Skip to main content
Erschienen in: Strahlentherapie und Onkologie 4/2015

01.04.2015 | Original Article

Image quality and dose distributions of three linac-based imaging modalities

verfasst von: Dr. rer. nat. Yvonne Dzierma, Evemarie Ames, Dr. rer. nat. Frank Nuesken, Dr. med. Jan Palm, Dr. rer. nat. Norbert Licht, Prof. Dr. med. Christian Rübe

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

Background and purpose

Linac-based patient imaging is possible with a variety of techniques using different photon energies. The purpose of this work is to compare three imaging systems operating at 6 MV, flattening free filter (FFF) 1 MV, and 121 kV.

Patients and methods

The dose distributions of all pretreatment set-up images (over 1,000) were retrospectively calculated on the planning computed tomography (CT) images for all patients with prostate and head-and-neck cancer treated at our institution in 2013. We analyzed the dose distribution and the dose to organs at risk.

Results

For head-and-neck cancer patients, the imaging dose from 6-MV cone beam CT (CBCT) reached maximum values at around 8 cGy. The 1-MV CBCT dose was about 63–79 % of the 6-MV CBCT dose for all organs at risk. Planar imaging reduced the imaging dose from CBCT to 30–40 % for both megavoltage modalities. The dose from the kilovoltage CBCT was 4–10 % of the 6-MV CBCT dose. For prostate cancer patients, the maximum dose from 6-MV CBCT reached 13–15 cGy, and was reduced to 66–73 % for 1 MV. Planar imaging reduces the MV CBCT dose to 10–20 %. The kV CBCT dose is 15–20 % of the 6-MV CBCT dose, slightly higher than the dose from MV axes. The dose distributions differ markedly in response to the different beam profiles and dose–depth characteristics.
Literatur
1.
Zurück zum Zitat Akino Y, Koizumi M, Sumida I, Takahashi Y, Ogata T, Ota S, Isohashi F, Konishi K, Yoshioka Y (2012) Megavoltage cone beam computed tomography dose and the necessity of reoptimization for imaging dose-integrated intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 82:1715–1722CrossRefPubMed Akino Y, Koizumi M, Sumida I, Takahashi Y, Ogata T, Ota S, Isohashi F, Konishi K, Yoshioka Y (2012) Megavoltage cone beam computed tomography dose and the necessity of reoptimization for imaging dose-integrated intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 82:1715–1722CrossRefPubMed
2.
Zurück zum Zitat Alaei P, Spezi E (2012) Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system. J App Clin Med Phys 13:19–33 Alaei P, Spezi E (2012) Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system. J App Clin Med Phys 13:19–33
3.
Zurück zum Zitat Alaei P, Ding G, Guan H (2012) Inclusion of the dose from kilovoltage cone beam CT in the radiation therapy treatment plans. Med Phys 37:244–248CrossRef Alaei P, Ding G, Guan H (2012) Inclusion of the dose from kilovoltage cone beam CT in the radiation therapy treatment plans. Med Phys 37:244–248CrossRef
4.
Zurück zum Zitat Amer A, Marchant T, Sykes J, Czajka J, Moore C (2007) Imaging doses from the Elekta Synergy X-ray cone beam CT system. Brit J Radiol 80:476–482CrossRefPubMed Amer A, Marchant T, Sykes J, Czajka J, Moore C (2007) Imaging doses from the Elekta Synergy X-ray cone beam CT system. Brit J Radiol 80:476–482CrossRefPubMed
5.
Zurück zum Zitat Beltran Ch, Lukose R, Gangadharan B, Bani-Hashemi A, Faddegon BA (2009) Image quality & dosimetric property of an investigational imaging beam line MV-CBCT. J App Clin Med Phys 10:3023 Beltran Ch, Lukose R, Gangadharan B, Bani-Hashemi A, Faddegon BA (2009) Image quality & dosimetric property of an investigational imaging beam line MV-CBCT. J App Clin Med Phys 10:3023
6.
Zurück zum Zitat Breitbach EK, Maltz JS, Gangadharan B, Ban-Hashemi A, Anderson CM, Bhatia SK, Stiles J, Edwards DS, Flynn RT (2011) Image quality improvement in megavoltage cone beam CT using an imaging beam line and sintered pixelated array systems. Med Phys 38:5969–5979CrossRefPubMed Breitbach EK, Maltz JS, Gangadharan B, Ban-Hashemi A, Anderson CM, Bhatia SK, Stiles J, Edwards DS, Flynn RT (2011) Image quality improvement in megavoltage cone beam CT using an imaging beam line and sintered pixelated array systems. Med Phys 38:5969–5979CrossRefPubMed
7.
Zurück zum Zitat Chan MF, Yang J, Song Y, Burman C, Chan P, Li S (2011) Evaluation of imaging performance of major image guidance systems. Biomed Imaging Interv J 7:e11PubMedCentralPubMed Chan MF, Yang J, Song Y, Burman C, Chan P, Li S (2011) Evaluation of imaging performance of major image guidance systems. Biomed Imaging Interv J 7:e11PubMedCentralPubMed
8.
Zurück zum Zitat Ding GX, Coffey ChW (2009) Radiation dose from kilovoltage cone-beam computed tomography in an image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys 73:610–617CrossRefPubMed Ding GX, Coffey ChW (2009) Radiation dose from kilovoltage cone-beam computed tomography in an image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys 73:610–617CrossRefPubMed
9.
Zurück zum Zitat Ding GX, Munro P, Pawlowski J, Malcolm A, Coffey ChW (2010) Reducing radiation exposure to patients from kV-CBCT imaging. Radiother Oncol 97:585–592CrossRefPubMed Ding GX, Munro P, Pawlowski J, Malcolm A, Coffey ChW (2010) Reducing radiation exposure to patients from kV-CBCT imaging. Radiother Oncol 97:585–592CrossRefPubMed
10.
Zurück zum Zitat Dzierma Y, Nuesken FG, Licht NP, Rübe CH (2013) Dosimetric properties and commissioning of cone-beam CT image beam line with a carbon target. Strahlenther Onkol 189:566–572CrossRefPubMed Dzierma Y, Nuesken FG, Licht NP, Rübe CH (2013) Dosimetric properties and commissioning of cone-beam CT image beam line with a carbon target. Strahlenther Onkol 189:566–572CrossRefPubMed
11.
Zurück zum Zitat Dzierma Y, Nuesken F, Otto W, Alaei P, Licht N, Rübe CH (2014) Dosimetry of an in-line kilovoltage imaging system and implementation in treatment planning. Int J Radiat Oncol Biol Phys 88:913–919CrossRefPubMed Dzierma Y, Nuesken F, Otto W, Alaei P, Licht N, Rübe CH (2014) Dosimetry of an in-line kilovoltage imaging system and implementation in treatment planning. Int J Radiat Oncol Biol Phys 88:913–919CrossRefPubMed
12.
Zurück zum Zitat Faddegon BA, Wu V, Pouliot J, Gangadharan B, Bani-Hashemi A (2008) Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target. Med Phys 35:5777–5786CrossRefPubMed Faddegon BA, Wu V, Pouliot J, Gangadharan B, Bani-Hashemi A (2008) Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target. Med Phys 35:5777–5786CrossRefPubMed
13.
Zurück zum Zitat Faddegon BA, Alubin M, Bani-Hashemi A, Gangadharan B, Gottschalk AR, Morin O, Sawkey D, Wu V, Yom SS (2010) Comparison of patient megavoltage cone beam CT images acquired with an unflattened beam from a carbon target and a flattened treatment beam. Med Phys 37:1737–1741CrossRefPubMed Faddegon BA, Alubin M, Bani-Hashemi A, Gangadharan B, Gottschalk AR, Morin O, Sawkey D, Wu V, Yom SS (2010) Comparison of patient megavoltage cone beam CT images acquired with an unflattened beam from a carbon target and a flattened treatment beam. Med Phys 37:1737–1741CrossRefPubMed
14.
Zurück zum Zitat Fast MF, Krauss A, Oelfke U, Nill S (2012a) Position detection accuracy of a novel linac-mounted intrafractional x-ray imaging system. Med Phys 39:109–118CrossRefPubMed Fast MF, Krauss A, Oelfke U, Nill S (2012a) Position detection accuracy of a novel linac-mounted intrafractional x-ray imaging system. Med Phys 39:109–118CrossRefPubMed
15.
Zurück zum Zitat Fast MF, Koenig T, Oelfke U, Nill S (2012b) Performance characteristics of a novel megavoltage cone-beam-computed tomography device. Phys Med Biol 57:N15–N24CrossRefPubMed Fast MF, Koenig T, Oelfke U, Nill S (2012b) Performance characteristics of a novel megavoltage cone-beam-computed tomography device. Phys Med Biol 57:N15–N24CrossRefPubMed
16.
Zurück zum Zitat Gayou O, Parda DS, Johnson M, Miften M (2007) Patient dose and image quality from mega-voltage cone beam computed tomography imaging. Med Phys 34:499–506CrossRefPubMed Gayou O, Parda DS, Johnson M, Miften M (2007) Patient dose and image quality from mega-voltage cone beam computed tomography imaging. Med Phys 34:499–506CrossRefPubMed
17.
Zurück zum Zitat Islam MK, Purdie THG, Norrlinger BD, Alasti H, Moseley DJ, Sharpe MB, Siewerdsen JH, Jaffray DA (2006) Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med Phys 33:1573–1582CrossRefPubMed Islam MK, Purdie THG, Norrlinger BD, Alasti H, Moseley DJ, Sharpe MB, Siewerdsen JH, Jaffray DA (2006) Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med Phys 33:1573–1582CrossRefPubMed
18.
Zurück zum Zitat Jaffray DA, Drake DG, Moreau M, Martinez AA, Wong JW (1999) A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys 45:773–789CrossRefPubMed Jaffray DA, Drake DG, Moreau M, Martinez AA, Wong JW (1999) A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys 45:773–789CrossRefPubMed
19.
Zurück zum Zitat Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53:1337–1349CrossRefPubMed Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53:1337–1349CrossRefPubMed
20.
Zurück zum Zitat Miften M, Gayou O, Reitz B, Fuhrer R, Leicher B, Parda DS (2007) IMRT planning and delivery incorporating daily dose from mega-voltage cone-beam computed tomography imaging. Med Phys 34:3760–3767CrossRefPubMed Miften M, Gayou O, Reitz B, Fuhrer R, Leicher B, Parda DS (2007) IMRT planning and delivery incorporating daily dose from mega-voltage cone-beam computed tomography imaging. Med Phys 34:3760–3767CrossRefPubMed
21.
Zurück zum Zitat Morin O, Gillis A, Chen J, Aubin M, Bucci MK, Roach III M, Pouliot J (2006) Megavoltage cone-beam CT: system description and clinical applications. Med Dosim 31:51–61CrossRefPubMed Morin O, Gillis A, Chen J, Aubin M, Bucci MK, Roach III M, Pouliot J (2006) Megavoltage cone-beam CT: system description and clinical applications. Med Dosim 31:51–61CrossRefPubMed
22.
Zurück zum Zitat Morin O, Gillis A, Descovich M, Chen J, Aubin M, Aubry J-F, Chen H, Gottschalk AG, Xia P, Pouliot J (2007) Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys 34:1819–1827CrossRefPubMed Morin O, Gillis A, Descovich M, Chen J, Aubin M, Aubry J-F, Chen H, Gottschalk AG, Xia P, Pouliot J (2007) Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys 34:1819–1827CrossRefPubMed
23.
Zurück zum Zitat Ostapiak OZ, O’Brien PF, Faddegon BA (1998) Megavoltage imaging with low Z targets: implementation and characterization of an investigational system. Med Phys 25:1910–1918CrossRefPubMed Ostapiak OZ, O’Brien PF, Faddegon BA (1998) Megavoltage imaging with low Z targets: implementation and characterization of an investigational system. Med Phys 25:1910–1918CrossRefPubMed
24.
Zurück zum Zitat Pouliot J, Bani-Hashemi A, Chen J et al (2005) Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys 61:552–560CrossRefPubMed Pouliot J, Bani-Hashemi A, Chen J et al (2005) Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys 61:552–560CrossRefPubMed
25.
Zurück zum Zitat Robar JL, Connell T, Huang W, Kelly RG (2009) Megavoltage planar and cone-beam imaging with low-Z targets: dependence of image quality improvement on beam energy and patient separation. Med Phys 36:3955–3963CrossRefPubMed Robar JL, Connell T, Huang W, Kelly RG (2009) Megavoltage planar and cone-beam imaging with low-Z targets: dependence of image quality improvement on beam energy and patient separation. Med Phys 36:3955–3963CrossRefPubMed
26.
Zurück zum Zitat Schiller K, Petrucci A, Geinitz H, Schuster T, Specht H, Kampfer S, Duma MN (2014) Impact of different setup approaches in image-guided radiotherapy as primary treatment for prostate cancer. Strahlenther Onkol 190:722–726CrossRefPubMed Schiller K, Petrucci A, Geinitz H, Schuster T, Specht H, Kampfer S, Duma MN (2014) Impact of different setup approaches in image-guided radiotherapy as primary treatment for prostate cancer. Strahlenther Onkol 190:722–726CrossRefPubMed
27.
Zurück zum Zitat Song WY, Kamath S, Ozawa S, Ani SA, Chvetsov A, Bhandare N, Palta JR, Liu C, Li JG (2008) A dose comparison study between XVI and OBI CBCT systems. Med Phys 35:480–486CrossRefPubMed Song WY, Kamath S, Ozawa S, Ani SA, Chvetsov A, Bhandare N, Palta JR, Liu C, Li JG (2008) A dose comparison study between XVI and OBI CBCT systems. Med Phys 35:480–486CrossRefPubMed
28.
Zurück zum Zitat Spezi E, Downes P, Jarvis R, Radu E, Staffurth J (2012) Patient-Specific three-dimensional concomitant dose from cone beam computed tomography exposure in image-guided radiotherapy. Int J Radiat Oncol Biol Phys 83:419–426CrossRefPubMed Spezi E, Downes P, Jarvis R, Radu E, Staffurth J (2012) Patient-Specific three-dimensional concomitant dose from cone beam computed tomography exposure in image-guided radiotherapy. Int J Radiat Oncol Biol Phys 83:419–426CrossRefPubMed
29.
Zurück zum Zitat Stützel J, Oelfke U, Nill S (2008) A quantitative image quality comparison of four different image guided radiotherapy devices. Radiother Oncol 86:20–24CrossRefPubMed Stützel J, Oelfke U, Nill S (2008) A quantitative image quality comparison of four different image guided radiotherapy devices. Radiother Oncol 86:20–24CrossRefPubMed
30.
Zurück zum Zitat Van Herk M (2007) Different styles of image-guided radiotherapy. Semin Radiat Oncol 17:258–267CrossRefPubMed Van Herk M (2007) Different styles of image-guided radiotherapy. Semin Radiat Oncol 17:258–267CrossRefPubMed
31.
Zurück zum Zitat Zhang Y, Yan Y, Nath R, Bao SH, Deng J (2012) Personalized assessment of kV cone beam computed tomography doses in image-guided radiotherapy of pediatric cancer patients. Int J Radiat Oncol Biol Phys 83:1649–1654CrossRefPubMed Zhang Y, Yan Y, Nath R, Bao SH, Deng J (2012) Personalized assessment of kV cone beam computed tomography doses in image-guided radiotherapy of pediatric cancer patients. Int J Radiat Oncol Biol Phys 83:1649–1654CrossRefPubMed
Metadaten
Titel
Image quality and dose distributions of three linac-based imaging modalities
verfasst von
Dr. rer. nat. Yvonne Dzierma
Evemarie Ames
Dr. rer. nat. Frank Nuesken
Dr. med. Jan Palm
Dr. rer. nat. Norbert Licht
Prof. Dr. med. Christian Rübe
Publikationsdatum
01.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 4/2015
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-014-0798-7

Weitere Artikel der Ausgabe 4/2015

Strahlentherapie und Onkologie 4/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.