Skip to main content
Log in

Retrospective analysis of linac-based radiosurgery for arteriovenous malformations and testing of the Flickinger formula in predicting radiation injury

Retrospektive Analyse linacbasierter Radiochirurgie bei arteriovenösen Fehlbildungen und Erprobung der Flickinger-Formel zur Vorhersage von Strahlenschäden

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

The aim of the study was to validate the use of linac-based radiosurgery in arteriovenous malformation (AVM) patients and to predict complications using an integrated logistic formula (ILF) in comparison with clinical outcomes.

Patients and methods

The results of radiosurgery in 92 AVM patients were examined. All patients were treated with linac-based radiosurgery. Of these, 70 patients were followed for 12–45 months (median, 24 months) and were analyzed. The treated volume varied from 0.09 to 26.95 cm³ (median, 2.3 cm³) and the median marginal dose was 20 Gy (range, 10.4–22). The median 12-Gy volume was 9.94 cm³ (range, 0.74–60.09 cm³). Patients and lesion characteristics potentially affecting nidus obliteration and excellent outcome were evaluated by performing a log-rank test and univariate and multivariate analyses. The risk for radiation injury (RRI) was calculated with an integrated logistic formula. The predictive power of the RRI was assessed by calculating the area under the receiver operating characteristic (ROC) curve.

Results

Follow-up magnetic resonance (MR) angiography revealed complete AVM obliteration in 56 of 70 patients. The MR angiography confirmed an obliteration rate of 80%. The annual hemorrhage rate was 1.4% for the first 2 years after radiosurgery and 0% thereafter. The number of patients with an excellent outcome was 48 (68%). Factors associated with better obliteration were higher radiation dose to the lesion margins [12-Gy volume (V12) >10 cm³], small volume, and a Pollock-Flickinger score less than 1.49; those predicting excellent outcomes were V12<10 cm³, small volume, and Pollock-Flickinger score less than 1.49, as determined by multivariate analyses. Factors associated with radiation injury were V12>10 cm³ (p=0.03) and volume greater than 2 cm³ (p=0.001), as determined by a univariate analysis. The analyses showed an ROC of 0.66.

Conclusion

These data suggest that linac-based radiosurgery is effective. In terms of obliteration, excellent outcomes, and especially radiation injury, V12 and volume should be considered. The Flickinger formula seems to be applicable to Novalis-treated patients, but long-term follow-up is necessary for definite conclusions.

Zusammenfassung

Hintergrund und Zielsetzung

Das Ziel der Studie war es, die Verwendung der auf einem Linearbeschleuniger („“linear accelerator“, Linac) basierten Radiochirurgie bei Patienten mit arteriovenösen Malformationen (AVM) zu evaluieren und eine Vorhersage von Komplikationen mittels einer integrierten Logistikformel (ILF) im Vergleich mit klinischen Ergebnissen zu treffen.

Patienten und Methoden

Die Ergebnisse der Radiochirurgie bei 92 AVM-Patienten wurden untersucht. Alle Patienten wurden mit linacbasierter Radiochirurgie behandelt. Von diesen wurde bei 70 Patienten für 12–45 Monate (Median: 24) der Verlauf verfolgt und analysiert. Das behandelte Volumen variierte zwischen 0,09 und 26,95 cm3 (Median: 2,3 cm3) und die mittlere marginale Dosis betrug 20 Gy (Bereich: 10,4–22). Das mittlere 12-Gy-Volumen betrug 9,94 cm3 (Bereich: 0,74–60,09). Patienten- und Läsionenseigenschaften, die möglicherweise die Nidusauflösung und ein exzellentes Ergebnis beeinträchtigt haben, wurden mittels eines Log-Rank-Tests sowie univariater und multivariater Analysen ausgewertet. Das Risiko für Strahlenschäden (RRI) wurde mit einer ILF berechnet. Die Vorhersagekraft des RRI wurde durch Berechnung der Fläche unter der Receiver-Operating-Characteristic-(ROC)-Kurve beurteilt.

Ergebnisse

Die Nachsorge-Magnetresonanztomographie(MR)-Angiographie ergab eine vollständige AVM-Auflösung bei 56 von 70 Patienten. Die MR-angiographisch bestätigte Auflösung betrug 80%. Die jährliche Blutungsrate betrug während der ersten 2 Jahre nach Radiochirurgie 1,4% und danach null. Ein ausgezeichnetes Ergebnis wurde bei 48 Patienten (68%) erzielt. Die multivariate Analyse zeigte, dass folgende Faktoren mit einer besseren AVM-Auflösung assoziiert waren: höhere Strahlendosis auf den Läsionsgrenzen [12-Gy-Volumen (V12) >10 cm3], kleines Volumen, und Pollock-Flickinger-Score <1,49. Faktoren, die mit einem exzellenten Ergebnis in der multivariate Analyse assoziiert waren, waren ein V12 <10 cm3, ein kleines Volumen und ein Pollock-Flickinger-Score <1,49. Ein V12 >10 cm3 (p=0,03) und ein Volumen >2 cm3 (p=0,001) waren in einer univariaten Analyse mit Strahlenschäden assoziiert. Die Analysen zeigten eine ROC von 0,66.

Schlussfolgerung

Diese Daten lassen vermuten, dass linacbasierte Radiochirurgie wirksam ist. In Bezug auf die AVM-Auflösung, ein exzellentes Resultat und vor allem in Bezug auf Strahlenschäden zeigte sich, dass V12 und das Volumen evaluiert werden sollten. Die Flickinger-Formel scheint auf Patienten mit einer Novalis-Behandlung anwendbar zu sein. Jedoch ist eine Langzeituntersuchung für eine endgültige Beurteilung notwendig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Flickinger JC, Pollock BE, Kondziolka D, Lunsfort LD (1996) A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys 36:873–879

    Article  PubMed  CAS  Google Scholar 

  2. Kjellberg R, Hanamura T, Davis K et al (1983) Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med 309:269–273

    Article  PubMed  CAS  Google Scholar 

  3. Loeffler JS, Alexander E, Siddon R et al (1989) Stereotactic radiosurgery for intracranial arteriovenous malformations using a standard linear accelerator. Int J Radiat Oncol Biol Phys 17:673–677

    Article  PubMed  CAS  Google Scholar 

  4. Aoki Y, Nakagawa K, Tago M et al (1996) Clinical evaluation of gamma knife radiosurgery for intracranial arteriovenous malformation. Radiat Med 14:265–268

    PubMed  CAS  Google Scholar 

  5. Friedman WA, Bova FJ, Bollampally S, Bradshaw P (2003) Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery 52:296–308

    Article  PubMed  Google Scholar 

  6. Pollock BE, Gorman DA, Coffey RJ (2003) Patient outcomes after arteriovenous malformation radiosurgical management: results based on a 5- to 14-year follow-up study. Neurosurgery 52:1291–1297

    Article  PubMed  Google Scholar 

  7. Ellis TL, Friedman WA, Bova FJ et al (1998) Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg 89:104–110

    Article  PubMed  CAS  Google Scholar 

  8. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD (1998) Analysis of neurological sequelae from radiosurgery of arteriovenous malformations: how location affects outcome. Int J Radiat Oncol Biol Phys 40:273–278

    Article  PubMed  CAS  Google Scholar 

  9. Mavroidis P, Theodorou K, Lefkopoulos D et al (2002) Prediction of AVM obliteration after stereotactic radiotherapy using radiobiological modelling. Phys Med Biol 47:2471–2494

    Article  PubMed  Google Scholar 

  10. Flickinger JC, Kondziolka D, Kalend AM et al (1995) Radiosurgery-related imaging changes in surrounding brain: multivariate analysis and model evaluation. In: Kondziolka D, Alexander E (eds) Radiosurgery1:229–236

  11. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD (1997) Analysis of neurological sequelae from radiosurgery of arteriovenous malformations: how location affects outcome. Int J Radiat Oncol Biol Phys 40:273–278

    Article  Google Scholar 

  12. Flickinger JC, Kondziolka D, Pollock BE et al (1997) Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys 38:485–490

    Article  PubMed  CAS  Google Scholar 

  13. Flickinger JC, Lunsford LD, Kondziolka D et al (1992) Radiosurgery and brain tolerance: an analysis of neurodiagnostic imaging changes following gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys 23:19–26

    Article  PubMed  CAS  Google Scholar 

  14. Voges J, Treuer H, Lehrke R et al (1996) Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 138:1055–1063

    Article  Google Scholar 

  15. Lax I, Karlsson B (1996) Prediction of complications in gamma knife radiosurgery of arteriovenous malformations. Acta Oncologica 35:49–55

    Article  PubMed  CAS  Google Scholar 

  16. Karlsson B, Lax I, Söderman M (1997) Factors influencing the risk for complications following gamma knife radiosurgery for cerebral malformations. Radiather Oncol 43:275–280

    Article  CAS  Google Scholar 

  17. Flickinger JC, Kondziolka D, Lunsford LD et al (2000) Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Int J Radiat Oncol Biol Phys 46(5):1143–1148

    Article  PubMed  CAS  Google Scholar 

  18. Flickinger JC, Kondziolka D, Lunsford LD et al (1999) A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 44:67–74

    Article  PubMed  CAS  Google Scholar 

  19. Pollock BE, Flickinger JC (2002) A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg 96:75–85

    Google Scholar 

  20. Flickinger JC, Schell MC, Larson DA (1990) Estimation of complications for linear accelerator radiosurgery with the integrated logistic formula. Int J Radiat Oncol Biol Phys 19(1):143–148

    Article  PubMed  CAS  Google Scholar 

  21. Andrade-Souza YM, Zadeh G, Ramani M et al (2005) Testing the radiosurgery- based arteriovenous malformation score and the modified Spetzler-Martin grading system to predict radiosurgical outcome. J Neurosurg 103:642–648

    Article  PubMed  Google Scholar 

  22. Andrade-Souza YM, Ramani M, Scora D et al (2007) Embolization before radiosurgery reduces the obliteration rate of arteriovenous malformations. Neurosurgery 60(3):443–452

    Article  PubMed  Google Scholar 

  23. Oliveira E de, Tedeschi H, Raso J (1998) Comprehensive management of arteriovenous malformations. Neurol Res 20:673–683

    PubMed  Google Scholar 

  24. Hamilton MG, Spetzler RF (1994) The prospective application of a grading system for arteriovenous malformations. Neurosurgery 34:2–7

    Article  PubMed  CAS  Google Scholar 

  25. Heros RC, Korosue K, Diebold PM (1990) Surgical excision of cerebral arteriovenous malformations: late results. Neurosurgery 26:570–578

    Article  PubMed  CAS  Google Scholar 

  26. Fleetwood IG, Marcellus ML, Levy RP et al (2003) Deep arteriovenous malformations of the basal ganglia and thalamus: natural history. J Neurosurg 98:747–750

    Article  PubMed  Google Scholar 

  27. Andrade-Souza YM, Zadeh G, Scora D et al (2005) Radiosurgery for basal ganglia, internal capsule, and thalamus arteriovenous malformation: clinical outcome. Neurosurgery 56:56–65

    Article  PubMed  Google Scholar 

  28. Flickinger JC (1989) An integrated logistic formula for prediction of complications from radiosurgery. Int J Radiat Oncol Biol Phys 17:879–885

    Article  PubMed  CAS  Google Scholar 

  29. Miyawaki L, Dowd C, Wara W et al (1999) Five year results of linac radiosurgery for arteriovenous malformations: outcome for large AVMs. Int J Radiat Oncol Biol Phys 44:1089–1106

    Article  PubMed  CAS  Google Scholar 

  30. Barker II FG, Butler WE, Lyons S et al (2003) Dose-volume prediction of radiation-related complications after proton beam radiosurgery for cerebral arteriovenous malformations. J Neurosurg 99:254–263

    Article  PubMed  Google Scholar 

  31. ApSimon HT, Reef H, Phadke RV, Popovic EA (2002) A population-based study of brain arteriovenous malformation: long-term treatment outcomes. Stroke 33:2794–2800

    Article  PubMed  CAS  Google Scholar 

  32. Karlsson B, Lindquist C, Johansson A, Steiner L (1997) Annual risk for the first hemorrhage from untreated cerebral arteriovenous malformations. Minim Invas Neurosurg 40:40–46

    Article  CAS  Google Scholar 

  33. Karlsson B, Lax I, Soderman M (2001) Risk for hemorrhage during the 2 year latency period following gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys 49:1045–1051

    Article  PubMed  CAS  Google Scholar 

  34. Nataf F, Ghossoub M, Schlienger M et al (2004) Bleeding after radiosurgery for cerebral arteriovenous malformations. Neurosurgery 55:298–305

    Article  PubMed  Google Scholar 

  35. Shin M, Kawamoto S, Kurita H et al (2002) Retrospective analysis of a 10 year experience of stereotactic radio surgery for arteriovenous malformations in children and adolescents. J Neurosurg 9:779–784

    Google Scholar 

  36. Schlienger M, Atlan D, Lefkopoulos D et al (2000) Linac radiosurgery for cerebral arteriovenous malformations: results in 169 patients. Int J Radiat Oncol Biol Phys 46:1135–1142

    Article  PubMed  CAS  Google Scholar 

  37. Pollock BE, Gorman DA, Coffey RJ (2003) Patient outcome after arteriovenous malformation radiosurgical management: results based on a 5–14 year follow-up study. Neurosurgery 52:1291–1297

    Article  PubMed  Google Scholar 

  38. Friedman WA, Blatt DL, Bova FJ et al (1996) The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurgery 84:912–919

    Article  CAS  Google Scholar 

  39. Friedman WA, Bova FJ, Mendenhall WM (1995) Linear accelerator radiosurgery for arteriovenous malformations: the relationship of size to outcome. J Neurosurg 82:180–189

    Article  PubMed  CAS  Google Scholar 

  40. Bollet MA, Anxionnat R, Buchheit I et al (2004) Efficacy and morbidity of arc-therapy radiosurgery for cerebral arteriovenous malformation: a comparison with the natural history. Int J Radiat Oncol Biol Phys 58:1353–1363

    Article  PubMed  Google Scholar 

  41. Chang JH, Chang JW, Park YG, Chung SS (2000) Factors related to complete occlusion of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg 93:96–101

    PubMed  Google Scholar 

  42. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD (2002) An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol 63:347–354

    Article  PubMed  Google Scholar 

  43. Liscak R, Vladyka V, Simonova G et al (2007) Arteriovenous malformations after Leksell gamma knife radiosurgery: rate of obliteration and complication. Neurosurgery 60:1005–1014

    PubMed  Google Scholar 

  44. Pollock BE, Flickinger JC, Lunsford LD et al (1998) Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery 42:1239–1247

    Article  PubMed  CAS  Google Scholar 

  45. Blamek S, Tarnawski R, Miszczyk L (2011) Linac-based stereotactic radiosurgery for brain arteriovenous malformations. Clin Oncol (R Coll Radiol) 23(8):525–531. doi:10.1016/j.clon.2011.03.012

    Google Scholar 

  46. Herbert C, Moiseenko V, McKenzie M et al (2012) Factors predictive of symptomatic radiation injury after linear accelerator-based stereotactic radiosurgery for intracerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys 83:872–877

    Article  PubMed  Google Scholar 

  47. Hayhurst C, Monsalves E, Prooijen M van et al (2012) Pretreatment predictors of adverse radiation effects after radiosurgery for arteriovenous malformation. Int J Radiat Oncol Biol Phys 82(2):803–808

    Article  PubMed  Google Scholar 

  48. Fuetsch M, El Majdoub F, Hoevels M et al (2012) Stereotactic LINAC radiosurgery for the treatment of brainstem cavernomas. Strahlenther Onkol 188(4):311–316

    Article  PubMed  CAS  Google Scholar 

  49. D’Agostino GR, Autorino R, Pompucci A et al (2011) Whole-brain radiotherapy combined with surgery or stereotactic radiotherapy in patients with brain oligometastases: long-term analysis. Strahlenther Onkol 187(7):421–425

    Article  Google Scholar 

  50. Ruge MI, Kocher M, Maarouf M et al (2011) Comparison of stereotactic brachytherapy (125 iodine seeds) with stereotactic radiosurgery (LINAC) for the treatment of singular cerebral metastases. Strahlenther Onkol 187(1):7–14

    Article  PubMed  Google Scholar 

  51. Fuetsch M, El Majdoub F, Hoevels M et al (2012) Stereotactic LINAC radiosurgery for the treatment of brainstem cavernomas. Strahlenther Onkol 188(4):311–316

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.A. Cetin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cetin, I., Ates, R., Dhaens, J. et al. Retrospective analysis of linac-based radiosurgery for arteriovenous malformations and testing of the Flickinger formula in predicting radiation injury. Strahlenther Onkol 188, 1133–1138 (2012). https://doi.org/10.1007/s00066-012-0180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0180-6

Keywords

Schlüsselwörter

Navigation