Skip to main content
Erschienen in: Strahlentherapie und Onkologie 5/2018

18.01.2018 | Original Article

Prospective feasibility analysis of a novel off-line approach for MR-guided radiotherapy

verfasst von: Tilman Bostel, Asja Pfaffenberger, Stefan Delorme, Constantin Dreher, Gernot Echner, Peter Haering, Clemens Lang, Mona Splinter, Frederik Laun, Marco Müller, Oliver Jäkel, Jürgen Debus, Peter E. Huber, Florian Sterzing, Dr. Nils H. Nicolay, M.D., Ph.D.

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

The present work aimed to analyze the feasibility of a shuttle-based MRI-guided radiation therapy (MRgRT) in the treatment of pelvic malignancies.

Patients and methods

20 patients with pelvic malignancies were included in this prospective feasibility analysis. Patients underwent daily MRI in treatment position prior to radiotherapy at the German Cancer Research Center. Positional inaccuracies, time and patient compliance were assessed for the application of off-line MRgRT.

Results

In 78% of applied radiation fractions, MR imaging for position verification could be performed without problems. Additionally, treatment-related side effects and reduced patient compliance were only responsible for omission of MRI in 9% of radiation fractions. The study workflow took a median time of 61 min (range 47–99 min); duration for radiotherapy alone was 13 min (range 7–26 min). Patient positioning, MR imaging and CT imaging including patient repositioning and the shuttle transfer required median times of 10 min (range 7–14 min), 26 min (range 15–60 min), 5 min (range 3–8 min) and 8 min (range 2–36 min), respectively.
To assess feasibility of shuttle-based MRgRT, the reference point coordinates for the x, y and z axis were determined for the MR images and CT obtained prior to the first treatment fraction and correlated with the coordinates of the planning CT. In our dataset, the median positional difference between MR imaging and CT-based imaging based on fiducial matching between MR and CT imaging was equal to or less than 2 mm in all spatial directions. The limited space in the MR scanner influenced patient selection, as the bore of the scanner had to accommodate the immobilization device and the constructed stereotactic frame. Therefore, obese, extremely muscular or very tall patients could not be included in this trial in addition to patients for whom exposure to MRI was generally judged inappropriate.

Conclusion

This trial demonstrated for the first time the feasibility and patient compliance of a shuttle-based off-line approach to MRgRT of pelvic malignancies.
Literatur
1.
Zurück zum Zitat Guerrero Urbano MT, Nutting CM (2004) Clinical use of intensity-modulated radiotherapy: part II. Br J Radiol 77(915):177–182CrossRefPubMed Guerrero Urbano MT, Nutting CM (2004) Clinical use of intensity-modulated radiotherapy: part II. Br J Radiol 77(915):177–182CrossRefPubMed
2.
Zurück zum Zitat Guckenberger M, Andratschke N, Alheit H, Holy R, Moustakis C, Nestle U, Sauer O, Deutsche Gesellschaft fur Radioonkologie (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190(1):26–33CrossRefPubMed Guckenberger M, Andratschke N, Alheit H, Holy R, Moustakis C, Nestle U, Sauer O, Deutsche Gesellschaft fur Radioonkologie (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190(1):26–33CrossRefPubMed
3.
Zurück zum Zitat Schulz-Ertner D, Tsujii H (2007) Particle radiation therapy using proton and heavier ion beams. J Clin Oncol 25(8):953–964CrossRefPubMed Schulz-Ertner D, Tsujii H (2007) Particle radiation therapy using proton and heavier ion beams. J Clin Oncol 25(8):953–964CrossRefPubMed
4.
Zurück zum Zitat Dawson LA, Jaffray DA (2007) Advances in image-guided radiation therapy. J Clin Oncol 25(8):938–946CrossRefPubMed Dawson LA, Jaffray DA (2007) Advances in image-guided radiation therapy. J Clin Oncol 25(8):938–946CrossRefPubMed
5.
Zurück zum Zitat Dawson LA, Sharpe MB (2006) Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 7(10):848–858CrossRefPubMed Dawson LA, Sharpe MB (2006) Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 7(10):848–858CrossRefPubMed
6.
Zurück zum Zitat Antonuk LE, Boudry J, Huang W, McShan DL, Morton EJ, Yorkston J, Longo MJ, Street RA (1992) Demonstration of megavoltage and diagnostic x‑ray imaging with hydrogenated amorphous silicon arrays. Med Phys 19(6):1455–1466CrossRefPubMed Antonuk LE, Boudry J, Huang W, McShan DL, Morton EJ, Yorkston J, Longo MJ, Street RA (1992) Demonstration of megavoltage and diagnostic x‑ray imaging with hydrogenated amorphous silicon arrays. Med Phys 19(6):1455–1466CrossRefPubMed
7.
Zurück zum Zitat Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53(5):1337–1349CrossRefPubMed Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53(5):1337–1349CrossRefPubMed
8.
Zurück zum Zitat Rasch C, Steenbakkers R, van Herk M (2005) Target definition in prostate, head, and neck. Semin Radiat Oncol 15(3):136–145CrossRefPubMed Rasch C, Steenbakkers R, van Herk M (2005) Target definition in prostate, head, and neck. Semin Radiat Oncol 15(3):136–145CrossRefPubMed
9.
Zurück zum Zitat Fiorentino A, Caivano R, Pedicini P, Fusco V (2013) Clinical target volume definition for glioblastoma radiotherapy planning: magnetic resonance imaging and computed tomography. Clin Transl Oncol 15(9):754–758CrossRefPubMed Fiorentino A, Caivano R, Pedicini P, Fusco V (2013) Clinical target volume definition for glioblastoma radiotherapy planning: magnetic resonance imaging and computed tomography. Clin Transl Oncol 15(9):754–758CrossRefPubMed
11.
Zurück zum Zitat Tsien C, Cao Y, Chenevert T (2014) Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol 24(3):218–226CrossRefPubMedCentralPubMed Tsien C, Cao Y, Chenevert T (2014) Clinical applications for diffusion magnetic resonance imaging in radiotherapy. Semin Radiat Oncol 24(3):218–226CrossRefPubMedCentralPubMed
12.
Zurück zum Zitat Lupo JM, Nelson SJ (2014) Advanced magnetic resonance imaging methods for planning and monitoring radiation therapy in patients with high-grade glioma. Semin Radiat Oncol 24(4):248–258CrossRefPubMedCentralPubMed Lupo JM, Nelson SJ (2014) Advanced magnetic resonance imaging methods for planning and monitoring radiation therapy in patients with high-grade glioma. Semin Radiat Oncol 24(4):248–258CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Dirix P, Haustermans K, Vandecaveye V (2014) The value of magnetic resonance imaging for radiotherapy planning. Semin Radiat Oncol 24(3):151–159CrossRefPubMed Dirix P, Haustermans K, Vandecaveye V (2014) The value of magnetic resonance imaging for radiotherapy planning. Semin Radiat Oncol 24(3):151–159CrossRefPubMed
14.
Zurück zum Zitat Kerkhof EM, Raaymakers BW, van der Heide UA, van de Bunt L, Jurgenliemk-Schulz IM, Lagendijk JJ (2008) Online MRI guidance for healthy tissue sparing in patients with cervical cancer: an IMRT planning study. Radiother Oncol 88(2):241–249CrossRefPubMed Kerkhof EM, Raaymakers BW, van der Heide UA, van de Bunt L, Jurgenliemk-Schulz IM, Lagendijk JJ (2008) Online MRI guidance for healthy tissue sparing in patients with cervical cancer: an IMRT planning study. Radiother Oncol 88(2):241–249CrossRefPubMed
15.
Zurück zum Zitat Chen L, Price RA Jr., Wang L, Li J, Qin L, McNeeley S, Ma CM, Freedman GM, Pollack A (2004) MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Int J Radiat Oncol Biol Phys 60(2):636–647CrossRefPubMed Chen L, Price RA Jr., Wang L, Li J, Qin L, McNeeley S, Ma CM, Freedman GM, Pollack A (2004) MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Int J Radiat Oncol Biol Phys 60(2):636–647CrossRefPubMed
16.
Zurück zum Zitat Beavis AW, Gibbs P, Dealey RA, Whitton VJ (1998) Radiotherapy treatment planning of brain tumours using MRI alone. Br J Radiol 71(845):544–548CrossRefPubMed Beavis AW, Gibbs P, Dealey RA, Whitton VJ (1998) Radiotherapy treatment planning of brain tumours using MRI alone. Br J Radiol 71(845):544–548CrossRefPubMed
17.
Zurück zum Zitat Mutic S, Dempsey JF (2014) The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 24(3):196–199CrossRefPubMed Mutic S, Dempsey JF (2014) The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 24(3):196–199CrossRefPubMed
18.
Zurück zum Zitat Raaymakers BW, Lagendijk JJ, Overweg J, Kok JG, Raaijmakers AJ, Kerkhof EM, van der Put RW, Meijsing I, Crijns SP, Benedosso F et al (2009) Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 54(12):N229–N237CrossRefPubMed Raaymakers BW, Lagendijk JJ, Overweg J, Kok JG, Raaijmakers AJ, Kerkhof EM, van der Put RW, Meijsing I, Crijns SP, Benedosso F et al (2009) Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 54(12):N229–N237CrossRefPubMed
19.
Zurück zum Zitat Karlsson M, Karlsson MG, Nyholm T, Amies C, Zackrisson B (2009) Dedicated magnetic resonance imaging in the radiotherapy clinic. Int J Radiat Oncol Biol Phys 74(2):644–651CrossRefPubMed Karlsson M, Karlsson MG, Nyholm T, Amies C, Zackrisson B (2009) Dedicated magnetic resonance imaging in the radiotherapy clinic. Int J Radiat Oncol Biol Phys 74(2):644–651CrossRefPubMed
20.
Zurück zum Zitat Jaffray DA, Carlone MC, Milosevic MF, Breen SL, Stanescu T, Rink A, Alasti H, Simeonov A, Sweitzer MC, Winter JD (2014) A facility for magnetic resonance-guided radiation therapy. Semin Radiat Oncol 24(3):193–195CrossRefPubMed Jaffray DA, Carlone MC, Milosevic MF, Breen SL, Stanescu T, Rink A, Alasti H, Simeonov A, Sweitzer MC, Winter JD (2014) A facility for magnetic resonance-guided radiation therapy. Semin Radiat Oncol 24(3):193–195CrossRefPubMed
21.
Zurück zum Zitat Bostel T, Nicolay NH, Grossmann JG, Mohr A, Delorme S, Echner G, Haring P, Debus J, Sterzing F (2014) MR-guidance—a clinical study to evaluate a shuttle- based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol 9:12CrossRefPubMedCentralPubMed Bostel T, Nicolay NH, Grossmann JG, Mohr A, Delorme S, Echner G, Haring P, Debus J, Sterzing F (2014) MR-guidance—a clinical study to evaluate a shuttle- based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol 9:12CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat Noel CE, Parikh PJ, Spencer CR, Green OL, Hu Y, Mutic S, Olsen JR (2015) Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol 54(9):1474–1482CrossRefPubMed Noel CE, Parikh PJ, Spencer CR, Green OL, Hu Y, Mutic S, Olsen JR (2015) Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol 54(9):1474–1482CrossRefPubMed
23.
Zurück zum Zitat Acharya S, Fischer-Valuck BW, Kashani R, Parikh P, Yang D, Zhao T, Green O, Wooten O, Li HH, Hu Y et al (2016) Online magnetic resonance image guided adaptive radiation therapy: first clinical applications. Int J Radiat Oncol Biol Phys 94(2):394–403CrossRefPubMed Acharya S, Fischer-Valuck BW, Kashani R, Parikh P, Yang D, Zhao T, Green O, Wooten O, Li HH, Hu Y et al (2016) Online magnetic resonance image guided adaptive radiation therapy: first clinical applications. Int J Radiat Oncol Biol Phys 94(2):394–403CrossRefPubMed
24.
Zurück zum Zitat Nyholm T, Nyberg M, Karlsson MG, Karlsson M (2009) Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments. Radiat Oncol 4:54CrossRefPubMedCentralPubMed Nyholm T, Nyberg M, Karlsson MG, Karlsson M (2009) Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments. Radiat Oncol 4:54CrossRefPubMedCentralPubMed
25.
Zurück zum Zitat Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, Overweg J, Brown KJ, Kerkhof EM, van der Put RW, Hardemark B, van Vulpen M, van der Heide UA (2008) MRI/linac integration. Radiother Oncol 86(1):25–29CrossRefPubMed Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, Overweg J, Brown KJ, Kerkhof EM, van der Put RW, Hardemark B, van Vulpen M, van der Heide UA (2008) MRI/linac integration. Radiother Oncol 86(1):25–29CrossRefPubMed
26.
Zurück zum Zitat Constantin DE, Fahrig R, Keall PJ (2011) A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators. Med Phys 38(7):4174–4185CrossRefPubMedCentralPubMed Constantin DE, Fahrig R, Keall PJ (2011) A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators. Med Phys 38(7):4174–4185CrossRefPubMedCentralPubMed
27.
Zurück zum Zitat Fallone BG, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, Blosser E, Tymofichuk D (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys 36(6):2084–2088CrossRefPubMed Fallone BG, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, Blosser E, Tymofichuk D (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys 36(6):2084–2088CrossRefPubMed
28.
Zurück zum Zitat Kron T, Eyles D, John SL, Battista J (2006) Magnetic resonance imaging for adaptive cobalt tomotherapy: a proposal. J Med Phys 31(4):242–254CrossRefPubMedCentralPubMed Kron T, Eyles D, John SL, Battista J (2006) Magnetic resonance imaging for adaptive cobalt tomotherapy: a proposal. J Med Phys 31(4):242–254CrossRefPubMedCentralPubMed
29.
Zurück zum Zitat Ghilezan MJ, Jaffray DA, Siewerdsen JH, Van Herk M, Shetty A, Sharpe MB, Zafar Jafri S, Vicini FA, Matter RC, Brabbins DS et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62(2):406–417CrossRefPubMed Ghilezan MJ, Jaffray DA, Siewerdsen JH, Van Herk M, Shetty A, Sharpe MB, Zafar Jafri S, Vicini FA, Matter RC, Brabbins DS et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62(2):406–417CrossRefPubMed
30.
Zurück zum Zitat Kotte AN, Hofman P, Lagendijk JJ, van Vulpen M, van der Heide UA (2007) Intrafraction motion of the prostate during external-beam radiation therapy: analysis of 427 patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys 69(2):419–425CrossRefPubMed Kotte AN, Hofman P, Lagendijk JJ, van Vulpen M, van der Heide UA (2007) Intrafraction motion of the prostate during external-beam radiation therapy: analysis of 427 patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys 69(2):419–425CrossRefPubMed
31.
Zurück zum Zitat Roberson PL, McLaughlin PW, Narayana V, Troyer S, Hixson GV, Kessler ML (2005) Use and uncertainties of mutual information for computed tomography/ magnetic resonance (CT/MR) registration post permanent implant of the prostate. Med Phys 32(2):473–482CrossRefPubMed Roberson PL, McLaughlin PW, Narayana V, Troyer S, Hixson GV, Kessler ML (2005) Use and uncertainties of mutual information for computed tomography/ magnetic resonance (CT/MR) registration post permanent implant of the prostate. Med Phys 32(2):473–482CrossRefPubMed
32.
Zurück zum Zitat Fransson A, Andreo P, Potter R (2001) Aspects of MR image distortions in radiotherapy treatment planning. Strahlenther Onkol 177(2):59–73CrossRefPubMed Fransson A, Andreo P, Potter R (2001) Aspects of MR image distortions in radiotherapy treatment planning. Strahlenther Onkol 177(2):59–73CrossRefPubMed
33.
Zurück zum Zitat Karger CP, Hoss A, Bendl R, Canda V, Schad L (2006) Accuracy of device-specific 2D and 3D image distortion correction algorithms for magnetic resonance imaging of the head provided by a manufacturer. Phys Med Biol 51(12):N253–N261CrossRefPubMed Karger CP, Hoss A, Bendl R, Canda V, Schad L (2006) Accuracy of device-specific 2D and 3D image distortion correction algorithms for magnetic resonance imaging of the head provided by a manufacturer. Phys Med Biol 51(12):N253–N261CrossRefPubMed
34.
Zurück zum Zitat Rudra S, Jiang N, Rosenberg SA, Olsen JR, Parikh PJ, Bassetti MF, Lee P (2017) High dose adaptive MRI guided radiation therapy improves overall survival of inoperable pancreatic cancer. Int J Radiat Oncol Biol Phys 99(2, Suppl.):E184CrossRef Rudra S, Jiang N, Rosenberg SA, Olsen JR, Parikh PJ, Bassetti MF, Lee P (2017) High dose adaptive MRI guided radiation therapy improves overall survival of inoperable pancreatic cancer. Int J Radiat Oncol Biol Phys 99(2, Suppl.):E184CrossRef
Metadaten
Titel
Prospective feasibility analysis of a novel off-line approach for MR-guided radiotherapy
verfasst von
Tilman Bostel
Asja Pfaffenberger
Stefan Delorme
Constantin Dreher
Gernot Echner
Peter Haering
Clemens Lang
Mona Splinter
Frederik Laun
Marco Müller
Oliver Jäkel
Jürgen Debus
Peter E. Huber
Florian Sterzing
Dr. Nils H. Nicolay, M.D., Ph.D.
Publikationsdatum
18.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 5/2018
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-017-1258-y

Weitere Artikel der Ausgabe 5/2018

Strahlentherapie und Onkologie 5/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.