for prostate cancer. Radiother Oncol 90:337–345PubMedCrossRef Huyskens DP, Maingon P, Vanuytsel L et al (2008) A qualitative and quantitative analysis of an auto-segmentation module for prostate cancer. Radiother Oncol 90:337–345PubMedCrossRef
15.
Zurück zum Zitat Isambert A, Dhermain F, Bidault F et al (2008) Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context. Radiother Oncol 87:93–99PubMedCrossRef Isambert A, Dhermain F, Bidault F et al (2008) Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context. Radiother Oncol 87:93–99PubMedCrossRef
16.
Zurück zum Zitat Jarry G, Graham SA, Moseley DJ et al (2006) Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Med Phys 33(11):4320–4329PubMedCrossRef Jarry G, Graham SA, Moseley DJ et al (2006) Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Med Phys 33(11):4320–4329PubMedCrossRef
17.
Zurück zum Zitat Klein S, Heide U van der, Lips I et al (2008) Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med Phys 35:1407–1417PubMedCrossRef Klein S, Heide U van der, Lips I et al (2008) Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med Phys 35:1407–1417PubMedCrossRef
18.
Zurück zum Zitat Kouwenhouven E, Giezen M, Struikmans H (2009) Measuring the similarity of target volume delineations independent of the number of observers. Phys Med Biol 54:2863–2873CrossRef Kouwenhouven E, Giezen M, Struikmans H (2009) Measuring the similarity of target volume delineations independent of the number of observers. Phys Med Biol 54:2863–2873CrossRef
19.
Zurück zum Zitat Linguraru MG, Sandberg JK, Li Z et al (2009) Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation. Med Image Comput Comput Assist Interv 5762:1001–1008PubMed Linguraru MG, Sandberg JK, Li Z et al (2009) Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation. Med Image Comput Comput Assist Interv 5762:1001–1008PubMed
20.
Zurück zum Zitat Luetgendorf-Caucig C, Fotina I, Stock M et al (2011) Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol 98:154–161CrossRef Luetgendorf-Caucig C, Fotina I, Stock M et al (2011) Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol 98:154–161CrossRef
21.
Zurück zum Zitat McLaughlin P, Evans C, Feng M, Narayana V (2010) Radiographic and anatomic basis for prostate contouring errors and methods to improve prostate contouring accuracy. Int J Radiat Oncol Biol Phys 76:369–378PubMedCrossRef McLaughlin P, Evans C, Feng M, Narayana V (2010) Radiographic and anatomic basis for prostate contouring errors and methods to improve prostate contouring accuracy. Int J Radiat Oncol Biol Phys 76:369–378PubMedCrossRef
22.
Zurück zum Zitat Michopoulou SK, Costaridou L, Panagiotopoulos E et al (209) Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Trans Biomed Eng 56:2225–2231CrossRef Michopoulou SK, Costaridou L, Panagiotopoulos E et al (209) Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Trans Biomed Eng 56:2225–2231CrossRef
23.
Zurück zum Zitat Nakamura N, Shikama N, Takahashi O et al (2010) Variability in bladder volumes of full bladders in definitive radiotherapy for cases of localized prostate cancer. Strahlenther Onkol 186(11):637–642PubMedCrossRef Nakamura N, Shikama N, Takahashi O et al (2010) Variability in bladder volumes of full bladders in definitive radiotherapy for cases of localized prostate cancer. Strahlenther Onkol 186(11):637–642PubMedCrossRef
24.
Zurück zum Zitat Pallotta S, Bucciolini M, Russo S et al (2006) Accuracy evaluation of image registration and segmentation tools used in conformal treatment planning of prostate cancer. Comput Med Imaging Graph 30:1–7PubMedCrossRef Pallotta S, Bucciolini M, Russo S et al (2006) Accuracy evaluation of image registration and segmentation tools used in conformal treatment planning of prostate cancer. Comput Med Imaging Graph 30:1–7PubMedCrossRef
25.
Zurück zum Zitat Pasquier D, Lacornerie T, Vermandel M et al (2007) Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 68:592–600PubMedCrossRef Pasquier D, Lacornerie T, Vermandel M et al (2007) Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 68:592–600PubMedCrossRef
26.
Zurück zum Zitat Pekar V, Mc Nutt T, Kaus M (2004) Automated model-based organ delineation for radiotherapy planning in prostate region. Int J Radiat Oncol Biol Phys 60:973–980PubMed Pekar V, Mc Nutt T, Kaus M (2004) Automated model-based organ delineation for radiotherapy planning in prostate region. Int J Radiat Oncol Biol Phys 60:973–980PubMed
27.
Zurück zum Zitat Pinkawa M, Piroth MD, Holy R et al (2011) Combination of dose escalation with technological advances (intensity-modulated and image-guided radiotherapy) is not associated with increased morbidity for patients with prostate cancer. Strahlenther Onkol 187(80):479–484PubMedCrossRef Pinkawa M, Piroth MD, Holy R et al (2011) Combination of dose escalation with technological advances (intensity-modulated and image-guided radiotherapy) is not associated with increased morbidity for patients with prostate cancer. Strahlenther Onkol 187(80):479–484PubMedCrossRef
28.
Zurück zum Zitat Sims R, Isambert A, Grégoire V et al (2009) A pre-clinical assessment of an atlas-based automatic segmentation tool for the head and neck. Radiother Oncol 93:474–478PubMedCrossRef Sims R, Isambert A, Grégoire V et al (2009) A pre-clinical assessment of an atlas-based automatic segmentation tool for the head and neck. Radiother Oncol 93:474–478PubMedCrossRef
29.
Zurück zum Zitat Stock M, Pasler M, Birkfellner W et al (2009) Image quality and stability of image-guided radiotherapy (IGRT) devices: a comparative study. Radiother Oncol 93(1):1–7PubMedCrossRef Stock M, Pasler M, Birkfellner W et al (2009) Image quality and stability of image-guided radiotherapy (IGRT) devices: a comparative study. Radiother Oncol 93(1):1–7PubMedCrossRef
30.
Zurück zum Zitat Teguh DN, Levendag PC, Voet PW et al (2011) Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. Int J Radiat Oncol Biol Phys 81(4):950–957PubMedCrossRef Teguh DN, Levendag PC, Voet PW et al (2011) Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. Int J Radiat Oncol Biol Phys 81(4):950–957PubMedCrossRef
31.
Zurück zum Zitat Zhang T, Chi Y, Meldolesi E, Yan D (2007) Automatic delineation of on-line head and neck computed tomography images: toward on-line adaptive radiotherapy. Int J Radiat Oncol Biol Phys 68:522–530PubMedCrossRef Zhang T, Chi Y, Meldolesi E, Yan D (2007) Automatic delineation of on-line head and neck computed tomography images: toward on-line adaptive radiotherapy. Int J Radiat Oncol Biol Phys 68:522–530PubMedCrossRef
Metadaten
Titel
Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions
verfasst von
I. Simmat
P. Georg
D. Georg
W. Birkfellner
G. Goldner
M. Stock
Publikationsdatum
01.09.2012
Verlag
Springer-Verlag
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 9/2012
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-012-0117-0

Weitere Artikel der Ausgabe 9/2012

Strahlentherapie und Onkologie 9/2012 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.