Skip to main content
Log in

HPV und Neoplasien der Haut

HPV and skin neoplasia

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Humane Papillomviren (HPV) induzieren benigne und maligne Tumoren der Haut und Schleimhaut. Nichtmelanozytärer Hautkrebs (NMHK) ist der häufigste Krebs hellhäutiger Menschen, besonders häufig in Ländern mit starker Sonnenexposition und bei immunsupprimierten Patienten. Die hohe Prävalenz von β-HPV in Hauttumoren weckte Interesse an einer möglichen ätiologischen Rolle der Viren. Im Gegensatz zum Gebärmutterhalskrebs ist HPV wahrscheinlich nicht notwendig für die Aufrechterhaltung des malignen Phänotyps von Hautkrebszellen, da die HPV-DNA in den Tumoren nur in sehr geringer Kopienzahl persistiert. Höhere Viruslasten in aktinischen Keratosen sind vereinbar mit einer karzinogenen Rolle kutaner HPV in frühen Phasen der NMHK-Entwicklung. Fall-Kontroll-Studien erbrachten Hinweise auf ein erhöhtes Risiko für Plattenepithelkarzinome der Haut bei β-HPV-Infektionen. HPV8 ist in transgenen Mäusen eindeutig karzinogen. Das onkogene Potenzial der β-HPV wurde der Inhibition der Apoptose durch virale E6-Proteine und der Interferenz mit DNA-Reparaturmechanismen der Zelle zugeschrieben. E7-Proteine deregulieren darüber hinaus den Zellzyklus und fördern invasives Wachstum.

Abstract

Human papillomaviruses (HPV) induce benign and malignant tumors of skin and mucosa. Non-melanoma skin cancer (NMSC) is the most frequent malignancy in fair-skinned populations, particularly frequent in countries with high sun exposure and in immunosuppressed patients. The high prevalence of Beta-HPV in skin tumors renewed interest in a possible etiologic role of HPV. In contrast to cervical cancer, the presence of HPV is probably not mandatory for maintenance of the malignant phenotype of skin cancer cells, since only low copy numbers of HPV DNA persist in skin cancers. Higher viral loads in actinic keratoses are compatible with a carcinogenic role of cutaneous HPV in early phases of NMSC development. There is some evidence from case-control studies for an increased risk of cutaneous squamous cell carcinoma related to beta-HPV infection. HPV8 is clearly carcinogenic in transgenic mice. At the molecular level, oncogenic activities of beta-HPV have been attributed to effective inhibition of apoptosis and interference with DNA repair pathways by viral E6 proteins. In addition E7 proteins deregulate the cell cycle and enhance invasive growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Accardi R, Dong W, Smet A et al. (2006) Skin human papillomavirus type 38 alters p53 functions by accumulation of deltaNp73. EMBO Rep 7: 334–340

    Article  PubMed  CAS  Google Scholar 

  2. Akgül B, Garcia-Escudero R, Ghali L et al. (2005) The E7 protein of cutaneous human papillomavirus type 8 causes invasion of human keratinocytes into the dermis in organotypic cultures of skin. Cancer Res 65: 2216–2223

    Article  PubMed  Google Scholar 

  3. Akgül B, Ghali L, Davies D et al. (2007) HPV8 early genes modulate differentiation and cell cycle of primary human adult keratinocytes. Exp Dermatol 16: 590–599

    Article  PubMed  CAS  Google Scholar 

  4. Akgül B, Pfefferle R, Marcuzzi GP et al. (2006) Expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MT1-MMP in skin tumors of human papillomavirus type 8 transgenic mice. Exp Dermatol 15: 35–42

    Article  PubMed  Google Scholar 

  5. Antonsson A, Karanfilovska S, Lindqvist PG, Hansson BG (2003) General acquisition of human papillomavirus infections of skin occurs in early infancy. J Clin Microbiol 41: 2509–2514

    Article  PubMed  Google Scholar 

  6. Boxman IL, Berkhout RJ, Mulder LH et al. (1997) Detection of human papillomavirus DNA in plucked hairs from renal transplant recipients and healthy volunteers. J Invest Dermatol 108: 712–715

    Article  PubMed  CAS  Google Scholar 

  7. Caldeira S, Zehbe I, Accardi R et al. (2003) The E6 and E7 proteins of the cutaneous human papillomavirus type 38 display transforming properties. J Virol 77: 2195–2206

    Article  PubMed  CAS  Google Scholar 

  8. Koning MN de, Struijk L, Bavinck JN et al. (2007) Betapapillomaviruses frequently persist in the skin of healthy individuals. J Gen Virol 88: 1489–1495

    Article  PubMed  CAS  Google Scholar 

  9. Villiers EM de, Fauquet C, Broker TR et al. (2004) Classification of papillomaviruses. Virology 324: 17–27

    Article  PubMed  CAS  Google Scholar 

  10. Diepgen TL, Mahler V (2002) The epidemiology of skin cancer. Br J Dermatol (Suppl 61) 146: 1–6

    Google Scholar 

  11. Dong W, Kloz U, Accardi R et al. (2005) Skin hyperproliferation and susceptibility to chemical carcinogenesis in transgenic mice expressing E6 and E7 of human papillomavirus type 38. J Virol 79: 14899–14908

    Article  PubMed  CAS  Google Scholar 

  12. Feltkamp MC, Broer R, Summa FM di et al. (2003) Seroreactivity to epidermodysplasia verruciformis-related human papillomavirus types is associated with nonmelanoma skin cancer. Cancer Res 63: 2695–2700

    PubMed  CAS  Google Scholar 

  13. Giampieri S, Storey A (2004) Repair of UV-induced thymine dimers is compromised in cells expressing the E6 protein from human papillomaviruses types 5 and 18. Br J Cancer 90: 2203–2209

    PubMed  CAS  Google Scholar 

  14. Harwood CA, Proby CM, McGregor JM et al. (2006) Clinicopathologic features of skin cancer in organ transplant recipients: a retrospective case-control series. J Am Acad Dermatol 54: 290–300

    Article  PubMed  Google Scholar 

  15. Harwood CA, Surentheran T, Sasieni P et al. (2004) Increased risk of skin cancer associated with the presence of epidermodysplasia verruciformis human papillomavirus types in normal skin. Br J Dermatol 150: 949–957

    Article  PubMed  CAS  Google Scholar 

  16. Hazard K, Karlsson A, Andersson K et al. (2007) Cutaneous human papillomaviruses persist on healthy skin. J Invest Dermatol 127: 116–119

    Article  PubMed  CAS  Google Scholar 

  17. IARC (in press) Human papillomaviruses. IARC Monogr Eval Carcinog Risks Hum 90

  18. Iftner T, Elbel M, Schopp B et al. (2002) Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. Embo J 21: 4741–4748

    Article  PubMed  CAS  Google Scholar 

  19. Jackson S, Harwood C, Thomas M et al. (2000) Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev 14: 3065–3073

    Article  PubMed  CAS  Google Scholar 

  20. Karagas MR, Nelson HH, Sehr P et al. (2006) Human papillomavirus infection and incidence of squamous cell and basal cell carcinomas of the skin. J Natl Cancer Inst 98: 389–395

    Article  PubMed  Google Scholar 

  21. Masini C, Fuchs PG, Gabrielli F et al. (2003) Evidence for the association of human papillomavirus infection and cutaneous squamous cell carcinoma in immunocompetent individuals. Arch Dermatol 139: 890–894

    Article  PubMed  Google Scholar 

  22. Michel A, Kopp-Schneider A, Zentgraf H et al. (2006) E6/E7 expression of human papillomavirus type 20 (HPV-20) and HPV-27 influences proliferation and differentiation of the skin in UV-irradiated SKH-hr1 transgenic mice. J Virol 80: 11153–11164

    Article  PubMed  CAS  Google Scholar 

  23. Orth G (2006) Genetics of epidermodysplasia verruciformis: Insights into host defense against papillomaviruses. Semin Immunol 18: 362–374

    Article  PubMed  CAS  Google Scholar 

  24. Ramoz N, Rueda LA, Bouadjar B et al. (2002) Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32: 579–581

    Article  PubMed  CAS  Google Scholar 

  25. Ramoz N, Taieb A, Rueda LA et al. (2000) Evidence for a nonallelic heterogeneity of epidermodysplasia verruciformis with two susceptibility loci mapped to chromosome regions 2p21-p24 and 17q25. J Invest Dermatol 114: 1148–1153

    Article  PubMed  CAS  Google Scholar 

  26. Schaper ID, Marcuzzi GP, Weissenborn SJ et al. (2005) Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. Cancer Res 65: 1394–1400

    Article  PubMed  CAS  Google Scholar 

  27. Struijk L, Bouwes Bavinck JN, Wanningen P et al. (2003) Presence of human papillomavirus DNA in plucked eyebrow hairs is associated with a history of cutaneous squamous cell carcinoma. J Invest Dermatol 121: 1531–1535

    Article  PubMed  CAS  Google Scholar 

  28. Struijk L, Hall L, Meijden E van der et al. (2006) Markers of cutaneous human papillomavirus infection in individuals with tumor-free skin, actinic keratoses, and squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 15: 529–535

    Article  PubMed  CAS  Google Scholar 

  29. Weissenborn SJ, Nindl I, Purdie K et al. (2005) Human papillomavirus-DNA loads in actinic keratoses exceed those in non-melanoma skin cancers. J Invest Dermatol 125: 93–97

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pfister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfister, H. HPV und Neoplasien der Haut. Hautarzt 59, 26–30 (2008). https://doi.org/10.1007/s00105-007-1442-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-007-1442-6

Schlüsselwörter

Keywords

Navigation