Skip to main content
Log in

Molekulare Ätiologie der Hautalterung

Wie wichtig ist das genetische Make-up?

Molecular etiology of skin aging

How important is the genetic make-up?

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Obwohl die grundsätzlichen Mechanismen der Pathogenese der Hautalterung noch nicht aufgeklärt sind, hat eine Vielzahl von Studien gezeigt, dass nicht einer, sondern multiple Signalwege daran beteiligt sind. Neue Forschungsergebnisse durch Genexpressionsanalysen und Studien von Progeroidsyndromen illustrieren, dass unter den wichtigsten biologischen Prozessen, die in den Hautalterungsprozess involviert sind, Modifizierungen der DNS-Reparatur und -Stabilität, der mitochondrialen Funktion, des Zellzyklus und der Apoptose, der extrazellulären Matrix, der Lipidsynthese, der Ubiquitin-induzierten Proteolyse und des Zellmetabolismus sind. Darüber hinaus spielen Hormone und deren physiologischer Niedergang eine herausragende Rolle in der Einleitung des Alterns. Jedoch regulieren Hormone in altersspezifischen Konzentrationen nicht nur alterungsassoziierte Mechanismen, sondern Tumorsuppressorsignalwege, die die Tumorgenese beeinflussen. Zusammenfassend kann das Verständnis der molekularen Mechanismen des Alterns zur Entwicklung von neuen Strategien zur Vorbeugung von alterungsassoziierten Erkrankungen einschließlich der Tumoren beitragen.

Abstract

Although the fundamental mechanisms in the pathogenesis of skin aging are still poorly understood, a growing body of evidence points toward the involvement of multiple pathways. Recent data obtained by expression profiling studies and studies upon progeroid syndromes illustrate that among the most important biological processes involved in skin aging are alterations in DNA repair and stability, mitochondrial function, cell cycle and apoptosis, extracellular matrix, lipid synthesis, ubiquitin-induced proteolysis and cellular metabolism. One of the major factors which have been proposed to play an exquisite role in the initiation of aging is the physiological decline of hormones occurring with age. However, hormones at age-specific levels may not only regulate age-associated mechanisms but also modulate tumor suppressor pathways that influence carcinogenesis. In conclusion, understanding the molecular mechanisms of ageing may open new strategies to deal with the various diseases accompanying advanced age including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Schieke SM, Schroeder P, Krutmann J (2003) Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms. Photodermatol Photoimmunol Photomed 19(5):228–234

    Article  PubMed  CAS  Google Scholar 

  2. Makrantonaki E, Zouboulis CC, William J (2007) Cunliffe Scientific Awards. Characteristics and pathomechanisms of endogenously aged skin. Dermatology 214(4):352–360

    Article  PubMed  Google Scholar 

  3. Zouboulis CC, Boschnakow A (2001) Chronological ageing and photoageing of the human sebaceous gland. Clin Exp Dermatol 26(7):600–607

    Article  PubMed  CAS  Google Scholar 

  4. Makrantonaki E, Zouboulis CC (2007) The skin as a mirror of the aging process in the human organism – state of the art and results of the aging research in the German National Genome Research Network 2 (NGFN-2). Exp Gerontol 42(9):879–886

    Article  PubMed  CAS  Google Scholar 

  5. Guyuron B, Rowe DJ, Weinfeld AB et al (2009) Factors contributing to the facial aging of identical twins. Plast Reconstr Surg 123(4):1321–1331

    Article  PubMed  CAS  Google Scholar 

  6. Blanche H, Cabanne L, Sahbatou M, Thomas G (2001) A study of French centenarians: Are ACE and APOE associated with longevity? C R Acad Sci III 324(2):129–135

    PubMed  CAS  Google Scholar 

  7. Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7(6):436–448

    Article  PubMed  CAS  Google Scholar 

  8. Flachsbart F, Caliebe A, Kleindorp R et al (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci U S A 106(8):2700–2705

    Article  PubMed  CAS  Google Scholar 

  9. Willcox BJ, Donlon TA, He Q et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A 105(37):13987–13992

    Article  PubMed  CAS  Google Scholar 

  10. Singh R, Kolvraa S, Rattan SI (2007) Genetics of human longevity with emphasis on the relevance of HSP70 as candidate genes. Front Biosci 12:4504–4513

    Article  PubMed  CAS  Google Scholar 

  11. Nebel A, Flachsbart F, Till A et al (2009) A functional EXO1 promoter variant is associated with prolonged life expectancy in centenarians. Mech Ageing Dev 130(10):691–699

    Article  PubMed  CAS  Google Scholar 

  12. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  PubMed  CAS  Google Scholar 

  13. Gilchrest BA (1983) In vitro assessment of keratinocyte aging. J Invest Dermatol 81(1 Suppl):184s–189s

    Article  PubMed  CAS  Google Scholar 

  14. Schneider EL, Mitsui Y (1976) The relationship between in vitro cellular aging and in vivo human age. Proc Natl Acad Sci U S A 73(10):3584–3588

    Article  PubMed  CAS  Google Scholar 

  15. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367

    Article  PubMed  CAS  Google Scholar 

  16. Tresini M, Lorenzini A, Torres C, Cristofalo VJ (2007) Modulation of replicative senescence of diploid human cells by nuclear ERK signaling. J Biol Chem 282(6):4136–4151

    Article  PubMed  CAS  Google Scholar 

  17. Kosmadaki MG, Gilchrest BA (2004) The role of telomeres in skin aging/photoaging. Micron 35(3):155–159

    Article  PubMed  CAS  Google Scholar 

  18. Bodnar AG, Ouellette M, Frolkis M et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352

    Article  PubMed  CAS  Google Scholar 

  19. Smith JR, Pereira-Smith OM (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273(5271):63–67

    Article  PubMed  CAS  Google Scholar 

  20. Allsopp RC, Vaziri H, Patterson C et al (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A 89(21):10114–10118

    Article  PubMed  CAS  Google Scholar 

  21. Michikawa Y, Mazzucchelli F, Bresolin N et al (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286(5440):774–779

    Article  PubMed  CAS  Google Scholar 

  22. Miquel J (1998) An update on the oxygen stress-mitochondrial mutation theory of aging: genetic and evolutionary implications. Exp Gerontol 33(1–2):113–126

    Google Scholar 

  23. Benn PA (1976) Specific chromosome aberrations in senescent fibroblast cell lines derived from human embryos. Am J Hum Genet 28(5):465–473

    PubMed  CAS  Google Scholar 

  24. Ly DH, Lockhart DJ, Lerner RA, Schultz PG (2000) Mitotic misregulation and human aging. Science 287(5462):2486–2492

    Article  PubMed  CAS  Google Scholar 

  25. Makrantonaki E, Zouboulis CC (2009) Androgens and ageing of the skin. Curr Opin Endocrinol Diabetes Obes 16(3):240–245

    Article  PubMed  CAS  Google Scholar 

  26. Makrantonaki E, Vogel K, Fimmel S et al (2008) Interplay of IGF-I and 17beta-estradiol at age-specific levels in human sebocytes and fibroblasts in vitro. Exp Gerontol 43(10):939–946

    Article  PubMed  CAS  Google Scholar 

  27. Zouboulis CC, Chen WC, Thornton MJ et al (2007) Sexual hormones in human skin. Horm Metab Res 39(2):85–95

    Article  PubMed  CAS  Google Scholar 

  28. Zouboulis CC (2003) Intrinsic skin aging. A critical appraisal of the role of hormones. Hautarzt 54(9):825–832

    Article  PubMed  Google Scholar 

  29. Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408(6809):255–262

    Article  PubMed  CAS  Google Scholar 

  30. Robert L, Robert AM (2003) Aging, from basic research to pathological applications. Pathol Biol (Paris) 51(10):543–549

    Google Scholar 

  31. Jazwinski SM (1999) The RAS genes: a homeostatic device in Saccharomyces cerevisiae longevity. Neurobiol Aging 20(5):471–478

    Article  PubMed  CAS  Google Scholar 

  32. Johnson TE, Henderson S, Murakami S et al (2002) Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease. J Inherit Metab Dis 25(3):197–206

    Article  PubMed  CAS  Google Scholar 

  33. Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290(5499):2137–2140

    Article  PubMed  CAS  Google Scholar 

  34. Tatar M, Kopelman A, Epstein D et al (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292(5514):107–110

    Article  PubMed  CAS  Google Scholar 

  35. Arking R, Buck S, Hwangbo DS, Lane M (2002) Metabolic alterations and shifts in energy allocations are corequisites for the expression of extended longevity genes in Drosophila. Ann N Y Acad Sci 959:251–62; discussion 463–465

    Article  PubMed  CAS  Google Scholar 

  36. Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51

    Article  PubMed  CAS  Google Scholar 

  37. Rattan SI (2004) Aging, anti-aging, and hormesis. Mech Ageing Dev 125(4):285–289

    Article  PubMed  CAS  Google Scholar 

  38. Partridge L, Gems D (2002) A lethal side-effect. Nature 418(6901):921

    Article  PubMed  CAS  Google Scholar 

  39. Gilchrest BA, Garmyn M, Yaar M (1994) Aging and photoaging affect gene expression in cultured human keratinocytes. Arch Dermatol 130(1):82–86

    Article  PubMed  CAS  Google Scholar 

  40. Yaar M, Gilchrest BA (2001) Skin aging: postulated mechanisms and consequent changes in structure and function. Clin Geriatr Med 17(4):617–630

    Article  PubMed  CAS  Google Scholar 

  41. Seshadri T, Campisi J (1990) Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science 247(4939):205–209

    Article  PubMed  CAS  Google Scholar 

  42. Hara E, Yamaguchi T, Nojima H et al (1994) Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J Biol Chem 269(3):2139–2145

    PubMed  CAS  Google Scholar 

  43. Simard M, Manthos H, Giaid A et al (1996) Ontogeny of growth hormone receptors in human tissues: an immunohistochemical study. J Clin Endocrinol Metab 81(8):3097–3102

    Article  PubMed  CAS  Google Scholar 

  44. Noda A, Ning Y, Venable SF et al (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211(1):90–98

    Article  PubMed  CAS  Google Scholar 

  45. Chang KC, Shen Q, Oh IG et al (2008) Liver X receptor is a therapeutic target for photoaging and chronological skin aging. Mol Endocrinol 22(11):2407–2419

    Article  PubMed  CAS  Google Scholar 

  46. Uitto J (1979) Biochemistry of the elastic fibers in normal connective tissues and its alterations in diseases. J Invest Dermatol 72(1):1–10

    Article  PubMed  CAS  Google Scholar 

  47. Young JJ, Patel A, Rai P (2010) Suppression of thioredoxin-1 induces premature senescence in normal human fibroblasts. Biochem Biophys Res Commun 329(3):363–368

    Article  Google Scholar 

  48. Fisher GJ, Kang S, Varani J et al (2002) Mechanisms of photoaging and chronological skin aging. Arch Dermatol 138(11):1462–1470

    Article  PubMed  CAS  Google Scholar 

  49. Chung JH, Kang S, Varani J et al (2000) Decreased extracellular-signal-regulated kinase and increased stress-activated MAP kinase activities in aged human skin in vivo. J Invest Dermatol 115(2):177–182

    Article  PubMed  CAS  Google Scholar 

  50. Xia Z, Dickens M, Raingeaud J et al (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331

    Article  PubMed  CAS  Google Scholar 

  51. Verheij M, Bose R, Lin XH et al (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380(6569):75–79

    Article  PubMed  CAS  Google Scholar 

  52. West MD, Pereira-Smith OM, Smith JR (1989) Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp Cell Res 184(1):138–147

    Article  PubMed  CAS  Google Scholar 

  53. Millis AJ, Hoyle M, McCue HM, Martini H (1992) Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts. Exp Cell Res 201(2):373–379

    Article  PubMed  CAS  Google Scholar 

  54. Wick M, Burger C, Brusselbach S et al (1994) A novel member of human tissue inhibitor of metalloproteinases (TIMP) gene family is regulated during G1 progression, mitogenic stimulation, differentiation, and senescence. J Biol Chem 269(29):18953–18960

    PubMed  CAS  Google Scholar 

  55. Zeng G, McCue HM, Mastrangelo L, Millis AJ (1996) Endogenous TGF-beta activity is modified during cellular aging: effects on metalloproteinase and TIMP-1 expression. Exp Cell Res 228(2):271–276

    Article  PubMed  CAS  Google Scholar 

  56. Mori Y, Hatamochi A, Arakawa M, Ueki H (1998) Reduced expression of mRNA for transforming growth factor beta (TGF beta) and TGF beta receptors I and II and decreased TGF beta binding to the receptors in in vitro-aged fibroblasts. Arch Dermatol Res 290(3):158–162

    Article  PubMed  CAS  Google Scholar 

  57. Quan T, Shao Y, He T et al (2010) Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. J Invest Dermatol 130(2):415–424

    Article  PubMed  CAS  Google Scholar 

  58. Tiesman JP (2009) From bench to beauty counter: using genomics to drive technology development for skin care. J Drugs Dermatol 8(7 Suppl):s12–s14

    PubMed  Google Scholar 

  59. Kaczvinsky JR Jr, Grimes PE (2009) Practical applications of genomics research for treatment of aging skin. J Drugs Dermatol 8(7 Suppl):s15–s18

    PubMed  Google Scholar 

  60. Robinson MK, Binder RL, Griffiths CE (2009) Genomic-driven insights into changes in aging skin. J Drugs Dermatol 8(7 Suppl):s8–s11

    PubMed  Google Scholar 

  61. Lener T, Moll PR, Rinnerthaler M et al (2006) Expression profiling of aging in the human skin. Exp Gerontol 41(4):387–397

    Article  PubMed  CAS  Google Scholar 

  62. Welle S, Brooks AI, Delehanty JM et al (2003) Gene expression profile of aging in human muscle. Physiol Genomics 14(2):149–159

    PubMed  CAS  Google Scholar 

  63. Makrantonaki E, Adjaye J, Herwig R et al (2006) Age-specific hormonal decline is accompanied by transcriptional changes in human sebocytes in vitro. Aging Cell 5(4):331–344

    Article  PubMed  CAS  Google Scholar 

  64. Rodwell GE, Sonu R, Zahn JM et al (2004) A transcriptional profile of aging in the human kidney. PLoS Biol 2(12):e427

    Article  PubMed  Google Scholar 

  65. Hasty P, Campisi J, Hoeijmakers J et al (2003) Aging and genome maintenance: lessons from the mouse? Science 299(5611):1355–1359

    Article  PubMed  CAS  Google Scholar 

  66. Kyng KJ, May A, Kolvraa S, Bohr VA (2003) Gene expression profiling in Werner syndrome closely resembles that of normal aging. Proc Natl Acad Sci U S A 100(21):12259–12264

    Article  PubMed  CAS  Google Scholar 

  67. Carroll PV, Christ ER, Bengtsson BA et al (1998) Growth hormone deficiency in adulthood and the effects of growth hormone replacement: a review. Growth Hormone Research Society Scientific Committee. J Clin Endocrinol Metab 83(2):382–395

    Article  PubMed  CAS  Google Scholar 

  68. Tomlinson JW, Holden N, Hills RK et al (2001) Association between premature mortality and hypopituitarism. West Midlands Prospective Hypopituitary Study Group. Lancet 357(9254):425–431

    Article  PubMed  CAS  Google Scholar 

  69. Laron Z (2005) Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity? Mech Ageing Dev 126(2):305–307

    Article  PubMed  CAS  Google Scholar 

  70. Makrantonaki E, Zouboulis CC (2008) Skin alterations and diseases with advanced age. Drug Discovery Today: Disease Mechanisms 5(2):e153–e162

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.C. Zouboulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makrantonaki, E., Zouboulis, C. Molekulare Ätiologie der Hautalterung. Hautarzt 62, 582–587 (2011). https://doi.org/10.1007/s00105-011-2136-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-011-2136-7

Schlüsselwörter

Keywords

Navigation